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ABSTRACT
In this paper we present a novel approach for multiagent decision
making in dynamic environments based on Factor Graphs and the
Max-Sum algorithm, considering asynchronous variable reassign-
ments and distributed message-passing among agents. Motivated
by the challenging domain of lane-free traffic where automated
vehicles can communicate and coordinate as agents, we propose a
more realistic communication framework for Factor Graph formu-
lations that satisfies the above-mentioned restrictions, along with
Conditional Max-Sum: an extension of Max-Sum with a revised
message-passing process that is better suited for asynchronous
settings. The overall application in lane-free traffic can be viewed
as a hybrid system where the Factor Graph formulation undertakes
the strategic decision making of vehicles, that of desired lateral
alignment in a coordinated manner; and acts on top of a rule-based
method we devise that provides a structured representation of the
lane-free environment for the factors, while also handling the un-
derlying control of vehicles regarding core operations and safety.
Our experimental evaluation showcases the capabilities of the pro-
posed framework in problems with intense coordination needs
when compared to a domain-specific baseline without communi-
cation, and an increased adeptness of Conditional Max-Sum with
respect to the standard algorithm.

CCS CONCEPTS
• Computing methodologies→Multi-agent systems; Cooper-
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Figure 1: (a) An example of a typical FG; (b) The correspond-
ing distributed structure for FGs.
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1 INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) [3] effec-
tively tackle multiagent decision making in large problems that can
be formulated with a highly decomposable structure. DCOPs have
been widely studied with several extensions that address broader
domains such as dynamic and/or sequential environments. Algo-
rithmic solutions for Dynamic DCOPs usually expect that agents
update their existing configuration concurrently in an online dy-
namic environment, or that multiple message-passing iterations
can be taken before agents update their current configuration as
a group. These limitations can hinder the actual use of DCOPs in
many multiagent environments requiring more flexible frameworks
that incorporate communication or timing-related restrictions. Ex-
isting research either tackles the asynchrony of the agents’ decision
making problem without taking into account large-scale and open
distributed environments, by resorting to pseudo-tree graph struc-
tures that are more immutable than Factor Graphs [16]; or requires
the synchronization of agents’ decisions at every time-step [3].
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Figure 2: FG example of connected lane-free vehicles.

To this end, we propose a distributed communication framework
for Factor Graphs (FGs) that relies on information broadcasting
for communication among agents, in a way that treats agents as
independent entities and not as a unified system. 1

A visual illustration of the framework juxtaposed with the corre-
sponding conventional FG (contains variables 𝑥𝑖 that agents control,
and decomposed factors 𝐹 𝑗 of local utilities depending on variables
𝑥𝑖 ) can be found in Fig. 1 (discussed in length in Sec. 3). FG formula-
tions are often tied with the Max-Sum algorithm, which showcases
great adaptability under different environments [2, 18, 21], and
through its numerous extensions [19, 20, 24] that solve different
types of DCOPs. In a similar vein, we put forward an extension of
Max-Sum, termed as Conditional Max-Sum, which addresses the
asynchrony on the agents’ variable updates. Conventional Max-
Sum is not fully fitted for asynchronous decision-making since it is
designed for static environments; while existing research on Asyn-
chronous Max-Sum [24] has a different focus, as it examines the
effect of asynchronous communication schemes in static problems,
instead of asynchronous updates in sequential problems.

The proposed approach is applied in lane-free traffic [14], a novel
paradigm that investigates traffic environments where autonomous
vehicles can fully utilize the lateral road capacity and do not obey
the lane principle. This gives rise to a challenging multiagent coor-
dination environment, with a FG formulation that we illustrate in
Fig. 2. There, the vehicles have to coordinate their lateral placement
through the control variable 𝑥𝑖 , and update their desired lateral
placement 𝑥∗

𝑖
, i.e., their target to reach. Existing work [21] in lane-

free driving as a multiagent problem relies on the conventional
framework of FGs and Max-Sum. As such, it does not take into
account realistic restrictions regarding distributed communication
and asynchrony of an open environment—especially in this setting
where each agent is an independent moving vehicle with observa-
tions and dependencies that constantly change over time.

Summing up our contributions, here we propose a distributed
communication framework for FGs which allows for asynchronous
decision making, giving rise to the Conditional Max-Sum algorithm.
Moreover, we instantiate our framework in a realistic lane-free
traffic environment for which we devise a novel formulation based
on FGs. Our experimental evaluation demonstrates the coordination
efficacy of the overall framework in this domain, and autonomous
vehicles under Conditional Max-Sum exhibiting an increased ability

1The extended version of this paper containing the Appendix referenced throughout
the text is available in arXiv with the same title. The codebase can be found at https:
//bitbucket.org/dtrou/conditional-max-sum-in-lane-free-traffic.

to respond quickly and better target their desired speed objective
with smoother lateral maneuvers.

2 BACKGROUND AND RELATEDWORK
2.1 Factor Graphs and the Max-Sum Algorithm
Factor Graphs (FGs) [11] originate from probabilistic graphical mod-
els but are also well integrated within distributed AI as a common
tool for DCOP formulation [2, 3]. Given an FG structure as the one
in Fig. 1(a), we seek to obtain all control variable configurations
𝑥𝑖 ∈ x that maximize the sum of the factors, i.e., solve the optimiza-
tion problem: x∗ = argmaxx

∑
𝑗 𝐹 𝑗 (s𝑗 ), where s𝑗 ⊆ x. Note that

factors 𝐹 𝑗 connect different variables, and may potentially asso-
ciate more than two (e.g., 𝐹𝑙 ). The corresponding vector s𝑗 contains
all variables 𝑥𝑖 connected to factor 𝐹 𝑗 . For instance, in Fig. 1(a):
s𝑙 = [𝑥𝑘 , 𝑥𝑚, 𝑥𝑛]𝑇 . In general, the factors can depend on any subset
s𝑗 ⊆ x of the control variables.

