
EduQate: Generating Adaptive Curricula through RMABs in
Education Settings

Sidney Tio
†,∗

Singapore Management University

Singapore

sidney.tio.2021@phdcs.smu.edu.sg

Dexun Li
∗

Singapore Management University

Singapore

dexunli.2019@phdcs.smu.edu.sg

Pradeep Varakantham

Singapore Management University

Singapore

pradeepv@smu.edu.sg

ABSTRACT
There has been significant interest in the development of personal-

ized and adaptive educational tools that cater to a student’s individ-

ual learning progress. A crucial aspect in developing such tools is in

exploring how mastery can be achieved across a diverse yet related

range of content in an efficient manner. While Reinforcement Learn-

ing and Multi-armed Bandits have shown promise in educational

settings, existing works often assume the independence of learn-

ing content, neglecting the prevalent interdependencies between

such content. In response, we introduce Education Network Restless
Multi-armed Bandits (EdNetRMABs), utilizing a network to repre-

sent the relationships between interdependent arms. Subsequently,

we propose EduQate, a method employing interdependency-aware

Q-learning to make informed decisions on arm selection at each

time step. We establish the optimality guarantee of EduQate and

demonstrate its efficacy compared to baseline policies, using stu-

dents modeled from both synthetic and real-world data.
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1 INTRODUCTION
The COVID-19 pandemic has accelerated the adoption of educa-

tional technologies, especially on eLearning platforms. Despite

abundant data and advancements in modeling student learning,

effectively capturing the learning process with interdependent con-

tent remains a significant challenge [9]. The conventional rules-

based approach to creating personalized learning curricula is im-

practical due to its labor-intensive nature and need for expert knowl-

edge. Machine learning-based systems offer a scalable alternative,

automatically generating personalized content to optimize learning

[22, 25].
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One possible approach to model the learning process is the Rest-

less Multi-Armed Bandits (RMAB, [27]), where a teacher agent

selects a subset of arms (concepts) to teach each round. However,

RMAB’s assumption that arms are independent is unrealistic in

educational settings. For example, solving a math question on the

area of a triangle requires knowledge of algebra, arithmetic, and

geometry. Practicing this question should enhance proficiency in

all three areas. Models that ignore such interdependencies may

inaccurately predict knowledge levels by assuming each exercise

impacts only a single area.

In response to this challenge, we introduce an interdependency-

aware RMAB model to the education setting. We posit that by

acknowledging and modeling the learning dynamics of interde-

pendent content, both teachers and algorithms can strategically

leverage overlapping utility to foster mastery over a broader range

of topics within a curriculum. We advocate for RMABs as a fitting

model for this context, as the inherent dynamics of such a model

align closely with the learning process.

In this study, our objective is to derive a teacher policy that

effectively recommends educational content to students, accounting

for interdependencies among the content to enhance overall utility

(that characterizes understanding and retention of content). Our

contributions are as follows:

(1) We introduce Restless Multi-armed Bandits for Education

(EdNetRMABs), enabling the modeling of learning processes

with interdependent educational content.

(2) We propose EduQate, a Whittle index-based heuristic algo-

rithm that uses Q-learning to compute an inter-dependency-

aware teacher policy. Unlike previous methods, EduQate

does not require knowledge of the transition matrix to com-

pute an optimal policy.

(3) We provide a theoretical analysis of EduQate, demonstrating

guarantees of optimality.

(4) We present empirical results on simulated students and real-

world datasets, showing the effectiveness of EduQate over

other teacher policies.

2 RELATEDWORK AND PRELIMINARIES
2.1 Restless Multi-Armed Bandits
The selection of the right time and manner for limited interventions

is a problem of great practical importance across various domains,

including health intervention [5, 17], anti-poaching operations [20],

education [2, 6, 13], etc. These problems share a common charac-

teristic of having multiple arms in a Multi-armed Bandit (MAB)

problem, representing entities such as patients, regions of a forest,

or students’ mastery of concepts. These arms evolve in an uncertain
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manner, and interventions are required to guide them from "bad"

states to "good" states. The inherent challenge lies in the limited

number of interventions, dictated by the limited resources (e.g.,

public health workers, the number of student interactions). RMAB,

a generalization of MAB, offers an ideal model for representing

the aforementioned problems of interest. RMAB allows non-active

bandits to also undergo the Markovian state transition, effectively

capturing uncertainty in arm state transitions (reflecting uncertain

state evolution), actions (representing interventions), and budget

constraints (illustrating limited resources).

RMABs and the associated Markov Decision Processes (MDP)

for each arm offer a valuable model for representing the learning

process. Firstly, leveraging the MDPs associated with each arm

provides the flexibility to adopt nuanced modeling of learning con-

tent, accommodating different learning curves for various content

based on students’ strengths and weaknesses. Secondly, the transi-

tion probabilities serve as a useful mechanism to model forgetting

(through state decay due to passivity or negligence) and learning

(through state transitions to the positive state from repeated prac-

tice). Considering these aspects, RMABs prove to be a beneficial

framework for personalizing and generating adaptive curricula

across a diverse range of students.

