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ABSTRACT
Generalizing policies to unseen scenarios remains a critical chal-
lenge in visual reinforcement learning, where agents often overfit
to the specific visual observations of the training environment. In
unseen environments, distracting pixels may lead agents to ex-
tract representations containing task-irrelevant information. As a
result, agents may deviate from the optimal behaviors learned dur-
ing training, thereby hindering visual generalization. To address
this issue, we propose the Salience-Invariant Consistent Policy
Learning (SCPL) algorithm, an efficient framework for zero-shot
generalization. Our approach introduces a novel value consistency
module alongside a dynamics module to effectively capture task-
relevant representations. The value consistency module, guided
by saliency, ensures the agent focuses on task-relevant pixels in
both original and perturbed observations, while the dynamics mod-
ule uses augmented data to help the encoder capture dynamic-
and reward-relevant representations. Additionally, our theoreti-
cal analysis highlights the importance of policy consistency for
generalization. To strengthen this, we introduce a policy consis-
tency module with a KL divergence constraint to maintain con-
sistent policies across original and perturbed observations. Ex-
tensive experiments on the DMC-GB, Robotic Manipulation, and
CARLA benchmarks demonstrate that SCPL significantly outper-
forms state-of-the-art methods in terms of generalization. Notably,
SCPL achieves average performance improvements of 14%, 39%,
and 69% in the challenging DMC video hard setting, the Robotic
hard setting, and the CARLA benchmark, respectively. Project Page:
https://sites.google.com/view/scpl-rl.
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1 INTRODUCTION
In recent years, visual reinforcement learning (RL) [30] has achieved
remarkable success across various domains, including video games
[26, 31], robot control [16, 17, 33], and autonomous driving [29, 34,
35]. However, generalizing policies to novel scenarios remains a
significant challenge. Small visual perturbations in observations
can distract RL agents [7, 20], leading to representations containing
task-irrelevant information and decisions that deviate from their
training behavior, ultimately hindering visual generalization. In
this paper, we aim to develop generalizable RL agents that can gen-
erate effective task-relevant representations and make consistent
decisions across both original and perturbed observations.

Data augmentation (DA)-based methods [13, 15, 38] are widely
used to enhance the representational ability of visual RL agents.
Recent advances, such as SVEA [11] and SGQN [2], leverage aug-
mented data for implicit regularization to improve generalization.
Unfortunately, as illustrated in Fig.1 (left),these methods fail to
maintain consistent task-relevant attention regions in perturbed ob-
servations, impeding the learning of task-relevant representations.
Other studies [27, 42] employ dynamic models as auxiliary tasks to
capture task-relevant representations. However, the encoder’s pri-
mary design for original observations prevents it from generating
task-relevant representations for perturbed observations. Further-
more, it is difficult to generate task-relevant representations with
uncritical attention to task-relevant regions.
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Figure 1: (Left) Saliency masked map of SVEA, SGQN, and SCPL (ours), which shows the attention regions of value functions
on the DMC-GB benchmark. (Middle) The KL divergence of action distribution between training and test environments on
DMC-GB, where our method holds the smallest KL divergence. (Right) Contribution overview of SCPL, which aims to improve
visual generalization by achieving task-relevant representations and consistent and superior decisions.

Additionally, our theoretical analysis reveals that policy consis-
tency between environments with original and perturbed observa-
tions is crucial for generalization. However, previous methods focus
on improving representations, often neglecting policy consistency.
As shown in Fig.1 (middle), both SVEA [11] and SGQN [2] exhibit
high KL divergence in action distributions between training and
test environments, indicating inconsistent decisions across original
and perturbed observations. Improving the consistency of action
distributions between original and perturbed observations is also
essential to improve generalization. These insights prompt us to
consider: Can we develop generalizable agents that maintain
consistent task-relevant representations and policies?

To address these challenges, we propose Salience-Invariant Con-
sistent Policy Learning (SCPL), which improves generalization by
encouraging RL agents to capture consistent task-relevant repre-
sentations and make consistent superior decisions across diverse
observations. First, we introduce a novel value consistency mod-
ule that encourages the encoder and value function to capture
task-relevant attention region in observations. Meanwhile, we
introduce a dynamics module to generate dynamic-relevant rep-
resentations for observations. By combining the value consis-
tency module and dynamics module, SCPL produces consistent
task-relevant representations. Furthermore, SCPL regularizes the
policy network using a KL divergence constraint between the poli-
cies for original and augmented observations, enabling agents to
make consistent decisions in test environments. An overview of
the motivation behind SCPL is illustrated in Fig.1 (right).

In summary, our contribution includes the following aspects:

• We propose an effective generalization framework, SCPL,
in which a novel value consistency module with saliency
guidance and a dynamics module with augmented data is
introduced to generate task-relevant representations.
• Through theoretical analysis, we reveal that improved policy
consistency leads to enhanced generalization. We further in-
troduce a policy consistency module to regularize the policy
network for consistent decisions to improve generalization.