Max-Sum [2] is an iterative, inference-based algorithm that
provides an approximate solution for this optimization problem
through a message-passing operation involving two types of mes-
sages. The first type of messages concerns values sent from variable
𝑖 to factor 𝑗 : 𝑞𝑖→𝑗 (𝑥𝑖 ) = 𝑐𝑖 𝑗 +

∑
𝑘∈𝑀𝑖\𝑗 𝑟𝑘→𝑖 (𝑥𝑖 ), where 𝑀𝑖 is the

set of factor indices that variable 𝑖 is connected to. For instance,
𝑀𝑘 = { 𝑗, 𝑙} in Fig. 1(a). As such, 𝑞𝑖→𝑗 (𝑥𝑖 ) contains an estimate for
each value of 𝑥𝑖 to be sent to factor 𝑗 . Essentially,𝑞𝑖→𝑗 (𝑥𝑖 ) performs
propagation of evaluations from all the other connected factors
𝑀𝑖 \ 𝑗 , and can be viewed as the agent’s current “intents” regarding
their final configuration of variable 𝑥𝑖 . Then, 𝑐𝑖 𝑗 is a normaliza-
tion constant that satisfies

∑
𝑥𝑖 𝑞𝑖→𝑗 (𝑥𝑖 ) = 0. This normalization is

important in cyclic graphs since we need to bound the messages’
values. While convergence in cyclic FGs is not guaranteed, the use
of 𝑐𝑖 𝑗 has proven to be quite effective in many studies [2, 10, 12].

The second type of messages involves evaluations that a variable
𝑖 receives from a connected factor 𝑗 : 𝑟 𝑗→𝑖 (𝑥𝑖 ) = maxs𝑗 \𝑥𝑖 [𝐹 𝑗 (s𝑗 ) +∑

𝑘∈𝑁 𝑗 \𝑖 𝑞𝑘→𝑗 (𝑥𝑘 )], where 𝑁 𝑗 is the set containing the variable
indices connected to factor 𝑗 , and themaximization process involves
all the variables s𝑗 connected to factor 𝐹 𝑗 without 𝑥𝑖 . For instance,
in Fig. 1(a), 𝑁𝑙 = {𝑘,𝑚, 𝑛}, meaning that variables 𝑥𝑘 , 𝑥𝑚, 𝑥𝑛 are
connected to factor 𝐹𝑙 . These messages calculate for each possible
value 𝑥𝑖 an estimate for the outcome considering both the associated
factor, and all other messages sent to it. Since the 𝑞𝑘→𝑗 values
provide these connected 𝑁𝑙 variables evaluation for their respective
decisions, agent 𝑖 maximizes over all these variables, in order to have
an evaluation that incorporates both the immediate factor’s value
and other agents’ influence. In every new iteration, the previous
evaluations of themessages are utilized. This operation is performed
until some stopping criterion (e.g., time, iterations number), or if all
message values converge (within a threshold). Finally, each agent
computes the optimal value as: 𝑥∗

𝑖
= argmax𝑥𝑖

∑
𝑗∈𝑀𝑖

𝑟 𝑗→𝑖 (𝑥𝑖 ), i.e.,
the 𝑥𝑖 that maximizes the sum of all the received messages. Without
loss of generality, we consider that each agent controls one variable,
and refer (same indexing) to agents and variables interchangeably.

2.2 Related Work
Dynamic DCOPs (D-DCOPs) [3] extend conventional DCOPs to
dynamic environments. Consequently, the notion of time is intro-
duced to the problem. In an FG problem formulation, we consider a
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dynamic graph structure with the possibility to change in time. At
a time-step 𝑡 , the FG contains a set of factors𝑀 , with 𝐹 𝑗 (s𝑗 ) ∈ 𝑀 ,
and 𝑥𝑖 ∈ 𝑁 , where 𝑁 is the set of variables. There are two types
of changes for every update from 𝑡 to 𝑡 + 1: (a) existing factors
𝐹 𝑗 (s𝑗 ) can now contain different values; or (b) new variables 𝑥𝑖 and
factors 𝐹 𝑗 (s𝑗 ) can be introduced, and existing ones can be removed.
Commonly, D-DCOPs do not model how the factor evolves over
time and algorithmic extensions [3] re-solve every new static in-
stance of the problem at time 𝑡 , effectively incorporating domain
knowledge to improve performance [18]. Prior work in lane-free
environments [21] (and [20]) also solves every new instance of the
problem by relying on the previous solution as a starting point, with
the assumption that changes in the graph modelling vehicles’ inter-
actions will not be substantially different. In contrast, [13] explicitly
model the FG’s evolution as Markovian D-DCOPs, thereby they
tackle the sequentiality of the problem and incorporate methods
from RL. Moreover, [1] addresses D-DCOPs from the perspective of
DecMDPs, which can be viewed as a similar problem, and perform
planning based on Monte-Carlo tree search with Max-Sum.2

Finally, we note that papers applying Max-Sum onMobile Sensor
Teams (MSTs), dealing with exploration issues [23] or collision
avoidance [15], exhibit conceptual similarities to our domain (which
is natural since MSTs involve a dynamic environment of moving
agents). Regardless, they do not deal with asynchrony in the agents’
variable updates as we do in this paper.