In general, computing the optimal policy for a given set of restless

arms in RMABs is recognized as a PSPACE-hard problem [18]. The

Whittle index [27] provides an approach with a tractable solution

that is provably optimal, especially when each arm is indexable.

However, proving indexability can be challenging and often requires

specification of the problem’s structure, such as the optimality

of threshold policies [16, 17]. Moreover, much of the research on

Whittle Index policies has focused on two-action settings or requires

prior knowledge of the transition matrix of the RMABs. Meeting

these conditions proves challenging in the educational context,

where diverse students interact with educational systems, each

possessing different prior knowledge and distinct learning curves

for various topics.

WIQL [5], on the other hand, employs aQ-learning-basedmethod

to estimate the Whittle Index and has demonstrated provable opti-

mality without requiring prior knowledge of the transition matrix.

We utilize WIQL as a baseline method in our subsequent experi-

ments.

In a recent investigation by [12], RMABs were explored within

a network framework, requiring the agent to manage a budget

while allocating a high-cost, high-benefit resource to one arm to

“unlock” potential lower-cost, intermediate-benefit resources for

the arm’s neighbors. The network effects emphasized in their work

are triggered by an intentional, active action, enabling the agent

to choose to propagate positive externalities to a selected arm’s

neighbors within budget constraints. In contrast, our study delves

into scenarios where network effects are indirect results of an active

action, and the agent lacks direct control over such effects. Thus,

the challenge lies in accurately modeling these network effects and

leveraging them when beneficial.

2.2 Reinforcement Learning in Education
In the realm of education, numerous researchers have explored

optimizing the sequencing of instructional activities and content,

assuming that optimal sequencing can significantly impact student

learning. RL is a natural approach for making sequential decisions

under uncertainty [1]. While RL has seen success in various educa-

tional applications, effectively sequencing interdependent content

in a personalized and adaptive manner has yielded mixed or in-

significant results compared to baseline teacher policies [8, 11, 21].

In general, these RL works focus on data-driven methods using

student activity logs to estimate students’ knowledge states and

progress, assuming that the interdependencies between learning

content are encapsulated in students’ learning histories [3, 9, 19]. In

contrast, our work focuses on modelling these interdependencies

directly.

Of particular relevance are factored MDPs applied to skill ac-

quisition introduced by [11]. While factored MDPs account for

interdependencies amongst skills, decentralized policy learning is

infeasible as policies must consider the joint state space. Our work

leverages the advantage of decentralized policy learning provided

by RMABs and introduces a novel decentralized learning approach

that exploits interdependencies between arms.

Complementary to RL methods in education is the utilization

of knowledge graphs to uncover relationships between learning

content [9]. Existing research primarily focuses on establishing

these relationships through data-driven methods (e.g. [7, 23]) of-

ten leveraging student-activity logs. In this work, we complement

such research by presenting an approach where bandit methods

can effectively operate with knowledge graphs derived by such

methods.

3 MODEL
In this section, we introduce the Restless Multi-Armed Bandits

for Education (EdNetRMABs). It is important to note that while

we specifically apply EdNetRMABs to the education setting, the

framework can be seamlessly translated to other scenarios where

modeling the effects of active actions within a network is critical.

For ease of access, a table of notations is provided in Table ??.
In education, a teacher recommends learning content, or items,

to maximize student education, often with content from online

platforms. Items are grouped by topics, such as “Geometry," where

exposure to one piece of content can enhance knowledge across

others in the same group. This cumulative learning effect which

we refer to as “network effects", implies that exposure to an item is

likely to positively impact the student’s success on items within the

same group. A successful teacher accurately estimates a student’s

knowledge state over repeated interactions, leveraging these net-

work effects to promote both breadth and depth of understanding

through recommendations.

3.1 EdNetRMABs
The RMABmodel tasks an agent with selecting 𝑘 arms from𝑁 arms,

constrained by a limit on the number of arms that can be pulled at

each time step. The objective is to find a policy that maximizes the

total expected discounted reward, assuming that the state of each

arm evolves independently according to an underlying MDP.

The EdNetRMABs model extends RMABs by allowing for ac-

tive actions to propagate to other arms dependent on the current
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Figure 1: A comparative visualization of interdependency-aware EduQate versus interdependency-unaware teacher algorithms
interacting with a EdNetRMAB with five arms organized into two topics. Note that actions 0,1,2 signifies passive, semi-active,
and active actions accordingly. Top: EduQate, recognizing interdependencies, selects arm 𝑗 or 𝑘 , optimizing overall student
knowledge state. Bottom: Interdependency-unaware algorithms treat arms 𝑖, 𝑗 , and 𝑘 as independent, considering each equally.
Selecting arm 𝑖 results in suboptimal learning outcomes.

arm when it is being pulled, thus relaxing the assumption of inde-

pendent arms. This is operationalized by organising the arms in a

network, and pulling of an arm results in changes for its neighbors,

or members in the same group.

When applied to education setting, the EdNetRMABs is formal-

ized as follows:

Arms. Each arm, denoted as 𝑖 ∈ 1, ..., 𝑁 , signifies an item. In

the context of this networked environment, each arm belongs to a

group 𝜙 ∈ {1, ..., 𝐿} representing the overarching topic that encom-

passes related items. It’s important to note that arm membership is

not mutually exclusive, allowing arms to be part of multiple groups.

