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ABSTRACT
Unmanned Aerial Vehicles (UAVs) are expected to transform lo-
gistics, reducing delivery time, costs, and emissions. This study
addresses an on-demand delivery scenario, in which fleets of UAVs
are deployed to fulfil orders that arrive stochastically. Unlike previ-
ous work, it considers UAVs with heterogeneous, unknown energy
storage capacities and assumes no knowledge of the energy con-
sumption models. We propose a decentralised deployment strategy
that combines auction-based task allocation with online learning.
Each UAV independently decides whether to bid for orders based
on its energy storage charge level, the parcel mass, and delivery
distance. Over time, it refines its policy to bid only for orders within
its capability. Simulations using realistic UAV energy models reveal
that, counter-intuitively, assigning orders to the least confident
bidders reduces delivery times and increases the number of suc-
cessfully fulfilled orders. This strategy is shown to outperform
threshold-based methods which require UAVs to exceed specific
charge levels at deployment. We propose a variant of the strategy
which uses learned policies for forecasting. This enables UAVs with
insufficient charge levels to commit to fulfilling orders at specific
future times, helping to prioritise early orders. Our work provides
new insights into long-term deployment of UAV swarms, highlight-
ing the advantages of decentralised energy-aware decision-making
coupled with online learning in real-world dynamic environments.
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Figure 1: On-demand delivery scenario with a fleet of UAVs
committing to deliver orders arriving at a fulfilment cen-
tre. The fleet is heterogeneous, as the UAVs differ in battery
health, and hence in their true energy storage capacities.
Each UAV learns a policy for placing bids on incoming orders
based on its current charge level, parcel mass and delivery
distance. Optionally, it can use this policy for forecasting,
enabling it to plan the fulfilment of orders in the future.

1 INTRODUCTION
Unmanned Aerial Vehicle (UAV)-based on-demand delivery is ex-
pected to bring significant benefits to society, including reduc-
tions in delivery times, operational costs, and carbon emissions. By
deploying a fleet of UAVs, multiple orders can be fulfilled simul-
taneously, enabling large-scale applications in parcel, meal, and
medication deliveries.

Various methodologies have been explored to address delivery
problems with fleets of energy-constrained UAVs, including those
that optimise order allocation and route planning. These include
mixed-integer linear programming (MILP) [1, 12, 22, 23], queuing
theory [7], auctions [21], and various heuristic methods [5, 18, 19].
An interesting problem variant is on-demand deliveries, where
orders arrive stochastically over time [4, 9, 14].

Despite these advancements, studies often rely on several ide-
alised assumptions that may not hold in real-world settings. First,
they typically assume that the UAVs know their energy consump-
tion models and can use them when planning their deliveries. This
poses the risk of over-reliance on the given models: While various
energy models have been proposed, it has been shown that differ-
ent models can lead to divergent outcomes even under the same
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conditions [27]. Second, they commonly assume that UAVs are ho-
mogeneous. Yet in practice, even UAVs of the same make and model
would differ due to variations in battery health, hardware wear, and
other factors. These variations effectively result in a unique energy
model for each UAV. Finally, they commonly assume the UAVs to
charge instantaneously when visiting their base. This may hinder
application in practical scenarios, as not reflecting the low duty
cycles of most commercial delivery UAVs (e.g. 6.97% for DJI FlyCart
30 with one battery). Factoring in the significant proportion of time
devoted to charging ultimately leads to a new class of problems.
For example, UAVs opting to dispatch with only a partial charge
could result in faster deliveries than those waiting to charge fully.

The contributions of this paper are threefold:

(1) Decentralised learning-based deployment strategy for
UAVs with unknown battery health:We propose a decen-
tralised learning-based deployment strategy for on-demand
delivery using UAV fleets. Each UAV decides whether to bid
on incoming orders based on its battery’s state of charge,
parcel mass, and delivery distance. Unlike prior work, our
approach requires no knowledge of the battery’s state of
health (i.e., its true capacity) or the energy consumption
model. Over time, each UAV learns to bid only on orders that
it is likely to fulfil, enhancing the efficiency of the fleet.

(2) Long-term evaluation of heterogeneous fleets: We eval-
uate the proposed strategy using simulated UAV fleets that
vary in battery health due to factors such as ageing, usage,
and storage patterns. Simulations using realistic UAV en-
ergy models are conducted over a period of eight weeks
with orders arriving stochastically at different rates. The
results show that deploying the least confident bidding UAVs
leads to the highest number of fulfilled orders and the low-
est delivery times. Furthermore, the strategy outperforms
traditional approaches that dispatch UAVs only when their
battery charge exceeds predefined thresholds.

(3) Forecasting-enabled order commitment:We propose a
second variant of the strategy where learned bidding policies
are used for forecasting. This enables UAVs with insufficient
charge levels to commit to fulfilling current orders at a spe-
cific future time, improving prioritisation of earlier orders
and aligning better with first-come, first-served scheduling.