3 ASYNCHRONOUS DECISION MAKING WITH
THE MAX-SUM ALGORITHM

We now present a novel extension of Max-Sum for problems that
can be formulated as D-DCOPs with specific constraints that ren-
der them more realistic in a large-scale distributed coordination
environment. The first restriction we impose is we cannot have
multiple iterations of the algorithm, since in an open distributed
environment we cannot easily assume that agents will be able to
communicate multiple times before updating their decision and
iteratively propagate messages. We rather rely on a more realistic
notion of information broadcasting from the perspective of each
agent. This is visualized in Fig. 1(b), where each agent broadcasts
all 𝑞 messages to be sent to connected factors 𝑗 that involve other
agents as well, with additional information (indicated with blue
color) relevant to the Max-Sum extension we later establish. At
time-step 𝑡 , agents first observe the broadcasted 𝑞 messages of
nearby agents, then calculate their 𝑟 messages followed by the
updated 𝑞 messages to be broadcasted. As such, at time-step 𝑡 , 𝑟𝑡
messages now rely on the previously broadcasted messages 𝑞𝑡−1.
Otherwise, we would need to either establish some form of order
among agents’ message updates (not realistic and potentially restric-
tive in large environments), or examine the effect of asynchronous
message-passing (essentially a different problem) in this setting, as
put forward and studied in [24]. Therefore, each agent 𝑖 at time-step
𝑡 can update its received messages as:

𝑟𝑡𝑗→𝑖 (𝑥𝑖 ) = max
s𝑗 \𝑥𝑖

[
𝐹 𝑡𝑗 (s𝑗 ) +

∑︁
𝑘∈𝑁 𝑗 \𝑖

𝑞𝑡−1
𝑘→𝑗

(𝑥𝑘 )
]

(1)

2The Max-Plus algorithm (employed in [1]) is effectively the same method with Max-
Sum when the FG follows a structure that contains factors up to 2 variables.

and then its 𝑞𝑡 messages to be broadcasted to other agents:

𝑞𝑡𝑖→𝑗 (𝑥𝑖 ) = 𝑐𝑖 𝑗 +
∑︁

𝑘∈𝑀𝑖\𝑗
𝑟𝑡
𝑘→𝑖

(𝑥𝑖 ) (2)

Naturally, this choice comes at the cost that a single iteration of
the algorithm will probably result in a significantly subpar solution
quality. However, in realistic dynamic environments such as the
lane-free traffic domain, it is not reasonable for agents to update
their configuration at every time-step, since they would not be
able to commit to their decision and probably result in oscillatory
behaviour. In [17], authors are motivated by the same assumption
and establish the notion of commitment deadlines for agents re-
garding their update. Likewise, before introducing asynchronous
operation, we can provisionally define a common time-period𝑇 for
agents’ updates, where all agents can adjust their configuration 𝑥∗

𝑖
based on the received messages 𝑟 . More specifically, agents update
𝑥∗
𝑖
= argmax𝑥𝑖

∑
𝑗∈𝑁𝑖

𝑟𝑡
𝑗→𝑖

(𝑥𝑖 ) periodically, while in intermediate
steps they can only communicate and perform one iteration of the
algorithm, i.e., update with Equations 1 & 2, and maintain the last
update of 𝑥∗

𝑖
. This effectively allows us to: (1) perform multiple

iterations before agents update their decision but now in a dis-
tributed setting, and (2) avoid indecisive behaviour of agents due
to the dynamic nature of the problem. Certainly, this assumes (as
in related work) that the FG does not change abruptly within this
time-period 𝑇 required for the update. Otherwise, the previously
exchanged messages have diminishing value.

Even with this common time-period 𝑇 , there is a need for a
synchronized clock among agents, imposing to them whenever they
should update their decisions. We additionally lift this requirement,
and allow for asynchronous variable updates 𝑥𝑖 for each agent. This
introduces a sense of autonomy as well since agents are not bound
tomake decisions alongside others, and can react in a timelymanner
depending on their local observations. As a result, at every time-
step 𝑡 , a subset of agents update their existing configuration. In
this more flexible framework, one could simply apply the standard
Max-Sum algorithm with the use of message passing operations in
Equations 1 & 2, but with the distinction that each agent updates
𝑥∗
𝑖
at a potentially different time-step from others. However, the

calculation of incoming 𝑟𝑡 messages in Max-Sum (Eq. 1) entails a
critical assumption: the local maximization from the perspective
of an agent 𝑖 is performed based the propagated 𝑞 messages that
reflect the final configuration, i.e., agent 𝑖 updating its variable at
time 𝑡 assumes that all other agents connected to it through a factor
will do so concurrently.

3.1 Conditional Max-Sum Algorithm
In order to efficiently tackle asynchronous decision making in this
new context, we need to redefine the message passing equation for
𝑟𝑡 messages. For this, we request supplementary information from
agents, namely a time-estimate 𝑡𝑖,𝑒 from each agent 𝑖 regarding its
next update and its last variable configuration 𝑥∗

𝑖
(cf Fig. 1(b)). As

mentioned, the issue lies with the local maximization of connected
variables in 𝑟𝑡 messages, due to the underlying assumption of an
one-time variable configuration for all agents.We extend this notion
by performing a conditionalmaximization depending on the relative
time-estimates between agent’s 𝑡𝑖,𝑒 and the other agents’ estimates:
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Figure 3: Illustrative example of two agents coordinating
with Conditional Max-Sum to update their decisions asyn-
chronously.

t𝑗,𝑒 = {𝑡𝑘,𝑒 : ∀𝑘 ∈ 𝑁 𝑗 \ 𝑖}, and their existing configuration x∗
𝑗
=

{𝑥∗
𝑘
: ∀𝑘 ∈ 𝑁 𝑗 \ 𝑖}. In this manner, instead of maximizing over

all connected variables s𝑗 \ 𝑥𝑖 on factor 𝐹 𝑗 , we examine for each
variable ∀𝑥𝑘 ∈ {s𝑗 \ 𝑥𝑖 } whether to: (a) include variable 𝑥𝑘 in the
maximization operation; or instead (b) use directly the existing
value 𝑥∗

𝑘
based on the broadcasted information.