• The proposed SCPL achieves state-of-the-art (SOTA) per-
formances in 3 popular visual generalization benchmarks,
with an average boost of 14%, 39%, and 69% on the video
hard setting in DMC-GB, the Robotic hard setting, and the
CARLA benchmark, respectively.

2 RELATEDWORKS
2.1 Data augmentation for visual RL
Data augmentation is widely used to enhance the generalization
of visual reinforcement learning (RL) [8, 15, 37]. DrQ [38] employs
image transformation strategies to augment observations through
implicit regularization. SVEA [11] enhances generalization by up-
dating the value function with both original and augmented data.
CG2A [21] improves generalization by combining various data aug-
mentations and alleviating the gradient conflict bias caused by these
augmentations. CNSN [18] employs normalization techniques to
improve visual generalization. SGQN [2] utilizes saliency guidance
to focus agents’ attention on task-relevant areas in original observa-
tions while aligning their attention across original and augmented
data using a trainable network. MaDi [7] improves generalization
by incorporating a mask network before the value function to filter
out task-irrelevant regions in observations. While these methods
can identify effective task-relevant regions in original observations,
they often struggle with perturbed observations. In this paper, SCPL
focuses on maintaining consistent task-relevant regions in both
original and perturbed data with a value consistency module.

2.2 Representation learning in visual RL
Numerous methods [5, 23] improve generalization by learning task-
relevant representations through auxiliary tasks. Some approaches
[19] improve representation effectiveness by employing observa-
tion reconstruction as auxiliary tasks. DBC [42] minimizes the
bisimulation metric in latent spaces to learn invariant represen-
tations without task-irrelevant information. PAD [10] utilizes an
inverse dynamic model to predict actions based on current and
next states. Dr.G [8] trains the encoder and world model using
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Figure 2: Overview of SCPL. The value consistency module is trained using the original and augmented observations 𝑠 and
𝑠𝛼 , along with their saliency attribute maps 𝑠 and 𝑠𝛼 . The dynamics module aids the encoder 𝑓𝜃 in acquiring task-relevant
representations, while the policy consistency module introduces a constraint to maintain consistency in action distributions.

contrastive learning and introduces an inverse dynamics model to
capture temporal structure. Thesemethods learn task-relevant infor-
mation through the guidance of rewards and dynamic consistency.
However, they struggle to extract task-relevant information for per-
turbed observations due to their exclusive training on original data
and uncritical task-relevant attention. SCPL achieves task-relevant
representations for both original and perturbed observations by
training a dynamics module using both original and augmented
data while focusing on task-relevant regions.

2.3 Policy learning for RL
Some studies explore the decoupling of value functions and policy
networks to learn effective policies or obtain invariant represen-
tations [1, 39]. PPG [3] mitigates the interference between policy
and value optimization by distilling the value function while con-
straining the policy. IDAAC [25] models both the policy and value
function while introducing an auxiliary loss to obtain represen-
tations that remain invariant to task-irrelevant properties. DCPG
[22] implicitly penalizes value estimates by optimizing the value
network less frequently, using more training data than the policy
network. However, prior studies that focus on learning invariant
representations often overlook the consistency of policies across
both original and perturbed observations. In contrast, SCPL learns
task-relevant representations while maintaining a consistent supe-
rior policy for perturbed observations, similar to that for original
observations. To the best of our knowledge, we are the first to high-
light the importance of policy consistency between original and
perturbed observations for generalization ability.

3 PROBLEM FORMULATION
Visual reinforcement learning (RL) is considered a partially ob-
servable Markov decision process (POMDP) because only partial
states are observed from images. A POMDP is defined as a tuple
𝑀 = ⟨𝑆,𝑂,𝐴, 𝑃, 𝑟, 𝛾⟩, where 𝑆 is the state space,𝑂 is the observation
space,𝐴 is the action space, 𝑃 : 𝑆×𝐴×𝑆 → R is the transition proba-
bility distribution, 𝑟 : 𝑆 → R is the reward function, and𝛾 ∈ (0, 1) is
the discount factor. Let 𝜋 denote a stochastic policy and𝜂 (𝜋) denote

its expected cumulative reward: 𝜂 (𝜋) = E𝑠0,𝑎0,...
[∑∞

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 )

]
,

where 𝜋 is the policy, 𝑎 is the action, and 𝑠𝑡 is the state in the
𝑡 step. The purpose of visual RL is to find a policy 𝜋∗ to maxi-
mize the expected cumulative reward. The state-action value func-
tion 𝑄𝜋 , the value function 𝑉𝜋 , and the advantage function 𝐴𝜋

are defined as:𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1,𝑎𝑡+1,...
[∑∞

𝑙=0 𝛾
𝑙𝑟 (𝑠𝑡+𝑙 )

]
,𝑉𝜋 (𝑠𝑡 ) =

E𝑎𝑡 ,𝑠𝑡+1,...
[∑∞

𝑙=0 𝛾
𝑙𝑟 (𝑠𝑡+𝑙 )

]
, and 𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) −𝑉𝜋 (𝑠).