The remainder of this paper is organised as follows. Section 2
presents the problem formulation. Section 3 details the proposed
decentralised learning-based deployment strategy. Sections 4 and 5
present the simulator and results, respectively. Finally, Section 6
concludes the paper.

2 PROBLEM STATEMENT
As illustrated in Figure 1, a fulfilment centre (FC) operates a fleet
of delivery UAVs, denoted as 𝑈 = {1, 2, . . . , 𝑆}. During an oper-
ational period of length 𝑇 , the FC stochastically receives orders
𝑂 = {1, 2, . . . }, which arrive at times 𝑡1, 𝑡2, . . ., where 0 ≤ 𝑡1 < 𝑡2 <

· · · < 𝑇 . Each order 𝑗 ∈ 𝑂 corresponds to a delivery task involving
a parcel of mass𝑚 𝑗 ∈ [𝑚min,𝑚max], which is to be delivered to a
location at a distance 𝑑 𝑗 ∈ [𝑑min, 𝑑max] from the FC.

The FC maintains a communication infrastructure (e.g., a wire-
less network) to communicate with available UAVs (e.g., to an-
nounce delivery tasks) and allows UAVs to communicate with each
other, facilitating collaborative decision-making.

All UAVs are powered by an on-board battery with a theoretical
capacity 𝐶theoretical. The battery of UAV 𝑖 ∈ 𝑈 has a state of health
(SoH), denoted as SoH𝑖 ∈ [0, 1], which determines its true (maxi-
mum) capacity. Specifically, the true battery capacity is given by
𝐶true,𝑖 = SoH𝑖 ·𝐶theoretical. In this study, SoH𝑖 is assumed to remain
constant throughout the operational period.

At any given time 𝑡 , UAV 𝑖 ∈ 𝑈 possesses a state of charge (SoC)
denoted by SoC𝑖 (𝑡) ∈ [0, 100] which represents the percentage of
𝐶true,𝑖 that is currently available in its battery. At 𝑡 = 0, all UAVs
are assumed to be fully charged, such that ∀𝑖 ∈ 𝑈 : SoC𝑖 (0) = 100,
hence, each UAV stores 100% of its true capacity. The change in the
state of charge of UAV 𝑖 depends on its activity:
• Charging: When within the FC, SoC𝑖 increases at a rate of
𝜆charge per unit time until it reaches the maximum value.
• Delivering: When outside the FC, SoC𝑖 decreases at a rate of
𝜆delivery (𝑚𝑝 ) per unit time, where𝑚𝑝 denotes its payload.
While carrying a parcel of mass𝑚, we have𝑚𝑝 =𝑚; while
not carrying a parcel,𝑚𝑝 = 0.

Each UAV can measure its state of charge (SoC𝑖 (𝑡)) at any time, but
is unaware of its state of health (SoH𝑖 ), true capacity (𝐶true,𝑖 ) and
energy consumption model (𝜆delivery (𝑚𝑝 )).

When outside the FC, a UAV moves at a constant speed of 𝑣𝑎 . It
first moves towards the parcel’s delivery destination. Upon success-
ful delivery, it immediately returns to the FC.1 While transporting
a parcel to its delivery destination, a UAV may choose to abort the
delivery and return to the FC. We refer to this as an aborted delivery
attempt. If a UAV’s SoC reaches zero during delivery, it becomes
unable to return to the FC and is considered lost.

The objective is to define a decentralised deployment strategy
that assigns advertised delivery tasks to specific UAVs. Various
performance criteria are explored, including (i) the number of suc-
cessfully delivered parcels (themore, the better); (ii) the time elapsed
from order arrival to successful delivery, referred to as delivery time
(the lower, the better); (iii) the number of unsuccessful delivery
attempts (the fewer, the better); and (iv) the cumulative backlog
age which gives the total waiting time for all unfulfilled orders (the
lower, the better).

3 DECENTRALISED LEARNING-BASED
DEPLOYMENT STRATEGY

We propose a decentralised deployment strategy that augments
a finite-state machine controller with auction-based and online
learning approaches for assigning UAVs to advertised delivery tasks.
The strategy runs onboard each UAV. It comprises four components
(see Figure 2): (i) a UAV controller defining the overall logic to
transition among behavioural states; (ii) a bidding policy to decide
for any advertised delivery task whether to place a bid and a bid
value, reflecting its confidence in bidding; (iii) a bids evaluation
policy to determine the winner amongst the UAVs that bid for

1For simplicity, we assume UAVs can move directly towards their destinations. Our
methods could be extended to accommodate UAVs navigating around static obstacles,
provided a map of the environment is available.
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Figure 2: Overview of decentralised learning-based deployment strategy and evaluation environment: (a) A UAV’s logic is
governed by a finite-state machine; (b) the UAV uses a bidding policy to determine whether to bid (and an associated level of
confidence) and a bids evaluation policy to determine whether its bid won; (c) upon returning from a delivery attempt, the UAV
updates its bidding policy; (d) Screenshot of the purpose-built simulator showing the fulfilment centre and six drones, five of
which are attempting a delivery, whereas the sixth is returning following delivery of a parcel.

the same task; (iv) and an online learning algorithm to refine the
individual bidding policy such that the UAV bids only for tasks it is
likely capable of completing successfully.