This choice depends on the relative time-estimate of agent 𝑖 with
respect to its connected agents (through a factor 𝑗 ). We first consider
factors 𝐹 𝑗 (𝑥𝑖 , 𝑥𝑘 ) connecting exactly two agents 𝑖, 𝑘 . At time-step
𝑡 , both agents have broadcasted their time-estimates 𝑡𝑖,𝑒 , 𝑡𝑘,𝑒 and
current variable assignments 𝑥∗

𝑖
, 𝑥∗

𝑘
. From the perspective of agent

𝑖 , its 𝑟𝑡
𝑗→𝑖

messages will be updated as:

𝑟𝑡𝑗→𝑖 (𝑥𝑖 ) =

max𝑥𝑘

[
𝐹 𝑡
𝑗
(𝑥𝑖 , 𝑥𝑘 ) + 𝑞𝑡−1𝑘→𝑗

(𝑥𝑘 )
]
, if 𝑡𝑘,𝑒 − 𝑡𝑖,𝑒 ≤ 𝑡𝑒

𝐹 𝑡
𝑗
(𝑥𝑖 , 𝑥∗𝑘 ) + 𝑞

𝑡−1
𝑘→𝑗

(𝑥∗
𝑘
), otherwise

(3)

where 𝑡𝑒 is a positive constant accounting for the reaction time of
the underlying D-DCOP when agents update their assignments.3
To put it simply, if agent 𝑖 plans to update its assignment 𝑥∗

𝑖
be-

fore 𝑘 does, then the implicit assumption on 𝑘’s update through
the max𝑥𝑘 operator will be less accurate than directly embedding
the broadcasted assignment 𝑥∗

𝑘
for the calculation. The following

example containing two agents connected with a factor illustrates
this aspect and the overall reasoning for the approach.

Example 3.1 (Two agents in lane-free traffic connected with a factor).
Consider two lane-free agents 𝑖, 𝑘 connected with a factor 𝐹 𝑗 (𝑥𝑖 , 𝑥𝑘 )
3For instance, the 𝑥𝑖 variables control the lateral placement of lane-free vehicles.
A small time difference is negligible when accounting for the reaction time of the
underlying system.

at time 𝑡 = 0𝑠 . The variables control the vehicles’ lateral alignment,
and the factor 𝐹 𝑗 aims to coordinate them so that the vehicle on
the back can overtake if it desires to (see more details in Sec. 4). In
this example, agent 𝑖 wishes to overtake and factor 𝐹 𝑗 incorporates
this information. At time 𝑡 = 0𝑠 , the last variable assignments
𝑥∗
𝑖
, 𝑥∗

𝑘
and shared time estimates 𝑡𝑖,𝑒 , 𝑡𝑘,𝑒 are shown in Fig. 3 at

the top segment, and the dashed lines crossing the center of each
vehicle showcase where the desired lateral positioning is according
to 𝑥∗

𝑖
, 𝑥∗

𝑘
respectively. For the sake of simplicity, we set 𝑡𝑒 = 0 in

this example and consider that the time-estimates shared by agents
will be fully accurate. Additionally, for reasons of compactness in
the figure, we define 𝐹𝑄 𝑗 (𝑥𝑖 , 𝑥𝑘 ) = 𝐹 𝑗 (𝑥𝑖 , 𝑥𝑘 ) + 𝑞𝑘→𝑗 (𝑥𝑘 ).

Focusing at the top segment, agent 𝑖 has an earlier time-estimate
for its update, meaning that it should not maximize over 𝑥𝑘 for its
𝑟𝑡
𝑗→𝑖

(𝑥𝑖 ), since at that time, agent 𝑘 will remain in its current lateral
position. Contrariwise, 𝑘 plans to update its variable much later,
therefore it is more rational from its end to maximize over variable
𝑥𝑖 in order to reach a decision based on 𝑖’s potential movement,
and not its current lateral positioning according to 𝑥∗

𝑖
. Then, at

the middle segment the situation is inverted due to the updated
time-estimates, and finally at the bottom part, both agents perform
the conventional maximization of Max-Sum due to the synchrony
of their upcoming reassignment.

As of now, we have only addressed factors connecting 2 agents.
Notably, factors with only 1 agent are a special case and do not
require this procedure. However, the same notion can be directly
applied in larger factors as well, albeit with a compact form of
Eq. 3. For this, we revise Eq. 3 in a way that combines the two
cases as: 𝑟𝑡

𝑗→𝑖
(𝑥𝑖 ) = max

𝑠
𝑡,𝑒
𝑗
[𝐹 𝑡

𝑗
(𝑥𝑖 , 𝑥𝑘 ) + 𝑞𝑡−1𝑘→𝑗

(𝑥𝑘 )], where 𝑠𝑡,𝑒𝑗 =

{𝑥𝑘 : 𝑡𝑘,𝑒 − 𝑡𝑖,𝑒 ≤ 𝑡𝑒 }. Following this, we can directly generalize for
factors of various sizes accordingly:

𝑟𝑡𝑗→𝑖 (𝑥𝑖 ) = max
s𝑡,𝑒
𝑗

[
𝐹 𝑡𝑗 (s𝑗 ) +

∑︁
𝑥𝑘 ∈𝑁 𝑗 \𝑖

𝑞𝑡−1
𝑗→𝑘

(𝑥𝑘 )
]

(4)

where s𝑡,𝑒
𝑗

contains only the variables in factor 𝑗 that should be
maximized based on the relative time-estimate of agent 𝑖:

s𝑡,𝑒
𝑗

= {𝑥𝑘 : ∀𝑘 ∈ 𝑁 𝑗 \ 𝑖, 𝑡𝑘,𝑒 − 𝑡𝑖,𝑒 ≤ 𝑡𝑒 } (5)

and the input vector s𝑗 is formed by s𝑗 = {𝑥𝑖 } ∪ s𝑡,𝑒
𝑗

∪ s𝑡−,𝑒
𝑗∗ , where:

s𝑡−,𝑒
𝑗∗ = {𝑥∗

𝑘
: ∀𝑘 ∈ 𝑁 𝑗 \ 𝑖, 𝑡𝑘,𝑒 − 𝑡𝑖,𝑒 > 𝑡𝑒 } (6)

contains the broadcasted 𝑥∗
𝑘
assignments for the connected vari-

ables that do not comply with the time-estimate criterion, i.e., for all
excluded neighboring variables from 𝑠