4 METHODOLOGY
We propose a salience-invariant consistent policy learning (SCPL)
framework to improve the zero-shot generalization of visual RL. As
shown in Fig.2, SCPL mainly consists of three modules: the value
consistency module, the policy consistency module, and the dynam-
ics module. In this paper, 𝜃 , 𝜁 , 𝜙 , and 𝜓 represent the parameters
of the encoder, the value function, the policy network, and the
dynamic model, respectively.

4.1 Value Consistency Module
To extract task-relevant representations from both original and
perturbed observations, it is essential for the encoder and value
function to consistently focus on task-relevant regions. We intro-
duce a value consistency module with a novel loss function for the
encoder and value function, leveraging augmented data and their
saliency maps. To improve the consistency of attention regions for
original and perturbed observations, we update the value function
with both original and augmented observations. The value loss for
the original data 𝐿𝑄1 is:

𝐿𝑄1 (𝜃, 𝜁 ) = E𝑠,𝑎 [(𝑄𝜁 (𝑓𝜃 (𝑠), 𝑎) − 𝑦𝑡 )2] . (1)

The value loss for the augmented data 𝐿𝑄2 is:

𝐿𝑄2 (𝜃, 𝜁 ) = E𝑠𝛼 ,𝑎 [(𝑄𝜁 (𝑓𝜃 (𝑠𝛼 ), 𝑎) − 𝑦𝑡 )2], (2)

where 𝑦𝑡 represents the target of Q-value. These losses encourage
the value function to estimate the same values for both original
and augmented observations, thereby promoting consistency in
the attention regions. However, maintaining consistency in value
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Figure 3: The generation of saliency attribute masked maps.

estimation alone may be insufficient to ensure that agents focus on
task-relevant regions amidst increasing perturbations. Therefore,
additional guidance is necessary to help agents remain attentive to
task-relevant regions in the observations.

SCPL utilizes saliency attribute masked maps to guide the en-
coder and the value function to focus on task-relevant regions for
observations. As shown in Fig.3, we generate the saliency attribute
masked maps (𝑠 and 𝑠𝛼 ) for original and augmented observations
(𝑠 and 𝑠𝛼 ) using the vanilla gradient method [28]. We use guided
backpropagation to compute the gradient map𝑀 (𝑄, 𝑠, 𝑎) of the Q-
network, represented as 𝑀 (𝑄, 𝑠, 𝑎) = 𝜕𝑄 (𝑠, 𝑎)/𝜕𝑠 . Let 𝑀𝜌 (𝑄, 𝑠, 𝑎)
be the binarized 𝜌-quantile saliency attribute map. Specifically, if
the gradient pixel𝑀 (𝑄, 𝑠, 𝑎) 𝑗 belongs to the top 1 − 𝜌 quantile of
gradient values, then𝑀𝜌 (𝑄, 𝑠, 𝑎) 𝑗 will be set to 1, otherwise 0. The
𝜌-quantile saliency attribute map 𝑠 and 𝑠𝛼 represents the attention
of the value function towards input observations, where white ar-
eas indicate regions of high attention and less attended regions are
masked out. Then, the saliency attributemaskedmaps are generated
by multiplying the observations with their saliency attribute maps
to show the attended pixels.

⊙
denotes the Hadamard product.

To guide agents to focus on task-relevant pixels, we introduce a
saliency consistency term between original observations and their
respective saliency attribute maps. The saliency consistency loss
for the original data is:

𝐿𝑄𝐶1 (𝜃, 𝜁 ) = E𝑠,𝑠,𝑎 [(𝑄𝜁 (𝑓𝜃 (𝑠), 𝑎) −𝑄𝜁 (𝑓𝜃 (𝑠), 𝑎))2] . (3)

To ensure that agents focus on task-relevant regions in both orig-
inal and perturbed observations, we extend saliency guidance to
augmented data while updating the value function with this aug-
mented data. The saliency consistency loss for the augmented data
is:

𝐿𝑄𝐶2 (𝜃, 𝜁 ) = E𝑠𝛼 ,𝑠𝛼 ,𝑎 [(𝑄𝜁 (𝑓𝜃 (𝑠𝛼 ), 𝑎) −𝑄𝜁 (𝑓𝜃 (𝑠𝛼 ), 𝑎))
2] . (4)

With the saliency guidance from Eq.(3) and Eq.(4), agents are able
to focus on task-relevant regions in both original and perturbed
observations.