3.1 UAV Controller
We assume that all UAVs initially reside within the FC. The UAV
controller is depicted in Figure 2a. A UAV begins in the Wait state,
where it awaits an announcement of the next delivery task along
with the task ID. A task announcement consists of a unique task
id, parcel mass and delivery distance. When a task announcement
is received, the UAV transitions to the Bid? state. In this state, it
uses its bidding policy to determine whether to bid, and a bid value,
reflecting its level of confidence in the bid. If the UAV opts to bid, it
proceeds to the Won? state; otherwise, it returns to the Wait state. In
the Won? state, the UAV broadcasts a tuple comprising (i) the task ID,
(ii) its unique ID, and (iii) the bid value for placing the bid. In parallel,
it records its bid and those of any other UAVs bidding for the same
task. Subsequently, it provides all bids to its local bids evaluation
policy, which enables it to determine the outcome of the auction. If it
won, the UAV records its current state of charge, hereafter denoted
as SoCtakeoff, and transitions to the Deliver state. Otherwise, it
returns to the Wait state. When in the Deliver state, the UAV
retrieves the parcel (assumed to happen instantaneously) and flies
to the delivery destination. It either (i) reaches the destination and
the delivery is successful, or (ii) meets an abort condition, in which
case the delivery is unsuccessful. In either case, the UAV transitions
to the Return state. The abort condition is set such that the UAV
returns to the FC if SoC(𝑡) ≤ 𝜉SoCtakeoff, that is, when only a
fraction 𝜉 of its takeoff state of charge remains. The controller is
formally modelled using supervisory control theory [15, 20]; all
models are available at [24].

3.2 Auction Policies
As depicted in Figure 2b, the UAV’s role in the auction-based task
allocation process is implemented through two policies: one for

bidding (to decide whether to bid and the bid value) and another
for bids evaluation (to determine whether the bid was successful).

3.2.1 Bidding Policy. Let UAV 𝑖 consider a delivery task 𝑗 ∈ 𝑂 at
time 𝑡 . Its bidding policy, 𝜋 (·), takes as input the task’s distance 𝑑 𝑗 ,
the parcel’s mass𝑚 𝑗 , and the UAV’s current state of charge SoC𝑖 (𝑡).
The features’ vector is defined as 𝒙⊺ =

[
𝑑 𝑗 ,𝑚 𝑗 , SoC𝑖 (𝑡)

]
. The bid-

ding policy outputs a binary bidding decision 𝑏𝑑 (i.e. whether to
bid or not) and a bid value 𝑏𝑣 :

𝜋 (𝒙) = [𝑏𝑑 (𝒙), 𝑏𝑣 (𝒙)] (1)

Bidding decision. The function 𝑏𝑑 (𝒙) classifies input features 𝒙
into two categories: 1 if the UAV is capable of performing the task
and 0 if not:

𝑏𝑑 (𝒙) =
{
1, 𝑓 (𝒙) ≥ 0
0, 𝑓 (𝒙) < 0

(2)

where 𝑓 (𝒙) is the decision function, in this study, a support vector
machine:

𝑓 (𝒙) = 𝒘⊺𝒙 + 𝑏 (3)
where 𝒘 and 𝑏 are the weight vector and bias, respectively. This
decision function represents a hyperplane that separates the two
categories of input features. Despite their simplicity, linear clas-
sifiers like this have demonstrated accuracy comparable to more
complex nonlinear classifiers while significantly reducing training
times [16, 26]. The parameter values are specific to each UAV and
are updated online by the UAV after each delivery attempt.

Bid value. If a UAV decides to place a bid, a bid value has to be
determined. It is calculated as the distance of the input features 𝒙
from the decision hyperplane 𝑓 (𝒙):

𝑏𝑣 (𝒙) =
𝑓 (𝒙)
∥𝒘 ∥2

(4)

where ∥·∥2 is the Euclidean norm. This value of 𝑏𝑣 (𝒙) reflects the
UAV’s perceived ability to complete the task, with a greater distance
from the hyperplane indicating higher confidence.
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3.2.2 Bids Evaluation Policy. The bids evaluation policy processes
the bids of all competing UAVs (including the UAV itself), returning
True if the UAV is deemed the winner and False otherwise. We
consider the following options for selecting the winner:
• least confident: the UAV with the lowest bid value, that is, of
lowest confidence, is the winner;
• most confident: the UAV with the highest bid value, that is,
of highest confidence, is the winner.

In both cases, if a tie occurs, the UAV with the highest ID is selected
as the winner.

3.3 Online Learning
After each delivery attempt, a UAV refines its bidding policy, as
expressed by decision function 𝑓 (𝒙) through continuous online
learning. When attempting a delivery task 𝑗 ∈ 𝑂 , it collects a
labelled data point (𝒙𝑎, 𝑦𝑎). The vector 𝒙𝑎 represents the features
used by the UAV earlier in the bidding process, given by 𝒙𝑎 =

[𝑑 𝑗 ,𝑚 𝑗 , SoCtakeoff]. Label 𝑦𝑎 indicates the delivery outcome: 1 for
a successful delivery attempt and 0 for an aborted delivery attempt.