𝑡,𝑒
𝑗
, the broadcasted informa-

tion x∗
𝑗
is utilized to fill the arguments in 𝐹 𝑡

𝑗
(s𝑗 ) and𝑞𝑡−1𝑘→𝑗

(𝑥𝑘 ),∀𝑥𝑘 ∈
𝑁 𝑗 \ 𝑖 instead of maximizing over these variables as well. In Ap-
pendix A, we discuss the impact of this revised equation and its
connections to local search-based methods. The full algorithmic
process for the distributed update of each agent per time-step is
outlined in Algorithm 1. The steps concerning lines 2,5,6 of the
algorithm can depend on additional domain-specific mechanisms
that we later establish (see Sec. 4.3) for lane-free traffic.
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Algorithm 1 Agent 𝑖 Distributed Update
Input: Surrounding agents and their previously broadcasted
information ∀𝑗 ∈ 𝑀𝑖 ⟨𝑞𝑡−1·→𝑗

, x∗
𝑗
, t𝑗,𝑒 ⟩

Output: Updated broadcasted information
∀𝑗 ∈ 𝑀𝑖 ⟨𝑞𝑡𝑖→𝑗

⟩, ⟨𝑥∗
𝑖
, 𝑡𝑖,𝑒 ⟩

1: Observe surroundings and broadcasted information
2: Update connected factors’ information (for existing factors:

change values/remove, or form new connections)
3: Update 𝑟𝑡 messages from broadcasted 𝑞𝑡−1 messages (Eq. 4 for

Conditional Max-Sum)
4: Update 𝑞𝑡 messages (Eq. 2)
5: Decide whether to update 𝑥∗

𝑖
6: Update time-estimate information 𝑡𝑖,𝑒
7: Broadcast 𝑞𝑡 messages for all connected factors, variable as-

signment 𝑥∗
𝑖
and time-estimate for next variable update 𝑡𝑖,𝑒

4 MULTIAGENT COORDINATION IN
LANE-FREE TRAFFIC

In this section, we present the FG formulation based on lateral
regions that coordinates the vehicles’ lateral alignment in lane-free
traffic.

4.1 Problem Description
In the examined lane-free traffic environment, each vehicle popu-
lating the road operates on a 2-dimensional space consisting of a
longitudinal (front/back) and lateral (left/right) axis. The investi-
gated scenarios consist of a lane-free highway that is either static
(contains a specific set of vehicles) or an open environment (new
vehicles constantly enter the highway). Each vehicle possesses a
separate desired speed 𝑣𝑑

𝑖
objective that pursues, consequently result-

ing in many instances where vehicles wish to overtake while being
surrounded by nearby traffic in a lane-free setting. The underlying
policy of the vehicles is a rule-based method that automatically ad-
justs their acceleration in response to surrounding traffic. As such,
the vehicles have by default a “reactive” behaviour that follows
safety rules in order to avoid collisions, and do not take strategic
initiatives, i.e., perform overtake maneuvers or give priority to
other vehicles. This type of behaviour is handled by our D-DCOP
formulation of the problem, where the vehicles need to coordinate
their lateral placement 𝑦𝑖 in order to perform cooperative maneu-
vers that benefit their own and/or nearby traffic’s objectives. To
this end, each vehicle targets a desired lateral placement 𝑦𝑑

𝑖
through

our approach, and they are modelled as agents in a FG structure
that evolves over time due to the dynamic nature of the problem;
following the distributed communication framework we propose
with asynchronous updates of their desired lateral placements for
responding timely to their respective local situation.

4.2 Lane-Free Traffic Environments with
Dynamic Lateral Regions

The primary tool that enables coordination in a manner suitable
for strategic coordination in lane-free traffic is that of dynamic
lateral regions. With this the vehicles can interpret the observed
and/or communicated information from nearby traffic in a way that

Figure 4: Formed lateral regions with acceleration estimates
from the perspective of agent 𝑖.

provides a real-time structured representation of the environment,
and allows them to decide upon their low-level control.

From the perspective of an ego vehicle 𝑖 , we distinguish between
upstream (vehicles on the back of 𝑖) and downstream traffic (vehi-
cles on the front of 𝑖). Given an observational distance, all vehicles
are monitored and the lateral space is accordingly partitioned into
lateral regions, as visualized in Fig. 4, which correspond to where
the center point of vehicle 𝑖 can be positioned laterally. At any time,
𝑖 is located at a specific lateral region, in which its longitudinal
behaviour (gas/brake) is being influenced by the front vehicle oc-
cupying this region. This is decided according to a car-following
method as done typically in lane-based environments, with the
vehicle in front as the leader to follow. For this task, we employ
the Enhanced Intelligent Driver Model (EIDM) [9], which is an
extension of one of the most popular car-following methods, that
calculates the longitudinal acceleration 𝑎𝑖 of the vehicle, taking
into account 𝑖’s desired speed 𝑣𝑑

𝑖
while respecting a time-gap value

with the vehicle in front to avoid critical situations. In this manner,
given two vehicles (𝑖, 𝑗) with 𝑗 being in front of 𝑖 , we can calcu-
late the acceleration 𝑎𝑖, 𝑗 of 𝑖 when 𝑗 is in front according to EIDM.
Likewise, we can calculate this acceleration for each lateral region,
meaning we can have an estimate of the acceleration of ego vehicle
depending on its lateral placement. These acceleration estimates are
instrumental in our approach, as they quantify the value of residing
at a lateral region, and consequently the benefit of shifting later-
ally to a different region by simply comparing the corresponding
acceleration evaluations. Vehicles are also influenced by upstream
traffic, resulting in nudging behaviour which is an important char-
acteristic of lane-free traffic [14]. The acceleration estimates of all
lateral regions for downstream and upstream traffic are integrated
in underlying safety rules that regulate the vehicles’ control input
and therefore their behaviour. A more detailed presentation can be
found in Appendix B.