We combine the value loss with the saliency consistency loss to
form the training objective. The value function’s objective is:
𝐿𝑄 (𝜃, 𝜁 ) = 𝐿𝑄1 (𝜃, 𝜁 ) + 𝐿𝑄2 (𝜃, 𝜁 ) + 𝜆(𝐿𝑄𝐶1 (𝜃, 𝜁 ) + 𝐿𝑄𝐶2 (𝜃, 𝜁 )),

(5)

where 𝜆 is the value consistency coefficient. 𝐿𝑄1 (𝜃, 𝜁 ) and 𝐿𝑄2 (𝜃, 𝜁 )
ensure the encoder and value function attend to consistent regions
in both the training and test environments, while 𝐿𝑄𝐶1 (𝜃, 𝜁 ) and
𝐿𝑄𝐶2 (𝜃, 𝜁 ) ensure agent focus on task-relevant regions within ob-
servations. This value loss enables the encoder and value function

to capture consistent task-relevant pixels from both original and
perturbed observations.

4.2 Dynamics Module
To enable the encoder to effectively provide task-relevant repre-
sentations, we develop a dynamic model to ensure representations
meet the conditions of rewards and dynamics. Specifically, we con-
struct this dynamic model by predicting rewards and next-state
representations for both the original and augmented observations.
The loss of the dynamics module for embedding 𝑒 is:

𝐿𝑇𝑒 (𝜃,𝜓 ) = E𝑠,𝑎 [(𝑒′ − 𝑃𝜓 (𝑓𝜃 (𝑠), 𝑎))2 + (𝑟 − 𝑅𝜓 (𝑓𝜃 (𝑠), 𝑎))2], (6)

where 𝑒 and 𝑒′ are the latent representations of the current obser-
vation and the next observation. Dynamics module 𝑇 consists of
dynamic head 𝑃 and reward head 𝑅. The training objective of the
dynamics module of the embedding for augmented data 𝑒𝛼 , is:

𝐿𝑇𝑒𝛼 (𝜃,𝜓 ) = E𝑠𝛼 ,𝑎 [(𝑒′𝛼 − 𝑃𝜓 (𝑓𝜃 (𝑠𝛼 ), 𝑎))2 + (𝑟 − 𝑅𝜓 (𝑓𝜃 (𝑠𝛼 ), 𝑎))2] .
(7)

The training objective for the dynamics module is:

𝐿𝑇 (𝜃,𝜓 ) = 𝐿𝑇𝑒 (𝜃,𝜓 ) + 𝐿𝑇𝑒𝛼 (𝜃,𝜓 ). (8)

In SCPL, the value consistency module ensures attention to task-
relevant regions, while the dynamics module guides representations
that align with reward and dynamics conditions. With the combi-
nation of the value consistency module and the dynamics module,
the encoder can generate task-relevant representations.

4.3 Policy Consistency Module
As illustrated in Fig.1 (middle), previous RL agents frequently ex-
hibit poor policy consistency, reflected in the substantial KL diver-
gence, between training and test environments. In this section, our
theoretical analysis reveals that the policy consistency of agents
contributes to enhanced generalization capability. Furthermore, we
propose a policy consistency module that improves generalization
by enhancing agents’ policy consistency across both original and
perturbed observations.

Relationship between policy consistency and generaliza-
tion ability.We utilize the KL divergence of action distributions
between training and test environments to assess the policy consis-
tency of agents. Additionally, the divergence in cumulative rewards
between these environments reflects the agents’ generalization
capabilities. In the context of visual generalization, the training
and test environments are identical except for visual observations.
Consequently, the agent’s policies in both environments can be re-
garded as two equivalent policies within the training environment.
We prove that there is a positive correlation between the upper
bound of the divergence in cumulative rewards of the two policies
and their KL divergence.

Initially, we utilize the total variation divergence to measure
the distance between two policies’ distributions. The divergence is
defined as : 𝐷𝑇𝑉 (𝑝 ∥𝑞) = 1

2
∑
𝑖 |𝑝𝑖 − 𝑞𝑖 | for probability distributions

𝑝 and 𝑞. Define 𝐷max
TV (𝜋𝑜 , 𝜋𝑝 ) as :

𝐷max
TV (𝜋𝑜 , 𝜋𝑝 ) = max

𝑠
𝐷𝑇𝑉 (𝜋𝑜 (· | 𝑠)∥𝜋𝑝 (· | 𝑠)), (9)
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Algorithm 1 SCPL (changes to SAC in blue)
Parameter: B: replay buffer, 𝑁𝐴: dynamics module update
frequency, 𝜏 : data augmentation function, 𝛼 : learning rate, 𝜆: value
consistency coefficient, 𝛽 : policy consistency coefficient.
1: for each iteration do
2: Sample a transition:

𝑎, 𝑠
′ ∼ 𝜋𝜙 (·|𝑠), 𝑃 (·|𝑠, 𝑎)

3: Add transition to replay buffer:
B ← B ∪ {(𝑠, 𝑎,R(𝑠, 𝑎), 𝑠′)}

4: Sample a batch of transition:
{𝑠, 𝑎, 𝑟, 𝑠 ′ } ∼ B

5: Generate augmented data:
𝑠𝛼 ← 𝜏 (𝑠)