Upon collecting a labelled data point, the UAV updates its deci-
sion function 𝑓 (𝒙) using the Stochastic Gradient Descent (SGD)
algorithm [10]. To account for the sensitivity of SGD to the scale
of input data, the features are standardised before updating:

�̃�𝑎 =
𝒙𝑎 − 𝝁

𝝈
(5)

where �̃�𝑎 represents the standardised input features, 𝒙𝑎 the original
input features, and 𝝁 and 𝝈 denote the mean and standard deviation
of the input features vector, respectively.

The decision function updates are carried out with the objective
of minimising the regularised training error:

𝐸 (𝑤,𝑏) = 𝐿(𝑦𝑎, 𝑓 (�̃�𝑎)) + 𝛼𝑅(𝑤) (6)

where 𝐿 is the loss function measuring the (mis)fit of the decision
function, and 𝑅 is a regularisation term. The hyperparameter 𝛼 > 0
controls the strength of the regularisation.

In our implementation, we employ a modified Huber loss func-
tion for its proven ability to enable fast and robust learning [8, 11]:

𝐿(𝑦𝑎, 𝑓 (�̃�𝑎)) =max
(
0, 1 − (2𝑦𝑎 − 1) 𝑓 (�̃�𝑎)

)2
, if (2𝑦𝑎 − 1) 𝑓 (�̃�𝑎) ≥ −1,

−4(2𝑦𝑎 − 1) 𝑓 (�̃�𝑎), otherwise
(7)

and an ℓ2 norm regularisation term:

𝑅(𝒘) = ∥𝒘 ∥2
2

(8)

Using SGD, the parameters of the decision function are updated
iteratively as follows:

𝒘 ← 𝒘 − 𝜂
[
𝜕𝐿 (𝑦𝑎,𝑓 (�̃�𝑎 ) )

𝜕𝒘 + 𝛼 𝜕𝑅 (𝒘 )
𝜕𝒘

]
,

𝑏 ← 𝑏 − 𝜂 𝜕𝐿 (𝑦𝑎,𝑓 (�̃�𝑎 ) )
𝜕𝑏

(9)

where 𝜂 is the learning rate. To improve convergence and stability,
𝜂 progressively decays over the optimisation steps in the individual
SGD runs, following the heuristic approach proposed by [3].

The decision function is initially trained based on two assumed la-
belled data points: (i) ( [𝑑min,𝑚min, 100.0], 1), suggesting that a fully
charged UAV, that is, SoCtakeoff = 100, would successfully deliver a
parcel of minimum mass𝑚min for the minimum delivery distance
𝑑min; (ii) ( [𝑑max,𝑚max, 0.0], 0), suggesting that a completely fully
discharged UAV, that is, SoCtakeoff = 0, cannot deliver a parcel of
maximum mass𝑚max for the maximum delivery distance 𝑑max.

4 MULTI-AGENT SIMULATIONS
To enable a comprehensive performance evaluation of strategies in
long-term deployment scenarios—with up to ca. 2.4 million auctions
over 8 weeks of simulated time per trial, we developed an ultra-fast
Python-based multi-agent simulator, the source code of which is
available online at [24]. A screenshot of the simulator is shown in
Figure 2d. To implement the learning algorithm, the widely-used
scikit-learn library [17] is used.

4.1 UAV Energy Models
The simulator incorporates realistic UAV energy models for both
battery charging and consumption.

Charging model. The charging model is based on the following as-
sumptions: (i) The charging rate decreases as the battery approaches
maximum capacity due to increasing internal resistance; (ii) the
time to fully charge is independent of the battery’s SoH—although
batteries with a lower SoH have reduced capacity, they are known
to charge less efficiently [2, 6, 13].

When charging, the UAV’s state of charge, SoC(𝑡) ∈ [0, 100],
increases at the following rate:

𝜆charge (𝑡) =
100 − SoC(𝑡)

3600
𝛾𝑐𝑃𝑐

𝐶theoretical
(10)

where 𝑃𝑐 and 𝛾𝑐 denote the charger’s power (in𝑊 ) and efficiency.
𝐶theoretical refers to the UAV’s theoretical battery capacity (in𝑊ℎ).

Consumption model. We use the model proposed in [5] to compute
the energy consumption (in𝑊𝑠) per second for a UAV flying with
a payload mass𝑚𝑝 at a constant speed 𝑣𝑎 :

𝐶𝑝𝑠 (𝑚𝑝 ) =
[𝑔(𝑚𝑓 +𝑚𝑏 +𝑚𝑝 )]3/2

3600
√︁
2𝑛𝑟 𝜌𝜁

(11)

where𝑚𝑓 and𝑚𝑏 are the UAV frame and battery masses, respec-
tively. 𝑛𝑟 is the number of rotors on the UAV, 𝜁 is the area of the
spinning blade disc of one rotor, 𝑔 is the gravitational constant (in
𝑚/𝑠2), and 𝜌 is the air density at 15◦C. It is important to note that
the UAV does not have access to this energy consumption model;
the model is used solely for simulation purposes.