4.3 Factor Graphs in Lane-Free Traffic
We can form a FG of connected vehicles as visualized in Fig. 2,
assuming the necessary communication capabilities for vehicle
within close proximity. The control variable 𝑥𝑖 for each vehicle 𝑖
is the lateral deviation 𝑑𝑦𝑖 which determines the updated desired
lateral alignment 𝑦𝑑

𝑖
of the vehicle. For all calculations relevant

to the FG formulation, we examine candidate lateral positions 𝑦′
𝑖

according to a value for 𝑥𝑖 accordingly: 𝑦′𝑖 = 𝑦𝑖 + 𝑥𝑖 . Each vehicle
can be connected to two types of factors in our formulation. First,
the single factor involves only one vehicle and accounts for moti-
vating the vehicle to remain within the road boundaries. Its form
is: 𝐹𝑠 (𝑥𝑖 ) = −𝐵𝑐 ·𝑜𝑢𝑡𝑂 𝑓 𝐵𝑜𝑢𝑛𝑑𝑠𝑖 (𝑥𝑖 ), where the 𝑜𝑢𝑡𝑂 𝑓 𝐵𝑜𝑢𝑛𝑑𝑠𝑖 (𝑥𝑖 )
element yields a negative utility according to the coefficient 𝐵𝑐
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if the examined configuration 𝑥𝑖 results in a lateral placement 𝑦′
𝑖

that would exceed the road boundaries. More importantly, the FG
formulation contains a second type of a pairwise factor 𝐹𝑝 (𝑥𝑖 , 𝑥 𝑗 )
that connects two vehicles 𝑖 and 𝑗 , with 𝑗 preceding 𝑖 . Its presence
serves to motivate both 𝑖 and 𝑗 at moving laterally according to 𝑖’s
desire to overtake through regret minimization. Notably, since the
factor affects both 𝑖 and 𝑗 ’s decision due to their involvement, they
can accordingly control their lateral behaviour in a coordinated
manner. This is accomplished by the following formulation:

𝐹𝑝 (𝑥𝑖 , 𝑥 𝑗 ) = 𝑟𝑒𝑔𝑟𝑒𝑡 (𝑥𝑖 , 𝑥 𝑗 ) + 𝑐𝑜𝑚𝑓 𝑜𝑟𝑡 (𝑥𝑖 , 𝑥 𝑗 ) (7)

where the first term is the calculated regret from the perspective of
the receding agent 𝑖 , and has the following form:

𝑟𝑒𝑔𝑟𝑒𝑡 (𝑥𝑖 , 𝑥 𝑗 ) = −𝑅𝑐 · (𝑎𝑖,𝑓 𝑟𝑒𝑒 − 𝑎𝑖, 𝑗 )2 · 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑖 𝑗 (𝑥𝑖 , 𝑥 𝑗 ) (8)

and the value 𝑎𝑖,𝑓 𝑟𝑒𝑒 is the calculated acceleration of 𝑖 when lo-
cated in lateral regions without a leader, meaning that this value
only accounts for the desired speed objective of the agent and that
𝑎𝑖,𝑓 𝑟𝑒𝑒 ≥ 𝑎𝑖, 𝑗 . As such, the difference (𝑎𝑖,𝑓 𝑟𝑒𝑒 − 𝑎𝑖, 𝑗 ) expresses the
regret of agent 𝑖 for having 𝑗 in front of it,4 using a positive co-
efficient 𝑅𝑐 and a negative sign to comply with the algorithm’s
maximization criterion. Note that whenever this type of factor
connects two vehicles, this regret value is assigned to it only for
configurations of 𝑥𝑖 , 𝑥 𝑗 that would result in the agents having their
lateral alignments “overlap” at any point during lateral deviation
from the current placement 𝑦𝑖 , 𝑦 𝑗 towards the examined one 𝑦′

𝑖
, 𝑦′

𝑗
.

More details can be found in Appendix C.1.
The second term of Eq. 7 serves to mitigate unnecessary lateral

deviations through a comfort utilitywith the form: 𝑐𝑜𝑚𝑓 𝑜𝑟𝑡 (𝑥𝑖 , 𝑥 𝑗 ) =
−𝐶𝑐 ·

(
|𝑥𝑖 | + |𝑥 𝑗 |

)
with𝐶𝑐 as a coefficient. The tuning of 𝑅𝑐 ,𝐶𝑐 regu-

lates the behaviour of agents regarding overtaking and comfortable
driving. A similar idea for comfort can be found on prior work in
Proactive DCOPs [5] and RS-DPOP [17], where authors contain an
additional cost term that penalizes abrupt and unnecessary changes
in variables’ values. We instead consider this as a domain-specific
aspect of our approach, and do not embed it within the algorithm.

Each agent is associated with one single factor, as shown in
Fig. 2. A pairwise factor 𝐹𝑝 (𝑥𝑖 , 𝑥 𝑗 ) between agents 𝑖, 𝑗 is considered
according to their proximity. Additionally, each agent 𝑖 prunes
its own connections with others in order to conform to upper
limits regarding the number of pairwise connections it can have
downstream and upstream, respectively. This process is part of line
2 in Alg. 1, with more details in Appendix C.2.