6: Update value consistency module:
{𝜃, 𝜁 } ← {𝜃, 𝜁 } −
𝛼∇{𝜃,𝜁 } (𝐿𝑄1 (𝜃, 𝜁 )+L𝑄2 (𝜃, 𝜁 ) + 𝜆𝐿𝑄𝐶1 (𝜃, 𝜁 ) + 𝜆𝐿𝑄𝐶2 (𝜃, 𝜁 ))

7: Update dynamics module:
{𝜃,𝜓 } ← {𝜃,𝜓 } − 𝛼∇{𝜃,𝜓 }𝐿𝑇 (𝜃,𝜓 )

8: Update policy consistency module:
𝜙 ← 𝜙 − 𝛼∇𝜙 (𝐿𝜋𝑜 (𝜙)+𝛽𝐿𝜋𝑐 (𝜙))

9: end for

where 𝜋𝑜 and 𝜋𝑝 are policies in training and test environments,
respectively. With this measure in hand, we can now state the
following theorem:
Theorem 1. Let 𝛼 = 𝐷max

TV
(
𝜋𝑜 , 𝜋𝑝

)
, the following bound holds:

𝜂 (𝜋𝑜 ) − 𝜂
(
𝜋𝑝

)
≤ 2𝜖𝛾
(1 − 𝛾)2

𝛼2, (10)

where 𝜂 is expected return, 𝜖 = max𝑠,𝑎 |𝐴𝜋 (𝑠, 𝑎) |. According to
[24], the relationship between the total variation divergence and
the KL divergence is: 𝐷𝑇𝑉 (𝑝 ∥𝑞)2 ≤ 𝐷KL (𝑝 ∥𝑞). Let 𝐷max

KL (𝜋, �̃�) =
max𝑠 𝐷KL (𝜋 (· | 𝑠)∥�̃� (· | 𝑠)). With Theorem 1, the following bound
holds:

𝜂 (𝜋𝑜 ) − 𝜂
(
𝜋𝑝

)
≤ 𝐶𝐷max

KL (𝜋𝑜 , 𝜋𝑝 ), (11)

where 𝐶 =
2𝜖𝛾
(1−𝛾 )2 . Hence, a smaller KL divergence of action distri-

butions between training and test environments pushes a tighter
upper bound on the disparity of cumulative rewards in these envi-
ronments. This implies that policy consistency contributes to the
generalization performance of agents.
Policy consistency module. To enhance the generalization of
visual RL algorithms, agents should produce consistent policies
for both original and perturbed observations. Therefore, we de-
sign a policy consistency loss with the KL divergence of action
distributions of both the original and augmented data for the policy
network. The policy loss for the original observation is:

𝐿𝜋1 (𝜙) = E𝑠,𝑎∼𝜋𝜙 ( · |𝑒𝑠 ) [𝛼 log𝜋𝜙 (𝑎 |𝑒𝑠 ) −𝑄 (𝑒𝑠 , 𝑎)], (12)

where 𝑒𝑠 , 𝑒𝑠𝛼 are embeddings for observations 𝑠 and 𝑠𝛼 . The policy
consistency loss is:

𝐿𝜋2 (𝜙) = E𝑠,𝑠𝛼 [𝐷𝐾𝐿
(
𝜋𝜙 (·|𝑒𝑠 ) | |𝜋𝜙 (·|𝑒𝑠𝛼 )

)
] . (13)

With the policy consistency loss, SCPL improves generalization
by encouraging agents to generate consistent policies for original

and perturbed observations. In summary, the loss of the policy
consistency module is:

𝐿𝜋 (𝜙) = 𝐿𝜋1 (𝜙) + 𝛽𝐿𝜋2 (𝜙), (14)

where 𝛽 is the policy consistency coefficient. By minimizing the
total loss, the policy consistency module attains a consistently
superior policy in test environments, similar to that in training
environments. Algorithm 1 presents the pseudocode for SCPL.

5 EXPERIMENTS
In this section, we conduct experiments to investigate the follow-
ing questions: (1) Does SCPL exhibit superior visual generalization
capability compared to current state-of-the-art methods? (2) Can
SCPL focus on consistent task-relevant pixels in both original and
perturbed observations? (3) Does SCPL possess consistent repre-
sentations and policies? (4) What is the contribution of various
modules to generalization performance? (5) Can SCPL demonstrate
advanced generalization in challenging robotic and autonomous
driving environments?

5.1 Experimental Settings
Weevaluate the zero-shot generalization performance of ourmethod
in DeepMind Control Suite (DMC) [12, 32], Robotic Manipulation
tasks [14], and CARLA [4]. All methods are trained in the default
environment and evaluated with visual perturbations. In the DMC
experiment, we compare the generalization ability of SCPL with
SOTA methods including SAC [9], SVEA [11], SIM [36], TLDA [40],
PIE-G [41], SGQN [2], CG2A [21], MaDi [7], and CNSN [18].