When delivering, the UAV’s state of charge, SoC(𝑡) ∈ [0, 100],
decreases at the following rate:

𝜆delivery (𝑚𝑝 ) = −100
𝐶𝑝𝑠 (𝑚𝑝 )

𝐶theoretical · SoH
(12)

4.2 Orders Arrival and Processing
In our simulations, the FC is responsible for receiving orders, prepar-
ing parcels, and announcing the corresponding delivery tasks to
available UAVs.
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Table 1: Simulation variables.

Variables Denotation Description Value(s) Unit

UAV

𝑚𝑓 Frame mass 10 kg
𝑛𝑟 Number of rotors 8 —
𝜁 Area of the spinning blade disc of one rotor 0.27 𝑚2

𝑣𝑎 Nominal speed 10 𝑚/𝑠

Battery
𝑚𝑏 Mass 10 𝑘𝑔

𝐶theoretical Theoretical capacity 800 𝑊ℎ

SoH State of Health U(0.5, 1.0) —

Charger 𝑃𝑐 Power 100 𝑊

𝛾𝑐 Efficiency 95% —

Swarm 𝑆 Swarm size 25 —

Orders

𝑑 𝑗 Delivery distance U(1000, 6000) 𝑚

𝑚 𝑗 Parcel mass U(0.5, 5.0) 𝑘𝑔

𝜏 Inter-arrival time {15, 20, 25, 30, 35, 40} 𝑚𝑖𝑛

𝑇 Operation period 8 weeks

Other 𝑔 Gravitational acceleration constant 9.81 𝑚/𝑠2
𝜌 Air density at 15 C◦ 1.225 𝑘𝑔/𝑚3

Order Arrival. Orders arrive stochastically, with an expected
inter-arrival time 𝜏 . The arrival time of the next order is randomly
drawn from an exponential distribution:

𝑡 𝑗+1 = 𝑡 𝑗 + 𝑍 𝑗 where 𝑍 𝑗 ∼ Exp
(
1
𝜏

)
with 𝑡1 = 0. (13)

Order Processing. Orders arriving at the FC are stored in a queue
which sorts them by their arrival times from the earliest to the
latest placed orders. The advertising of tasks, extracted from these
orders, starts with the first order in the queue. It adheres to the
following rules: (i) for as long as no UAV resides at the FC, task
advertisement is suspended; (ii) if a task is advertised but no UAV
places a bid, the FC proceeds with the next unallocated order in
the queue, if any; (iii) if a task is advertised, and at least one UAV
places a bid, the order is considered allocated; the FC continues
with the earliest unallocated order in the queue (i.e., considering
again the front of the queue); (iv) after an aborted delivery attempt,
the corresponding order is considered unallocated again; it remains
in the queue according to the original arrival time of the order.

5 RESULTS
In this section, we present a comprehensive performance evalua-
tion of the proposed learning-based deployment strategy. Table 1
provides an overview of the simulation parameters. Unless other-
wise stated, we simulate fleets of 𝑆 = 25 UAVs over an operational
period of 𝑇 = 8 weeks. We consider order inter-arrival times of
𝜏 ∈ {15, 20, 25, 30, 35, 40} minutes. The order parameters are chosen
at random using uniform distributions, 𝑑 𝑗 ∼ U(1000, 6000) metres
and 𝑚 𝑗 ∼ U(0.5, 5.0) kilograms. If meeting the aforementioned
conditions, orders are advertised one at a time, every 2 s. Table 1
provides as well the parameters used to simulate the UAV, including
its battery, and the charger. For each UAV, the battery health is
chosen randomly using a uniform distribution, SoH ∼ U(0.5, 1.0).
Assuming SoH = 1 and using the energy models described in Sec-
tion 4.1, the UAV can fly for 28.75 min while transporting a parcel
of maximum weight. It requires 505 min to fully charge its battery
once entirely depleted. Hence, its maximum duty is 5.4%, which
is similar to the duty cycle of the commercial delivery drone DJI
FlyCart 30 (6.97% with the single-battery configuration).

UAVs are set to abort delivery attempts upon reaching 𝜉 = 0.5
of their takeoff state of charge, assuming equal energy for the

return journey. Lower 𝜉 values delay returns but risk UAV loss (as
confirmed via separate simulations which are not included in the
paper), making them impractical.

For the learning algorithm,we set both the regularisation strength
parameter 𝛼 and the initial learning rate 𝜂 to 0.01. Given that deliv-
ery distance 𝑑 𝑗 is sampled fromU(1000, 6000), parcel mass𝑚 𝑗 is
drawn fromU(0.5, 5.0), and robots can have a SoC ranging from
0 to 100, we set the mean vector and standard deviation vector in
Equation 5 to 𝝁 = (3500, 2.75, 50) and 𝝈 = (1443.38, 1.298, 28.87).