This flexibility enables a more nuanced modeling of interdependen-

cies among educational content. For instance, a question involving

the calculation of the area of a triangle may span both arithmetic

and geometry groups.

State space. In this framework, each arm possesses a binary latent

state, denoted as 𝑠𝑖 ∈ {0, 1}, where “0” represents an “unlearned"

state, and “1”indicates a “learned” state. Considering all arms collec-

tively, these states serve as a representation of the student’s overall

knowledge state. In the current work, it is assumed that the states

of all arms are fully observable, providing a comprehensive model

of the student’s understanding of the various educational concepts.

Action space. To capture the network effects associated with arm

pulls, we depart from the conventional RMAB framework with a

binary action space 𝐴 = {0, 1} by introducing a pseudo-action. In

this modified setup, the action space is extended to 𝐴 = {0, 1, 2},
where actions 0 and 2 represent “no-pull" and “pull", as commonly

used in bandit literature. Notably, in EdNetRMABs, a third action 1

is introduced to simulate the network effects resulting from pulling

another arm within the same group. It is important to clarify that

agents do not directly engage with action 1 but we employ it solely

for modeling network effects, hence the term “pseudo-action”.

Transition function. For a given arm 𝑖 , let 𝑃
𝑎,𝑖
𝑠,𝑠′ represent the

probability of the arm transitioning from state 𝑠 to 𝑠′ under action 𝑎.
It’s noteworthy that, in typical real-world educational settings, the

actual transition functions governing the states of the arms are often

unknown and, even for the same concept, may vary among students

due to differences in prior knowledge [9]. To address this challenge,

we adopt model-free approaches in this study, devising methods to

compute the teacher policy without relying on explicit knowledge

of these transition functions. In the following experiments, we

maintain the assumption of non-zero transition probabilities, and

enforce constraints that are aligned with the current domain [17]:

(i) The arms are more likely to stay in the positive state than change

to the negative state: 𝑃0
0,1

< 𝑃0
1,1
, 𝑃1

0,1
< 𝑃1

1,1
and 𝑃2

0,1
< 𝑃2

1,1
; (ii)

The arm tends to improve the latent state if more efforts is spent

on that arm, i.e., it is active or semi-active: 𝑃0
0,1

< 𝑃1
0,1

< 𝑃2
0,1

and

𝑃0
1,1

< 𝑃1
1,1

< 𝑃2
1,1
.

With the formalization of the EdNetRMABs model provided, we

now apply it to an educational context. In this scenario, the agent

assumes the role of a teacher and takes actions during each time step

𝑡 ∈ {1, ...,𝑇 }. Specifically, at each time step, the teacher recommends

an item for the student to study. We represent the vector of actions

taken by the teacher at time step 𝑡 as a𝑡 ∈ {0, 1, 2}𝑁 . Here, arm

𝑖 is considered to be active at time 𝑡 if 𝑎𝑡
𝑖
= 2 and passive when

𝑎𝑡
𝑖
= 0. When arm 𝑖 is pulled, the set of arms that share the same

group membership as arm 𝑖 , denoted as 𝜙−
𝑖
under goes the pseudo-

action, represented as 𝑎𝑡
𝑗
= 1 for all 𝑗 ∈ 𝜙−

𝑖
. In our framework, the

teacher agent acts on exactly one arm per time step to simulate

the real-world constraint that the teacher can only recommend one
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concept to students (

∑
𝑖 𝐼𝑎𝑡

𝑖
=2 = 1,∀𝑡 ). Subsequent to taking action,

the teacher receives s𝑡 ∈ {0, 1}𝑁 , a vector reflecting the state of

all arms, and reward 𝑟𝑡 =
∑𝑁
𝑖=1 𝑠

𝑡 (𝑖). The vector st represents the
overall knowledge state of the student. The teacher agent’s goal,

therefore, is to maximize the long term rewards, either discounted

or averaged.

While previous studies (e.g. [7, 24]) focused on directed rela-

tions for prerequisite learning, EdNetRMABs consider undirected

relations between learning content. This approach reflects bidirec-

tional learning relationships in education: prerequisites aid future

learning, while advanced topics reinforce foundational knowledge.

Additionally, EdNetRMABs can be extended to unidirectional struc-

tures (𝜙𝑖 ≠ 𝜙 𝑗 for 𝑗 ∈ 𝜙𝑖 ).

4 EDUQATE
Q-learning [26] is a popular reinforcement learning method that

enables an agent to learn optimal actions in an environment by

iteratively updating its estimate of state-action value,𝑄 (𝑠, 𝑎), based
on the rewards it receives. At each time step 𝑡 , the agent takes an

action 𝑎 using its current estimate of 𝑄 values and current state 𝑠 ,

thus received a reward of 𝑟 (𝑠) and new state 𝑠′.
Expanding upon Q-learning, we introduce EduQate, a tailored

Q-learning approach designed for learning Whittle-index policies

in EdNetRMABs. In the interaction with the environment, the agent

chooses a single item, represented by arm 𝑖 , to recommend to the

student. In this context, the agent possesses knowledge of the group

membership 𝜙𝑖 of the selected arm and observes the rewards gener-

ated by activating arm 𝑖 and semi-activating arms in 𝜙−
𝑖
. EduQate

utilizes this interaction to learn the Q-values for all arms and ac-

tions.