5.2 Evaluation on the DeepMind Control Suite
We evaluate the agent’s generalization ability on five tasks in DMC-
GB [12]. The agent is trained with default backgrounds and evalu-
ated on test environments: Color hard, Video easy, and Video hard.
Does SCPL exhibit superior visual generalization capability?
We evaluate the visual generalization performance of SCPL across
15 visual perturbed control tasks in the DMC. As shown in Table
1, we report the mean and standard deviation of episode returns
over three seeds. SCPL agents are trained using two data augmenta-
tion techniques from [12]: random convolution and random overlay.
The SCPL results in Table 1 are based on random convolution for
the Color hard task, and random overlay for both the Video easy
and Video hard tasks. Table 1 shows that SCPL outperforms other
baselines in 13 out of 15 tasks within unseen test environments. No-
tably, SCPL achieves performance improvements of 12% in walker
stand, 11% in walker walk, 28% in cartpole swing-up, 18% in ball
in cup, and 9% in finger spin tasks in the challenging video hard
setting. Overall, SCPL achieves an average performance improve-
ment of 14% across all tasks in the video hard environments. Fig.4
presents the test curves for SCPL, SGQN, SVEA, and SAC in these
environments, where SCPL demonstrates faster convergence due
to its effective task-relevant representations and consistent policies.
The experimental results demonstrate that SCPL exhibits superior
visual generalization ability in various perturbed environments.
Can SCPL focus on consistent task-relevant pixels? To eval-
uate the SCPL agent’s attention to task-relevant regions, we visu-
alized the saliency maps of agents in both original and perturbed
video hard observations across five DMC tasks. Fig.5 presents a
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Table 1: DMC-GB Generalization Performance

Setting Task SAC[9] SVEA[11] SIM[36] TLDA[40] PIE-G[41] SGQN[2] CG2A[21] MaDi[7] CNSN[18] SCPL

Color
hard

Walker stand 423 ± 155 942 ± 26 940 ± 2 947 ± 26 941 ± 35 948 ± 25 972 ± 23 − 942 ± 19 960 ± 11
Walker walk 255 ± 61 760 ± 145 803 ± 33 823 ± 58 884 ± 20 810 ± 43 902 ± 46 − 815 ± 65 939 ± 19
Cartpole 615 ± 29 837 ± 23 841 ± 13 760 ± 60 749 ± 46 806 ± 6 856 ± 40 − 679 ± 35 857 ± 12
Ball in cup 391 ± 245 961 ± 7 953 ± 7 932 ± 32 964 ± 7 887 ± 10 972 ± 10 − 894 ± 78 966 ± 9
Finger spin 373 ± 70 977 ± 5 960 ± 6 − − 899 ± 27 928 ± 43 − − 929 ± 24
Average 411 895 899 865 884 870 926 − 833 930(+1%)

Video
easy

Walker stand 351 ± 245 961 ± 8 963 ± 5 973 ± 6 957 ± 12 955 ± 9 968 ± 6 967 ± 3 967 ± 6 968 ± 8
Walker walk 228 ± 65 819 ± 71 861 ± 33 873 ± 34 870 ± 22 910 ± 24 918 ± 20 895 ± 24 842 ± 58 941 ± 9
Cartpole 359 ± 80 782 ± 27 770 ± 13 671 ± 57 597 ± 61 761 ± 28 788 ± 24 848 ± 6 752 ± 26 814 ± 21
Ball in cup 338 ± 201 871 ± 106 820 ± 135 887 ± 58 922 ± 20 950 ± 24 963 ± 28 807 ± 144 913 ± 45 963 ± 10
Finger spin 260 ± 98 808 ± 33 815 ± 38 744 ± 18 837 ± 107 956 ± 26 912 ± 69 679 ± 17 − 963 ± 8
Average 300 848 845 830 837 906 909 839 869 930(+2%)

Video
hard

Walker stand 225 ± 58 747 ± 43 827 ± 24 602 ± 51 852 ± 56 851 ± 24 895 ± 35 920 ± 14 871 ± 23 953 ± 15
Walker walk 104 ± 18 385 ± 63 459 ± 67 271 ± 55 600 ± 28 739 ± 21 687 ± 18 504 ± 33 480 ± 46 818 ± 32
Cartpole 174 ± 24 401 ± 38 367 ± 47 286 ± 47 401 ± 21 544 ± 43 472 ± 24 619 ± 24 417 ± 31 675 ± 3
Ball in cup 196 ± 82 498 ± 147 287 ± 39 257 ± 57 786 ± 47 782 ± 57 806 ± 44 758 ± 135 691 ± 72 924 ± 7
Finger spin 26 ± 21 307 ± 24 362 ± 9 241 ± 29 762 ± 59 822 ± 24 819 ± 38 358 ± 25 − 897 ± 22
Average 145 467 460 331 680 747 736 632 615 853(+14%)
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Figure 4: The performance of SAC, SVEA, SGQN, and SCPL in Video hard setting. SCPL (red line) shows better generalization.