Each experimental condition is repeated over 20 random runs,
leveraging an Intel Xeon Platinum 8358 CPU core in a High-Perfor-
mance Computing (HPC) cluster running Python 3.10.12.

5.1 Effect of Winner Selection Rule
In Figure 3, we evaluate our learning-based deployment strategy
under three winner selection rules: Least confident (green), Most
confident (pink), and Random (orange). Random (orange) effectively
chooses each bidder with equal probability.2 Figure 3a compares
the winner selection rules in terms of delivery time (x-axis) and
number of delivered parcels (y-axis) for different inter-arrival inter-
vals. The distributions (over 20 runs) are visualised using a 2D box
plot for each combination of winner selection rule and inter-arrival
interval. Counter-intuitively, the Least confident rule outperforms
the other two, consistently delivering more parcels, and in shorter
times across all inter-arrival intervals. This can possibly be attrib-
uted to a more demand-oriented workload allocation where less
capable UAVs end up fulfilling simpler tasks, preserving the more
capable UAVs for more demanding tasks that may arise in the future.
Moreover, when the least confident bidder is employed, it is possible
that the UAVs learn to set their confidence levels conservatively.
TheMost confident rule leads to fewer deliveries and longer delivery
times, whereas the Random strategy falls between the two.

Figure 3b illustrates the percentage of aborted delivery attempts
(y-axis) for various expected inter-arrival times (𝜏) (x-axis) across
the three winner selection rules. For shorter inter-arrival times (𝜏 ≤
25 minutes), the Least confident rule results in a higher percentage
of aborted deliveries. This could be because less confident UAVs are
more likely to operate close to their capability limit. For longer inter-
arrival times (𝜏 > 25), the Least confident rule exhibits consistently
the fewest aborted attempts of the three rules. The performance
of the Random rule notably improves as well. By contrast, the
percentage of aborted delivery attempts does not decrease for the
Most confident rule as the inter-arrival time increases.

Figure 3c shows a bar plot of the cumulative backlog age at the
end of the 8-week operation period for different inter-arrival times
(𝜏 ) and the different winner selection rules. Each bar further breaks
down the orders by their arrival week. As 𝜏 increases from 15 to 40
minutes, all selection rules show a reduction in the cumulative back-
log age, suggesting that less frequent order arrivals lead to lower
backlogs. The Least confident rule consistently yields the lowest
cumulative backlog age (for all inter-arrival times). This indicates
better queue management and backlog reduction, especially as the
inter-arrival time increases, being able to process almost all orders
for (𝜏 ≥ 30). By contrast, the Most confident rule results in the

2To achieve this distribution in a decentralised way, each bidder randomly samples
their bid value, and once all bids have been broadcast, the highest bidder wins.
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Figure 3: Performance of the learning-based deployment strategy for different winner selection rules: Least confident (green),
Most confident (pink), and Random (orange). Metrics used are (a) number of delivered parcels and delivery time, (b) percentage
of aborted delivery attempts, and (c) cumulative backlog age (segmented by order arrival weeks).

highest cumulative backlog age, implying a less efficient resource
use. Note that depending on the inter-arrival time, 252–672 orders
are expected to arrive per week.

5.2 Analysis of Decision Accuracies
We evaluate the decision-making accuracy of the learned bidding
policies at the end of each week of the eight-week operation period.
All three selection rules are considered. For each rule, 500 UAVs
are evaluated (i.e., 25 UAVs per run, and 20 runs in total). The
inter-arrival time is 𝜏 = 15 minutes.

We computed the decisions made by the bidding policies (i.e.,
whether to bid or not) using 1000 randomly generated input fea-
ture vectors 𝒙⊺ =

[
𝑑,𝑚, SoC

]
, where 𝑑 ∼ U(1000, 6000), 𝑚 ∼

U(0.5, 5.0), and SoC ∼ U(0, 100). We then assessed the correct-
ness of these decisions by comparing them to the ground truth. The
ground truth uses the UAVs’ true battery capacity and the simu-
lated energy consumption model (both of which are unknown to
the UAV) to determine whether the UAV can complete the task. A
decision is considered correct only if the UAV chooses to bid for a
task it is capable of completing, or if it chooses not to bid for a task
it is incapable of completing.

Figure 4a displays the mean decision accuracy (y-axis) over
time (x-axis) for three winner selection strategies: Least confident
(green), Most confident (pink), and Random (orange). The shaded
areas around the line plots represent the 95% confidence intervals
for the mean decision accuracy. The Least confident rule exhibited
significantly better decision accuracy, reaching about 97% after
eight weeks. This could be attributed to these UAVs tending to
push their capabilities more frequently, leading to more refined
decision-making over time. In contrast, the Most confident rule
showed slower progress, remaining below 85% after eight weeks.
Many of these UAVs have fewer opportunities to learn their limits.