To adapt Q-learning to EdNetRMABs, we propose leveraging the

learned Q-values to select the arm with the highest estimate of the

Whittle index, defined as:

𝜆𝑖 = 𝑄 (𝑠𝑖 , 𝑎𝑖 = 2) −𝑄 (𝑠𝑖 , 𝑎𝑖 = 0)

+
∑︁
𝑢∈𝜙−

𝑖

(𝑄 (𝑠𝑢 , 𝑎𝑢 = 1) −𝑄 (𝑠𝑢 , 𝑎𝑢 = 0)) (1)

Here, 𝜆𝑖 is the Whittle Index estimate for arm 𝑖 . In essence, the

Whittle Index of arm 𝑖 is computed as the linear combination of

the value associated with taking action on arm 𝑖 over passivity and

the value of associated with semi-actively engaging with members

from same group, compared to passivity.

To improve the convergence of Q-learning, we incorporate Ex-

perience Replay [15]. This involves saving the teacher algorithm’s

previous experiences in a replay buffer and drawing mini-batches

of samples from this buffer during updates to enhance convergence.

In Section 4.1, we prove that EduQate will converge to the optimal

policy. However, in practice, we may not have enough episodes to

fully train EduQate. Therefore, we propose Experience Replay to

mitigate the cold-start problem common in RL applications, a com-

mon problem where initial student interactions with sub-optimal

teachers can lead to poor learning experiences [3].

The pseudo-code is provided in Algorithm 1. Similar to WIQL

[5], we employ a 𝜖-decay policy that facilitates exploration and

learning in the early steps, and proceeds to exploit the learned

Q-values in later stages. A visualization of how EduQate interacts

Algorithm 1 Q-Learning for EdNetRMABs (EduQate)

Input: Number of arms 𝑁

Initialize 𝑄𝑖 (𝑠, 𝑎) ← 0 and 𝜆𝑖 (𝑠) ← 0 for each state 𝑠 ∈ 𝑆 and

each action 𝑎 ∈ {0, 1, 2}, for each arm 𝑖 ∈ 1, ..., 𝑁 .

Initialize replay buffer 𝐷 with capacity 𝐶 .

for 𝑡 in 1, ...,𝑇 do
𝜖 ← 𝑁

𝑁+𝑡
With probability 𝜖 , select one arm uniformly at random. Oth-

erwise, select arm with highest Whittle Index, 𝑖 = argmax𝑖 𝜆𝑖 .

for arm 𝑛 in 1, ..., 𝑁 do
if 𝑛 ≠ 𝑖 then

Set arm 𝑛 to passive, 𝑎𝑡𝑛 = 0

else
Set arm 𝑛 to active, 𝑎𝑡𝑛 = 2

for 𝑗 ∈ 𝜙−
𝑖

do
Set arms in same group as 𝑖 to semi-active, 𝑎𝑡

𝑗
= 1

end for
end if

end for
Execute actions at and observe reward 𝑟𝑡 and next state 𝑠𝑡+1

for all arms

Store experience (𝑠𝑡 , at, rt, st+1)in replay buffer 𝐷 .

Sample minibatch 𝐵 of Experience from replay buffer 𝐷 .

for Experience in minibatch 𝐵 do
Update 𝑄𝑛 (𝑠, 𝑎) using Q-learning update in Equation ??.
Compute 𝜆𝑛 using Equation 1

end for
end for

with EdNetRMABs compared to other teacher algorithms can be

found at Figure 1.

4.1 Analysis of EduQate
In this section, we analyze EduQate closely, and show that EduQate

does not alter the optimality guarantees of Q-learning under the

constraint that maximumnumber of arms that can be pulled on each

timestep 𝑘 = 1 (Theorem 1). Our method relies on the assumption

that teachers are limited to assign 1 item to the student at each

time step. Theorem 2 analyzes EduQate under the conditions that

𝑘 > 1. Since our setting involves the semi-active actions, we should

compute Equation 1. To reiterate, 𝜙𝑖 here refers to the group that

arm 𝑖 belongs to, and 𝜙−
𝑖
is the same group but does not include

arm 𝑖 . If arm 𝑖 is selected, then all the remaining arms in group 𝜙−
𝑖

should be semi-active.

Theorem 1. Choosing the top arm with the largest 𝜆 value in
Equation 1 is equivalent to maximizing the cumulative long-term
reward.