comparison of the saliency attribute maps for SAC, SVEA, SGQN,
and SCPL in the video hard setting. By comparing the saliency maps
of the agents in original and perturbed observations, SCPL exhibits
similar areas of focus for both types of observations across all tasks,
while other baselines typically focus on different regions between
the original and perturbed observations. The comparison indicates
that SCPL demonstrates more consistent attention regions.
By comparing the saliencymaps of different methods in original and
perturbed observations, we find that SCPL consistently focuses on
significant task-relevant regions across both types of observations.
In contrast, other baselines typically capture only approximate
task-relevant regions in the original observations and struggle to
maintain consistent attention to significant task-relevant areas in
the perturbed observations. Furthermore, Table 2 evaluates the
accuracy of the agent’s attended task-relevant regions in perturbed
observations using the following metrics: ACC, measuring overall
prediction correctness for pixels; AUC, representing the area under
the Receiver Operating Characteristic (ROC) curve; and F1 score,
considering both precision and recall to compute a unified score.
These metrics are averaged across five Video hard tasks within the
DMC tasks. According to the comparison of saliency maps and
statistical results, it’s evident that SCPL captures more critical task-
relevant regions within various perturbed observations compared

to the other methods. Thus, SCPL can consistently focus on task-
relevant pixels in both original and perturbed observations.

Table 2: Metrics for attention region of RL agents

SAC SVEA SGQN SCPL

ACC 0.889 0.926 0.932 0.942
AUC 0.811 0.833 0.862 0.908
F1 0.341 0.462 0.463 0.566

Does SCPL possess consistent representations and policies?
To further evaluate the task relevance of SCPL’s representations and
the consistency of its policies, we employed principal component
analysis (PCA) to project the representations and actions onto a two-
dimensional plane. We plotted the t-SNE visualization of the agent’s
representations and actions for 800 observations, composed of 20
motions, each featuring various video hard backgrounds. Dots of
the same color represent representations or actions corresponding
to observations with the same motion but different backgrounds.
The first row of Fig. 6 displays the t-SNE maps of embeddings
learned using SAC, SVEA, SGQN, and SCPL. In the t-SNE map for
SCPL, dots of the same color cluster closely together, while clusters
of different colors are distinctly separated compared to baseline
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Figure 5: Saliency attribute maps for SAC, SVEA, SGQN, and SCPL in Training and Video hard setting. In observations of each
task, the first column is the original observation, and the second column is the perturbed observation.
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Figure 6: t-SNE maps of embeddings and actions learned with SVEA, SGQN, and SCPL for 20 motion situations, generated by
randomly selecting 40 backgrounds from Video hard. Different motion situations are represented by different colors, and dots
represent representations or actions.

methods. This demonstrates that SCPL generates consistent task-
relevant representations for perturbed observations, similar to those
for original observations. The second row of Fig. 6 presents t-SNE
maps of actions in perturbed observations. In the t-SNE maps of
baseline methods, actions for observations with different motions
cluster together, indicating inconsistency in their policies. In con-
trast, actions of SCPL for various perturbed observations with the
same motion tend to cluster together, while actions for observa-
tions with different motions are clearly separated. The t-SNE maps
indicate that SCPL is capable of generating consistent task-relevant
representations and policies.

5.3 Ablation Study
What is the contribution of various modules? SCPL lever-
ages the value consistency module, policy consistency module,
and dynamics module to enhance generalization. To assess the
contribution of each component, we evaluate the generalization

performance of SAC with the different modules and analyze their
respective and combined effects. The results are demonstrated in
Table 3. SAC + dynamics module and SAC + value consistency refer to
the application of the dynamics module and the value consistency
module to SAC, respectively. SAC + value + policy consistency rep-
resents applying both the value consistency module and the policy
consistency module to SAC. The percentages denote the enhanced
performance of modules within SCPL compared to the performance
of vanilla SAC. Specifically, the dynamics module yields improve-
ments of 101% in color hard environments, 166% in video easy, and
178% in video hard environments. The value consistency module
achieves impressive gains of 97% in color hard, 191% in video easy,
and 405% in video hard. When combining both the value and policy
consistency modules, generalization improves further, resulting in
performance gains of 112%, 206%, and 465% across the three envi-
ronments, respectively. In SCPL, the integration of these modules
significantly boosts performance across all modes. The ablation
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Table 3: Ablation study of three significant components in SCPL

Benchmark Environment SAC SAC +
dynamics module

SAC +
value consistency

SAC + value +
policy consistency SCPL

Video hard

Walker stand 225 ± 58 630 ± 26 918 ± 29 949 ± 9 953 ± 15
Walker walk 104 ± 18 336 ± 14 673 ± 9 812 ± 20 818 ± 32
Cartpole 174 ± 24 351 ± 15 567 ± 64 624 ± 52 675 ± 3
Ball in cup 196 ± 82 405 ± 29 805 ± 67 909 ± 12 924 ± 7
Finger spin 26 ± 21 292 ± 6 703 ± 15 802 ± 6 897 ± 22
Average 145 403(+178%) 733(+405%) 819(+465%) 853(+488%)

results demonstrate that each component plays a crucial role in
enhancing SCPL’s visual generalization.