4.4 Asynchronous Decision Updates in
Lane-Free Traffic

With the FG formulation above, we have the necessary components
to model the lane-free traffic environment as a DCOP. However, ad-
ditional elements need to be prescribed for asynchronous decision-
making as discussed in Sec. 3.1. Agents update the values of all
connected factors according to their real-time observation of nearby
vehicles and the information from the constructed lateral regions,
but they also take into account the broadcasted assignments x∗

𝑗
of

4𝑖 observing 𝑗 as leader for the examined configuration 𝑦′
𝑖 , 𝑦

′
𝑗 .

all factors 𝑗 connecting them to other vehicles. The information
for the lateral placement of vehicles is informed by these assign-
ments so that the FG formulation integrates these in the lateral
positioning𝑦𝑖 , 𝑦 𝑗 for the calculation of the factor’s values. This is an
important nuance of the formulation, as the vehicles (through the
DCOP formulation) can proactively “argue” regarding their lateral
alignment decisions and not take into account intermediate states
while they maneuver from one lateral alignment to the next.

At each time-step, all agents independently decide (line 5 in
Alg. 1) whether to update their variable assignment 𝑥∗

𝑖
based on in-

dependent time-windows [𝑇𝑚𝑖𝑛,𝑇𝑚𝑎𝑥 ]. Once𝑇𝑚𝑖𝑛 time has passed
since the agent’s last reassignment, only then 𝑖 examines whether it
has reached the selected lateral positioning 𝑦𝑑

𝑖
within a small error

𝑦𝑒 . If so, then it updates 𝑥∗
𝑖
based on the received messages 𝑟𝑡 . This

update can also take place without the aforementioned condition
being satisfied if the time-window is exhausted, i.e., 𝑇𝑚𝑎𝑥 time has
passed since the agent’s previous update. Finally, each agent needs
to provide a time-estimate for the next update in order to comply
with the proposed communication scheme (line 6 in Alg. 1). This is
done in a very straightforward manner by computing the remaining
time-steps to reach the selected lateral positioning 𝑦𝑑

𝑖
. The lateral

maneuver of the vehicle solely depends on the use of the movement
dynamics and is deterministic. Thereby, the future lateral trajectory
of the vehicle can be fully predicted (see Appendix C.3 for more
details). Of course, the intended lateral goal of the agent can be
compromised in practice by other agents blocking its path towards
it, due to safety rules for lateral alignment, as mentioned in Sec. 4.2.
Consequently, the shared time-estimates cannot be fully accurate
in a realistic environment under uncertainty, hence the reason they
are updated at every time-step.

5 EXPERIMENTAL EVALUATION
We empirically evaluate our approach by comparing 3 different
Max-Sum variants in the proposed distributed framework with
asynchronous variable reassignments, along with a baseline heuris-
tic method without communication among agents. Specifically, we
have: (a) Max-Sum: the standard Max-Sum algorithm; (b) No-
Max-Sum5: we rely solely on the broadcasted assignments from
neighbors instead of maximizing in Eq. 4, i.e., s𝑡,𝑒

𝑗
is empty; (c)

Cond-Max-Sum: Conditional Max-Sum, as in Sec. 3; and finally (d)
MOBIL (baseline): Rule-based method based on the popular lane-
change model MOBIL [8] that does not employ any communication
among agents (more information in Appendix D.1).

Evaluation metrics for experiments contain: (a) the average
speed of all vehicles throughout the simulation: 𝑣𝑎𝑣𝑔𝑥 in meters per
second (𝑚/𝑠). 6 This metric indicates the efficiency of the vehicles’
movement, with higher values suggesting more efficient behaviour,
given that the desired speed goals of vehicles are not lower on aver-
age than the speed measurements. Additionally, an integral metric
we include is: (b) the average speed deviation of all vehicles 𝑣𝑎𝑣𝑔

𝑑𝑒𝑣
in meters per second 𝑚/𝑠 . This metric effectively measures the
vehicles’ deviation |𝑣𝑥

𝑖
− 𝑣𝑑

𝑖
| of their current speed 𝑣𝑥

𝑖
from their

desired speed 𝑣𝑑
𝑖
objective, and consequently how close vehicles are

towards their respective desired speed goal. Moreover, we measure:
5Reflects simpler local search-based methods, see Appendix A.
6Note that for the examined range [25, 35]𝑚/𝑠 = [90, 126]𝑘𝑚/ℎ.
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Table 1: Results for the coordination problem and the two
flow configurations on the 2𝑘𝑚 open highway.

Coord. Problem 𝑣
𝑎𝑣𝑔
𝑥 (𝑚/𝑠) 𝑣

𝑎𝑣𝑔

𝑑𝑒𝑣
(𝑚/𝑠) 𝑗

𝑎𝑣𝑔
𝑦 (𝑚/𝑠3) 𝑇𝑇𝑆 (ℎ)

Max-Sum 25.02 2.00 128.4e−03 -
No-Max-Sum 24.81 2.32 93.1e−03 -

Cond-Max-Sum 25.18 1.48 98.6e−03 -
MOBIL (Baseline) 24.80 2.53 176.8e−03 -

Flow:10000 𝑣𝑒ℎ/ℎ 𝑣
𝑎𝑣𝑔
𝑥 (𝑚/𝑠) 𝑣

𝑎𝑣𝑔

𝑑𝑒𝑣
(𝑚/𝑠) 𝑗

𝑎𝑣𝑔
𝑦 (𝑚/𝑠3) 𝑇𝑇𝑆 (ℎ)

Max-Sum 29.04 1.71 145.0e−3 191.71
No-Max-Sum 29.00 1.74 98.5e−3 191.96

Cond-Max-Sum 29.09 1.64 127.8e−3 191.39
MOBIL (Baseline) 28.68 2.13 162.5e−3 193.94

Flow:15000 𝑣𝑒ℎ/ℎ 𝑣
𝑎𝑣𝑔
𝑥 (𝑚/𝑠) 𝑣

𝑎𝑣𝑔

𝑑𝑒𝑣
(𝑚/𝑠) 𝑗

𝑎𝑣𝑔
𝑦 (𝑚/𝑠3) 𝑇𝑇𝑆 (ℎ)

Max-Sum 28.42 2.22 86.4e−3 293.61
No-Max-Sum 28.36 2.29 62.0e−3 294.19

Cond-Max-Sum 28.44 2.21 71.3e−3 293.41
MOBIL (Baseline) 28.04 2.63 87.2e−3 297.37

Figure 5: Initial placement of vehicles for the lane-free coor-
dination problem.