Proof. According to the approach, we select the arm according

to the 𝜆 value. Assume arm 𝑖 has the highest 𝜆 value, then for any

arm 𝑗 where 𝑗 ≠ 𝑖 , we have

𝜆𝑖 ≥ 𝜆 𝑗
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𝑄 (𝑠𝑖 , 𝑎𝑖 = 2) −𝑄 (𝑠𝑖 , 𝑎𝑖 = 0)

+
∑︁
𝑢∈𝜙−

𝑖

(𝑄 (𝑠𝑢 , 𝑎𝑢 = 1) −𝑄 (𝑠𝑢 , 𝑎𝑢 = 0))

≥ 𝑄 (𝑠 𝑗 , 𝑎 𝑗 = 2) −𝑄 (𝑠 𝑗 , 𝑎 𝑗 = 0)

+
∑︁

𝑤∈𝜙−
𝑗

(𝑄 (𝑠𝑤 , 𝑎𝑤 = 1) −𝑄 (𝑠𝑤 , 𝑎𝑤 = 0))

(2)

According to the definition of 𝜆 in Equation 1, we move the negative

part to the other side, and the left side becomes:

𝑄 (𝑠𝑖 , 𝑎𝑖 = 2) +
∑︁
𝑢∈𝜙−

𝑖

(𝑄 (𝑠𝑢 , 𝑎𝑢 = 1))

+𝑄 (𝑠 𝑗 , 𝑎 𝑗 = 0) +
∑︁

𝑤∈𝜙−
𝑗

(𝑄 (𝑠𝑤 , 𝑎𝑤 = 0))

and the right side is similar. There are three cases:

• arm 𝑖 and arm 𝑗 are not connected, and group 𝜙𝑖 and 𝜙 𝑗 has no

overlap, i.e., 𝜙𝑖 ∩ 𝜙 𝑗 = ∅. We add

∑
𝑧∉𝜙𝑖∧𝑧∉𝜙 𝑗

𝑄 (𝑠𝑧 , 𝑎𝑧 = 0) on both

sides. This denotes the addition of𝑄 (𝑠𝑧 , 𝑎𝑧 = 0) for all arm 𝑧 that

are not included in the set of 𝜙𝑖 or 𝜙 𝑗 . We have the left side:

𝑄 (𝑠𝑖 , 𝑎𝑖 = 2) +
∑︁
𝑢∈𝜙−

𝑖

(𝑄 (𝑠𝑢 , 𝑎𝑢 = 1)) +𝑄 (𝑠 𝑗 , 𝑎 𝑗 = 0)

+
∑︁

𝑤∈𝜙−
𝑗

(𝑄 (𝑠𝑤 , 𝑎𝑤 = 0)) +
∑︁

𝑧∉𝜙𝑖∧𝑧∉𝜙 𝑗

𝑄 (𝑠𝑧 , 𝑎𝑧 = 0)

= 𝑄 (𝑠𝑖 , 𝑎𝑖 = 2) +
∑︁
𝑢∈𝜙−

𝑖

(𝑄 (𝑠𝑢 , 𝑎𝑢 = 1))

+
∑︁
𝑤∉𝜙𝑖

(𝑄 (𝑠𝑤 , 𝑎𝑤 = 0))

= 𝑄 (s, a = I{𝑎𝑖=2} )
(3)

Similarly, we do the same for the right side and thus, the equa-

tion 4.1 becomes

𝑄 (s, a = I{𝑎𝑖=2} ) ≥ 𝑄 (s, a = I{𝑎 𝑗=2} )

• arm 𝑖 and arm 𝑗 are not connected, but group 𝜙𝑖 and 𝜙 𝑗 has

overlap, i.e., 𝜙𝑖 ∩𝜙 𝑗 ≠ ∅. In this case, we add

∑
𝑧∉𝜙𝑖∧𝑧∉𝜙 𝑗

𝑄 (𝑠𝑧 , 𝑎𝑧 =

0) − ∑
𝑧∈𝜙𝑖∩𝜙 𝑗

𝑄 (𝑠𝑧 , 𝑎𝑧 = 0) on both sides.

• arm 𝑖 and arm 𝑗 are connected, and group 𝜙𝑖 and 𝜙 𝑗 has overlap,

i.e., 𝜙𝑖 ∩ 𝜙 𝑗 ≠ ∅, and {𝑖, 𝑗} ⊂ 𝜙𝑖 ∩ 𝜙 𝑗 . This case is similar to the

previous one, we add

∑
𝑧∉𝜙𝑖∧𝑧∉𝜙 𝑗

𝑄 (𝑠𝑧 , 𝑎𝑧 = 0) − ∑
𝑧∈𝜙𝑖∩𝜙 𝑗

𝑄 (𝑠𝑧 , 𝑎𝑧 =

0) on both sides.

□

Thus when 𝑘 = 1, selecting the top arm according to the 𝜆 value

is equivalent to maximizing the cumulative long-term reward, and

is guaranteed to be optimal.

Theorem 2. When 𝑘 > 1, selecting the 𝑘 arms is a NP-hard
problem. The non-asymptotic tight upper bound and non-asymptotic
tight lower bound for getting the optimal solution are 𝑜 (𝐶 (𝑛, 𝑘)) and
𝜔 (𝑁 ), respectively.