5.3 Analysis of Energy Constraints of Winning
Bidder

We examine the extent to which a UAV’s state of health (indirectly)
impacts its bidding policy. Recall that the UAV is unaware of its
state of health. We test the bidding policies that are obtained at the

end of the 8-week operation period for UAVs that used the Least
confident winner selection rule during learning. We then record
the bid value for every UAV, assuming a SoC ∈ {10, 20, . . . , 100}, a
delivery distance 𝑑 𝑗 ∈ {1000, 1050, . . . , 5000} metres and mass𝑚 𝑗 ∈
{0.5, 0.6, . . . , 5} kilograms. For each combination of SoC, distance,
and mass, we record the SoH of the winning UAV (if any bids are
placed). The reported values are the average SoH across 20 runs.

The results are depicted in Figure 4b. Each subplot corresponds
to a specific SoC. The colour gradient, from blue to red, represents
the average SoH of the winning UAVs (the colour being white if
no bids were placed). When SoC is 100%, the SoH of the deployed
UAVs ranges from 0.5 to around 0.7, with more difficult tasks (longer
distances and heavier parcels) corresponding to higher SoH values.
This suggests that the Least confident strategy prioritizes deploying
the least capable UAVs that can still complete the task. As SoC
decreases, the range of SoH values expands. For instance, when
SoC is 60%, the SoH of the deployed UAVs ranges from 0.5 to 1.0,
with more difficult tasks leading to the deployment of UAVs with
higher SoH. However, as SoC continues to drop, we observe that
UAVs are no longer deployed for harder tasks (upper right region
of the heatmaps). This occurs because, at low SoC levels, even the
most capable UAVs (those with high SoH) are unable to handle
these challenging deliveries. When SoC reaches very low levels
(e.g., 10%), UAVs are only deployed for the simplest tasks, and the
SoH values are restricted to higher ranges (above 0.7). At such
low energy levels, only the most capable UAVs are selected for the
remaining simpler tasks, ensuring that the system operates within
the UAVs’ remaining capacity.

This result highlights that the Least confident winner selection
rule succeeds in selecting UAVs that are just capable of performing
the given tasks, thereby preserving the more capable UAVs for more
demanding tasks. Moreover, despite the UAV being unaware of its
own state of health, the behaviour it learns is clearly correlated
with it. This shows that the overall decision-making process has
learned an implicit awareness of the individual energy constraints
of the UAV.
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Figure 4: (a) Decision accuracy over time for the three winner selection strategies: Least confident (green),Most confident (pink),
and Random (orange). (b) SoH of UAVs deployed by the Least confident winner selection rule for various tasks and SoC values.

5.4 Comparison Against Threshold-based
Deployment Strategy

In the following, the learning-based deployment strategy is only
considered in conjunction with the Least confident winner selection
rule. We benchmark this strategy against a traditional threshold-
based deployment strategy. In this baseline approach, UAVs are
only deployed if their SoC exceeds a predefined threshold. This
strategy operates using the same auction-based mechanism for task
allocation as the learning-based approach (see Section 3), but UAVs
bid only when their SoC is above the threshold, and their bid value
corresponds to the current SoC. We tested this threshold-based
strategy with SoC thresholds of {50, 60, 70, 80, 90, 100}% and found
that the threshold-based strategy achieved the highest number of
deliveries and, on average, the shortest delivery times when the
UAVs deployed a SoC threshold of 80%. Note that the learning-
based approach starts without such prior tuning, as the UAVs need
to progressively refine their bidding strategies.

Figure 5a presents the results in terms of the number of de-
livered parcels (y-axis) and delivery time (x-axis), across various
inter-arrival times (𝜏) from 15 to 40 min. At the lowest expected
inter-arrival time of 40 min, both strategies perform equally well
regarding both criteria. As the expected inter-arrival time increases,
both strategies manage to deliver more parcels, but the performance
gap widens. The Learning-based strategy consistently outperforms
the Threshold-based strategy in both delivery volume and delivery
time. For example, at 𝜏 = 20 minutes, the Learning-based strategy
delivers a median of approximately 3600 parcels, with a median
delivery time of 17 min, whereas the Threshold-based strategy de-
livers approximately 2800 parcels, with a median delivery time
exceeding 6500 minutes. This stark difference may be attributed to
the adaptive nature of the Learning-based approach, which allows
UAVs to bid and be deployed at any SoC level, as long as considered
capable of completing the given task, while the Threshold-based
strategy waits for UAVs to reach the required SoC level, regardless
of the task difficulty.

In Figure 5b, we compare two strategies in terms of aborted
delivery attempts. For low inter-arrival intervals (𝜏 ≤ 25), the

Learning-based strategy exhibits a higher number of aborted deliv-
ery attempts than the Threshold-based strategy. This is because the
Learning-based strategy allows UAVs to attempt deliveries at lower
SoC levels. However, despite the increased aborted attempts, the
strategy achieves lower delivery times.

In Figure 5c, we observe that the Learning-based strategy con-
sistently results in a lower cumulative backlog age compared to
the Threshold-based strategy, but it is less good at prioritising or-
ders from earlier weeks. This could be because the Learning-based
strategy’s responsiveness encourages UAVs to be deployed as soon
they consider themselves capable of fulfilling the order, leading to
faster task completion and less accumulation of pending orders. On
the other hand, the Threshold-based strategy leads to delayed de-
ployments, which exacerbates task backlog, especially when tasks
arrive in rapid succession.