5.4 Generalization in robotic and autonomous
driving environments?

Evaluation on Vision-based Robotic Manipulation. To further
evaluate the generalization ability of the proposed SCPL, we con-
sider three robot manipulation tasks based on third-person visual
input introduced in [14]: Reach, Push, and Peg in Box. All agents
are trained using the default settings and evaluated in two modes.
The easy mode substitutes the default environment with five differ-
ent background colors and desktop textures, while the hard mode
further replaces the desktop textures with complex images. We com-
pare SCPL with baseline algorithms SAC, SVEA, and SGQN. The
results, presented in Table 4, demonstrate that SCPL outperforms
the best prior methods in terms of generalization, achieving an
average improvement of +7% on the training set, +52% on the easy
set, and +39% on the hard set. The experimental results indicate
that SCPL outperforms previous methods in robotic environments.
Table 4: Performance comparison on Robotic Manipulation

Setting Task SAC SVEA SGQN SCPL(ours)

Train

Reach 1.5 ± 6.7 33.6 ± 0.6 33.6 ± 0.7 33.8 ± 0.3
Push −25.3 ± 13.4 10.8 ± 7.0 18.8 ± 6.4 19.2 ± 6.1
Peg −12.6 ± 13.2 152.6 ± 21.1 179.8 ± 23.1 194.6 ± 12.1

Average −12.1 65.7 77.4 82.6(+7%)

Test easy

Reach −22.7 ± 6.4 32.2 ± 1.0 28.2 ± 5.9 33.3 ± 0.3
Push −23.6 ± 11.2 2.9 ± 10.4 −12.6 ± 12.6 6.4 ± 6.5
Peg −33.6 ± 20.2 110.4 ± 44.3 94.6 ± 12.0 181.0 ± 14.0

Average −26.6 48.5 36.7 73.6(+52%)

Test hard

Reach −19.9 ± 4.8 27.8 ± 1.2 18.9 ± 4.6 31.9 ± 2.0
Push −24.2 ± 11.0 -1.7 ± 13.5 −17.7 ± 11.3 −3.1 ± 5.1
Peg −25.1 ± 5.2 114.0 ± 43.6 124.8 ± 28.8 166.4 ± 15.0

Average −23.1 46.7 42.0 65.1(+39%)

Evaluation on CARLA autonomous driving environments.
CARLA [4] is a widely used simulator for autonomous driving.
In our generalization experiments [6], the agents aim to navigate
along the road in the Highway Town04 map, striving to travel as
far as possible without colliding within 1000 time steps. The agent
is trained under clear noon weather conditions and evaluated in
five different weather scenarios, which include varying lighting
conditions, realistic rain, and slippery surfaces. We adapted the
reward function to align with the settings used in prior work [42].
In Table 5, we present the average driven distance without collisions
for vehicles across different weather conditions. Averaged over 10

episodes per weather condition and three training runs, SCPL is able
to drive, on average, 69% farther than previous baselines during tests.
Notably, in the sunset weather scenario, where all other methods
struggle, SCPL demonstrates exceptional generalization capabilities.
These experimental results indicate that SCPL achieves superior
visual generalization performance in CARLA’s autonomous driving
environments.

Table 5: Performance comparison on CARLA

Setting SAC SVEA SGQN SCPL(ours)

Train 472 ± 110 297 ± 14 614 ± 41 643 ± 87
Wet noon 468 ± 68 353 ± 112 473 ± 187 564 ± 123

Hard rain noon 306 ± 114 268 ± 89 406 ± 63 442 ± 199
Wet sunset 23 ± 16 125 ± 36 39 ± 17 271 ± 28

Soft rain sunset 45 ± 25 22 ± 5 59 ± 44 243 ± 29
Mid rain sunset 44 ± 24 42 ± 31 63 ± 46 242 ± 11
Test Average 177 162 208 352(+69%)

6 CONCLUSION
This paper proposes a Salience-Invariant Consistent Policy Learn-
ing (SCPL) algorithm for generalization in visual RL. SCPL improves
visual generalization by promoting task-relevant representations
through its value consistency module, which ensures consistent fo-
cus on critical regions in both original and perturbed observations,
and its dynamics module, which learns dynamics-relevant features.
Additionally, our theoretical analysis reveals that maintaining pol-
icy consistency between original and perturbed observations is
crucial for visual generalization. Therefore, we propose a policy
consistency module to enhance generalization performance by re-
inforcing policy consistency. Through the extensive experiment
results, SCPL demonstrates superior zero-shot generalization per-
formance compared to prior SOTA methods. In this study, SCPL
employs fixed saliency quantiles during training. Exploring adap-
tive quantiles for saliency maps to enhance task-relevant attention
regions presents a promising direction for future research.
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