Proof Sketch. This problem can be considered as a variant of

the knapsack problem. If we disregard the influence of the shared

neighbor nodes for two selected arms, then selecting arm 𝑖 will

not influence the future selection of arm 𝑗 . In such instances, the

problem of selecting the 𝑘 arms is simplified to the traditional 0/1

knapsack problem, a classic NP-hard problem. Therefore, when

considering the effect of shared neighbor nodes for two selected

arms, this problem is at least as challenging as the 0/1 knapsack

problem. □
When 𝑘 > 1, it is difficult to compute the optimal solution, but

a heuristic greedy algorithm with the complexity of 𝑂 ( (2𝑁−𝑘 )∗𝑘
2

)
exists.

5 EXPERIMENT
In this section, we demonstrate the effectiveness of EduQate against

benchmark algorithms on synthetic students and students derived

from a real-world dataset, the Junyi Dataset and the OLI Statics

dataset. All experiments are run on CPU only. In our experiments,

we compare EduQate with the following policies:

• Threshold Whittle (TW): This algorithm, proposed by [17],

utilizes an efficient closed-form approach to compute the Whittle

index, considering only the pull action as active. It operates under

the assumption that transition probabilities are known and stands

as the state-of-the-art in RMABs.

• WIQL: This algorithm employs a Q-learning-basedWhittle Index

approach [5]. It learns Q-values using the pull action as the only

active strategy and calculates the Whittle Index based on the

acquired Q-values.

• Myopic: This strategy disregards the impact of the current action

on future rewards, concentrating solely on predicted immediate

rewards. It selects the arm that maximizes the expected reward

at the immediate time step.

• Random: This strategy randomly selects arms with uniform

probability, irrespective of the underlying state.

Inspired by work in healthcare settings [12, 14], we compare

policies using the Intervention Benefit (IB), which we modify for the

education settings and is defined as:

𝐼𝐵𝑅𝑎𝑛𝑑𝑜𝑚 (𝜋) =
E𝜋 (𝑅(.)) − E𝑅𝑎𝑛𝑑𝑜𝑚 (𝑅(.))

E𝑅𝑎𝑛𝑑𝑜𝑚 (𝑅(.))
(4)

where Random represents a policy where arms are pulled at

random. Previous research in educational settings has shown that

random policies can produce robust learning outcomes through

spaced repetition [9, 10]. Thus, effective algorithms must demon-

strate superiority over random policies. Our modified metric ef-

fectively compares the extent to which a challenger algorithm 𝜋

outperforms a random policy.

5.1 Experiment setup
In all experiments, we commence by initializing all arms in state

0 and permit the teacher algorithms to engage with the student

for a total of 50 actions, pulling exactly 1 arm (i.e. 𝑘 = 1) at each

time step. Following the completion of these actions, the episode

concludes, and the student state is reset. This process is iterated

across 800 episodes, for a total of 30 seeds. The datasets used in our

experiment are described below:
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Figure 2: Average rewards for the respective algorithms on 3 datasets, averaged across 30 runs. Shaded regions represent
standard error.

5.1.1 Synthetic dataset. Given the domain-motivated constraints

on the transition functions highlighted in Section 3.1, we create a

simulator based on 𝑁 = 50, 𝑆 ∈ {0, 1}, 𝑁topics = 20. We randomly

assign arms to topic groups, and allow arms to be assigned to be

more than one topic. Under this method, number of arms under

each group may not be equal. For each trial, a new transition matrix

is generated to simulate distinct student scenarios.

5.1.2 Junyi dataset. The Junyi dataset [7] is an extensive dataset

collected from the Junyi Academy
1
, an eLearning platform es-

tablished in 2012 on based on the open-source code released by

Khan Academy. In this dataset, there are nearly 26 million student-

exercise interactions across 250 000 students in its mathematics

curriculum, organized into 21 topics and 9 areas. For this exper-

iment, we selected the top 100 exercises with the most student

interactions to create our student models and assign these exercises

to their group based on the topic. In addition, Junyi dataset pro-

vides expert annotated similarity ratings between exercise pairs,

which we use to further enrich the groupings. This results in a more

complex network beyond simple topical groups. Using our method

to generate groups, the resultant EdNetRMAB has 𝑁 = 100 and

𝑁𝑡𝑜𝑝𝑖𝑐𝑠 = 21.

5.1.3 OLI Statics dataset. The OLI Statics dataset [4] comprises stu-

dent interactions with an online Engineering Statics course
2
. In this

dataset, each item is assigned one or more Knowledge Components

(KCs) based on the related topics. After filtering for the top 100

items with the most student interactions, the resultant EdNetRMAB

includes 𝑁 = 100 items and 𝑁𝑡𝑜𝑝𝑖𝑐𝑠 = 76 distinct topics.

5.2 Creating student models
In this section, we outline the procedure for generating student

models aimed at simulating the learning process. To clarify, a stu-

dent model in this context is defined as a set of transition matrices

1
http://www.Junyiacademy.org/

2
https://oli.cmu.edu/courses/engineering-statics-open-free/

for all items. These matrices are employed with EdNetRMABs to

simulate the learning dynamics.

We employ various strategies to model transitions within the

RMAB framework. Active transitions are determined by assessing

the average success rate on a question before and after a learn-

ing intervention. Passive transitions are influenced by difficulty

ratings, with more challenging questions more prone to rapid for-

getting. Semi-active transitions, on the other hand, are computed

as proportion of active transition, guided by similarity scores.