In summary, the Learning-based strategy not only improves de-
livery throughput, but also reduces delivery time and backlog, de-
spite having a higher rate of aborted attempts compared to the
Threshold-based strategy. These findings also hold for higher 𝜉
values (𝜉 = 0.55, 0.6, 0.65, 0.7), which provide an increased safety
margin for returns—critical for example when accounting for chang-
ing wind direction—albeit at the expense of fewer deliveries for
both strategies (see Figure S1 in the supplementary material [25]).

The impact of fleet size, originally 𝑆 = 25, was also examined (see
Figure S2 in the supplementary material [25]). For a fixed arrival
time, reducing the fleet size amplifies the advantage of the Learning-
based strategy, whereas increasing it diminishes the advantage.

5.5 Forecasting Using Learned Bidding Policies
In this section, we explore an enhancement enabling UAVs with
insufficient SoC to commit to fulfilling current delivery tasks at a
later time, once they have accumulated enough charge. UAVs that
choose not to bid for immediate delivery can submit a reservation bid.
Each UAV uses its learned decision function 𝑓 (𝒙) and the expected
charging rate to determine whether to place a reservation bid and
to calculate the appropriate bid value. A reservation bid is made
if the UAV forecasts that it will be able to perform the task in the
future. The bid value represents the forecasted time required to
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Figure 5: Comparing the learning-based deployment strategy against the threshold-based deployment strategy (a–c); (a) The
learning-based strategy outperforms the threshold-based strategy in terms of the number of delivered parcels and delivery
time, (b) results in a higher number of failed delivery attempts, (c) but produces less backlog. (d) Cumulative backlog age after
eight weeks for the learning-based strategy with and without reservations.

reach the sufficient charge and begin addressing the task. A UAV
wins the reservation auction if no other UAV bids to address the
task immediately, and its bid value is the lowest.

We evaluated this forecasting variant in simulation over an 8-
week operational period. To assess the effect of forecasting, we
used UAVs that had previously learned and tuned their decision
functions over an earlier 8-week period. Figure 5d illustrates the
impact of forecasting on task backlog. The results show a significant
reduction in the number of pending orders from earlier weeks
when forecasting is enabled compared to when it is not. However,
more backlogs will be created for later weeks. By allowing UAVs to
commit to future tasks, the forecasting mechanism helps prioritise
earlier orders, but increases backlog.

6 CONCLUSION
We considered an on-demand delivery scenario, where fleets of
UAVs address orders that arrive stochastically at a fulfilment centre
(FC). The UAVs have heterogeneous capabilities, differing in battery
health, which determines the maximum energy they can store.
They are neither aware of their battery health—and hence their
true energy capacity—nor of their energy consumption models. To
address this, we proposed a decentralised deployment strategy that
combines auction-based task allocation with online learning. Each
UAV independently decides whether to bid for an order based on its
current state of charge, the delivery distance, and parcel mass. The
UAV continuously refines its bidding policy to become consistent
with its individual capability for fulfilling orders.

Through an extensive set of simulations, we demonstrated that
our learning-based deployment strategy outperforms a traditional
threshold-based approach, which only deploys UAVs when their
state of charge exceeds a predefined amount. The learning-based
strategy consistently delivered more parcels and in shorter times,
proving particularly effective in scenarios with frequent task ar-
rivals. Our analysis revealed that deploying the least confident bid-
ders led to more efficient workload distribution and better overall
delivery performance. The learning-based strategy made it possible
for UAVs to adapt their decision-making to their individual energy
constraints, including the state of charge and unknown state of
health, in addition to being responsive to the task parameters. The
strategy was subsequently extended to enable forecasting via the

use of the learned capability models. This enabled UAVs with insuf-
ficient charge levels to commit to fulfilling orders at specific future
times. This also highlights the flexibility of our approach in han-
dling real-world delivery challenges, such as fluctuating demands
and task prioritisation.

Although this paper considered fleets of UAVs with varying
battery health, the proposed deployment strategy learns general
capability models, allowing each UAV to identify the types of orders
it likely fulfils. These models should be able to capture other device-
specific factors impacting capability, such as hardware wear and
tear (e.g., propeller degradation).

We focused on a decentralised implementation of the learning-
based deployment strategy as it offers scalability, reduces com-
munication overhead, and could be applied in scenarios involving
multiple FCs. However, a centralised implementation could be re-
alised, where the FC stores and updates the individual capability
models and allocates delivery tasks while monitoring the charge
levels of the UAVs.

Future work will extend the proposed strategy to incorporate
environmental factors such as wind speed and direction into the
decision-making process. It will consider scenarios where UAVs
handle multiple parcels, which requires them to determine whether
to wait for additional orders or depart based on their bidding con-
fidence. To accommodate these complexities, more sophisticated
policy architectures, such as deep neural networks, may be required.
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