Active Transitions. We use data on students’ correct response

rate after interacting with an item to create the transition matrix

for action 2, based on the change in correctness rates before and

after a learning intervention.

Passive Transitions. To construct passive transitions for items,

we use relative difficulty scores to determine transitions based

on difficulty levels. We assume that higher difficulty correlates

with a greater likelihood of forgetting, resulting in higher failure

rates. Specifically, higher difficulty values correspond to higher 𝑃0
1,0

values, indicating a greater likelihood of forgetting. The transition

matrix for the passive action 𝑎 = 0 is then randomly generated,

with values influenced by difficulty levels.

Semi-active Transitions. To derive semi-active transitions, we

use similarity scores between exercises from the Junyi dataset. We

first normalize these scores to the range [0, 1]. Then, for any chosen
arm, we compute its transition matrix under the semi-active action

𝑎 = 1 as a proportion of its active action transitions, 𝑃1
0,1

= 𝜎 (𝑃2
0,1
),

where 𝜎 signifies the similarity proportion. The arm’s transition

matrix for the semi-active action varies due to different similarity

scores between pairs in the same group. To address this, we use the

average similarity score to determine the proportion. Since the OLI

dataset does not contain similarity ratings, we assume a constant

similarity rating of 𝜎 = 0.8 for all pairs.

6 RESULTS
The experimental results for the synthetic, Junyi, and OLI datasets,

presented in Table 1 and Figure 2, demonstrate the performance
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Table 1: Comparison of policies on synthetic, Junyi, and OLI datasets. E[𝑅] represents the average reward obtained in the final
episode of training. Statistic after ± represents standard error across 30 trials.

Policy

Synthetic Junyi OLI

E[𝐼𝐵] (%)± E[𝑅]± E[𝐼𝐵] (%)± E[𝑅]± E[𝐼𝐵] (%)± E[𝑅]±
Random - 26.84 ± 0.46 - 15.82 ± 0.34 - 18.46 ± 0.35

WIQL -7.93 ± 1.59 24.60 ± 0.43 -10.79 ± 4.93 14.01 ± 0.97 -21.34 ± 2.82 14.33 ± 0.42

Myopic 1.02 ± 1.35 27.07 ± 0.52 7.02 ± 1.73 16.86 ± 0.36 12.25 ± 3.39 20.51 ± 0.48

TW 6.45 ± 1.23 28.50 ± 0.47 17.75 ± 1.77 18.53 ± 0.28 -1.124 ± 2.12 18.07 ± 0.211

EduQate 28.61 ± 2.11 34.33 ± 0.49 56.33 ± 3.10 24.53 ± 0.31 39.54 ± 3.74 25.47 ± 0.47

of five algorithms: EduQate, TW, WIQL, Myopic, and Random.

We report the average IB and final episode rewards from thirty

independent runs for each algorithm. Across all datasets, EduQate

consistently outperforms the other policies, showcasing higher

intervention benefits and average rewards.

A notable observation is that in some cases, WIQL and Myopic

policies report negative or negligible IB values, indicating their

inability to surpass the performance of the random policy. This

aligns with prior research by Doroudi et al. [9], which highlighted

the robustness of random policies in educational settings. Our re-

sults further confirm that random policies can be challenging to

outperform, even when algorithms are equipped with knowledge

of the learning dynamics.

The superior performance of our interdependency-aware EduQate

over random policies and other algorithms underscores the im-

portance of considering network effects and interdependencies

in EdNetRMABs. This suggests that accounting for the complex

relationships between learning topics can lead to more effective

educational interventions.

WIQL, which relies solely on Q-learning for active and passive ac-

tions, performs worse than a random policy as noted by its negative

IB across the three datasets. This underperformance is likely due

to its tendency to misattribute positive network effects to passive

actions, highlighting the limitations of traditional reinforcement

learning approaches in this context where assuming independence

amongst arms can fail.

Interestingly, despite having access to the transition matrix, TW

does not perform as well as EduQate. In particular, TW was not

able to beat the random policy on the OLI dataset. While TW has

demonstrated effectiveness in traditional RMABs, its weaknesses

become evident in the current setting, where pulling an arm has

wider implications for other arms. This observation emphasizes

the unique challenges posed by educational environments and the

need for specialized algorithms like EduQate.

Figure 2 provides a visual representation of the average rewards

obtained in the final episode for each algorithm, further illustrating

EduQate’s superior performance across different datasets.

The synthetic dataset produces networks with distinct isolated

groups, in contrast to the more intricate and interconnected net-

works from the Junyi and OLI datasets. Compared to synthetic

dataset, real-world educational environments presents a greater

degree of intricacy and challenges for teacher algorithms. Despite

that, EduQate demonstrates robust and effective performance in

Table 2: Performance comparison under corrupted arm
groupings across 5 trials. Corrupted groupings were created
by randomly reassigning 30% or 50% of arms to different
groups.

Policy

30% Corruption 50% Corruption

E[𝐼𝐵] (%)± E[𝑅]± E[𝐼𝐵] (%)± E[𝑅]±
Random - 7.36 ± 0.46 - 7.46 ± 0.49

WIQL -12.44 ± 6.16 6.41 ± 0.49 -9.34 ± 5.65 6.74 ± 0.54

TW 17.62 ± 4.71 8.58 ± 0.33 15.94 ± 5.62 8.55 ± 0.38

EduQate 8.68 ± 5.22 7.92 ± 0.33 11.59 ± 6.68 8.23 ± 0.46

maximizing rewards. This consistency across different network se-

tups further validates EduQate’s adaptability and efficacy in diverse

educational contexts.

In conclusion, our results not only demonstrate the superiority

of EduQate but also highlight the importance of considering net-

work effects and interdependencies in educational settings. Future

research could explore the impact of different network structures

on algorithm performance and investigate ways to further optimize

EduQate for specific educational contexts. We explore the effects

of different network topologies by varying the number of topics

while limiting the membership of each item. We find that as net-

work interdependencies are reduced, the network effects diminish,

and such EdNetRMABs can be approximated to traditional RMABs

with independent arms. Under these conditions, our algorithm’s

advantage is reduced.

6.1 Ablation Studies
6.1.1 Misspecified Network Relations. In our previous analyses,

we assumed that the network and relations between arms accu-

rately reflected true groupings. However, real-world scenarios may

involve misspecified relationships due to incomplete data mining

methods or insufficient data for accurate modeling. This scenario is

particularly likely when new items are added to the pool, and data

mining methods lack sufficient data to establish accurate relations.

To evaluate EduQate’s robustness to such misspecifications, we

conducted an ablation study with altered arm groupings, hypothe-

sizing that the interdependency-aware EduQate would be adversely

affected, while other methods would remain relatively stable.

To test this hypothesis, we modified the original Junyi dataset by

randomly reassigning the relations of a percentage of arms, creating

a ‘corrupted’ dataset. Table 2 presents the performance metrics for

this scenario. The results show that EduQate outperforms WIQL
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Figure 3: Average rewards across 800 episodes of training, across 30 seeds. Experience Replay Buffer helps EduQate achieve
stronger results across all datasets.

and Random policies, but does not surpass TW under these con-

ditions. Similar to WIQL, this reduced performance likely stems

from erroneous attributions in EduQate: positive effects may be

wrongly assigned to passive actions, while negative effects may be

incorrectly attributed to pseudo-actions. However, EduQate still

maintains superior performance over the random policy, a robust

baseline in educational settings, demonstrating its resilience even

with imperfect information.

WIQL can be interpreted as an extreme case of misspecification

in the EduQate framework, where 𝜙𝑖 = ∅ for all 𝑖 . This perspective
provides insight into the relative performance of these algorithms

under varying degrees of network misspecification and highlights

the importance of considering interdependencies in educational

recommendation systems.

Crucially, EdNetRMABs allow for easy updates to the network

structure through expert intervention or improved data mining

methods. This flexibility enables system refinement over time, po-

tentially mitigating initial misspecifications and enhancing real-

world performance. These findings highlight the importance of

accurate relationship modeling for optimal EduQate performance

while demonstrating its robustness in suboptimal conditions. The

adaptability of EdNetRMABs suggests promising avenues for ongo-

ing improvement in educational applications.

6.1.2 Ablation of Replay Buffer. We investigate the importance of

the Experience Replay buffer in EduQate, as shown in Figure 3 and

Table 3. For the Simulated and Junyi datasets, EduQate without Ex-

perience Replay buffer does not achieve the performance levels of

the full EduQate algorithmwithin 800 episodes, highlighting the im-

portance of methods that aid Q-learning convergence. In real-world

applications, slow convergence can result in students experiencing

a curriculum similar to a random policy, leading to sub-optimal

learning experiences during the early stages. This issue is known

as the cold-start problem [3]. Future work in EdNetRMABs should

explore methods to overcome cold-start problems and improve

convergence in Q-learning-based methods.

Table 3: Comparison of EduQatewith andwithout Experience
Replay Buffer policies across different datasets.

Policy

E[𝐼𝐵] (%) ±
Synthetic Junyi OLI

EduQate 28.61 ± 2.11 56.33 ± 3.10 39.54 ± 3.74

w/o Replay Buffer 19.73 ± 1.35 40.35 ± 2.42 37.55 ± 3.20

Policy

E[𝑅] ±
Synthetic Junyi OLI

EduQate 34.33 ± 0.49 24.53 ± 0.31 25.47 ± 0.47

w/o Replay Buffer 32.03 ± 0.47 22.13 ± 0.54 24.71 ± 0.44

7 CONCLUSION AND LIMITATIONS
We introduced EdNetRMABs, a MAB variant designed for modeling

interdependencies in educational content, and proposed EduQate,

a novel Whittle-based learning algorithm. EduQate computes opti-

mal policies without requiring transition matrix knowledge while

accounting for network effects. We demonstrated its optimality

theoretically and effectiveness empirically through synthetic and

real-world experiments. While our work assumes fully observable

student knowledge states, it provides a foundation for future re-

search. Future directions include extending EduQate to handle

partially observable states, addressing the cold-start problem, and

incorporating additional learning factors such as student motiva-

tion and engagement.
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