(c) the average jerk of vehicles in𝑚/𝑠3 to be minimized, which is
the derivative of acceleration𝑚/𝑠2, and a commonly used metric for
discomfort of passengers [6]. As we focus on the way vehicles move
laterally in the lane-free environment, we show the jerk regard-
ing lateral maneuvers 𝑗

𝑎𝑣𝑔
𝑦 . Finally, a system-level measurement

is included for Sec. 5.2: (d) the total-time-spent (𝑇𝑇𝑆) hours (ℎ),
a standard metric in transportation that depicts the accumulated
travel time summed over all vehicles in simulation.7

5.1 Lane-Free Coordination Problem
The first type of environment we examine in order to gain empiri-
cal insights for our approach is the small experiment with initial
placements for vehicles as visualized in Fig. 5. There, we establish
three rows where the desired speeds are set so that vehicles on the
back need to overtake the vehicles on the front. Each vehicle has a
different time-estimate for its own next update, meaning that while
the vehicles communicate, each one will update its lateral align-
ment at a different time-step. The decision regarding the timing of
subsequent lateral alignment updates is affected by the proximity
of the new selection, resulting again in asynchronous updates due
to the independency of agents. More details on initial conditions
and parameter tunings can be found in Appendix D.2.

7Videos demonstrating the performance of all methods can be found at: https://bit.ly/
4k6FXx1.

Figure 6: Speed trajectories of agent veh-1 for all examined
methods in the lane-free coordination problem.

Figure 7: Trajectories of agents’ lateral placement for (a)
Cond-Max-Sum and (b) Max-Sum, respectively.

Results are presented in Table 1, where we compare all methods
using the above-mentioned metrics. A more detailed capture of the
performance can be found in the longitudinal speed trajectories of
Fig. 6, where we focus on agent veh-1 located at the beginning of
the road, showing how fast and to what extend its desired speed
goal is accomplished throughout the simulation time. Since veh-1
has the highest desired speed, this information—stemming from the
regret minimization term of the pairwise factor—is communicated
through the message-passing operation. To put it simply, a vehicle
with increased desired speed will result in a heightened regret value
when faced with a slower vehicle in front, thereby resulting in a
lateral configuration of agents so that veh-1 overtakes. We can
certainly pinpoint Cond-Max-Sum as the superior method when
compared either to the standard algorithm or the No-Max-Sum
case. After the initial time period where veh-1 needs to slow down
since other vehicles are in front, it then reacts and coordinates
more timely with its surroundings, with its desired speed goal
being better accommodated without negatively affecting the goals
of other agents, as evident in the 𝑣𝑎𝑣𝑔

𝑑𝑒𝑣
metric in Table 1. Then, we

can see in Fig 7 that Cond-Max-Sum achieves this with fewer lateral
maneuvers when compared to the standard algorithm, due to the
enhanced message passing. The value of lateral jerk 𝑗

𝑎𝑣𝑔
𝑦 directly

provides a measure for the passenger discomfort from these lateral
maneuvers. Even though the No-Max-Sum case has the lowest
value of 𝑗𝑎𝑣𝑔𝑦 , when combined with the much inferior speed metrics,
it shows that vehicles do not properly harness opportunities for
lateral coordination that facilitate overtakes. Supplementary results
can be found in Appendix D.3.
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Figure 8: Comparison of measured speed for 5-minute inter-
vals in 15000𝑣𝑒ℎ/ℎ.

5.2 Open and Large Lane-Free Traffic Settings
While experiments in a small environment with a specific set of
agents allow us to present a detailed depiction of the efficiency by
even looking into vehicles’ trajectories, we further investigate the
use of our distributed framework and Cond-Max-Sum in a much
more demanding large-scale open highway environment. There,
new vehicles constantly enter a 2𝑘𝑚 highway’s entry point (and
are introduced to D-DCOP) while old ones reach the road exit, with
traffic flow rates 10000, 15000𝑣𝑒ℎ/ℎ that result in hundreds of ve-
hicles populating the road at any given time, specifically around
200, 300𝑣𝑒ℎ respectively. There is an induced uncertainty in this
type of environment due to the constant emergence of new vehicles
(new variables) and frequent changes regarding vehicles’ connec-
tions (creation/removal of pairwise factors) due to overtakes. Each
vehicle samples a desired speed from a uniform distribution within
[25, 35]𝑚/𝑠 upon entrance. The environment settings for the open
highway can be found in Appendix D.2 and D.4. Then, in D.5 we
include measurements on the size of the FG under such settings
and a discussion on the communication overhead per agent.

The inclusion of a baseline method (MOBIL) without online com-
munication among vehicles serves to further motivate the proposed
framework. As evident in Table 1, all metrics exhibit worse values
w.r.t. to any Max-Sum variant, with the exception of jerk (that is
close to the standard algorithm for 15000𝑣𝑒ℎ/ℎ), indicating redun-
dant lateral maneuvers that are not necessarily followed by the
intended overtakes. This shows the effect of the communication
among agents when juxtaposed to only observing nearby traffic.

Regarding the three Max-Sum variants in Table 1, results on the
average metrics are consistent with our findings in Sec. 5.1, albeit
with a lower margin on the differences between them. This follows
from the frequent graph changes in this open environment, which
pose an additional challenge compared to the setup in Sec. 5.1 as new
pairwise factors can occur unexpectedly and render the calculated
messages less compatible under these situations. Yet, Cond-Max-
Sum still consistently outperforms the other variants. While the
benefit in 𝑣𝑎𝑣𝑔

𝑑𝑒𝑣
is modest on average, the𝑇𝑇𝑆 metric showcases bet-

ter system level performance. Then, No-Max-Sum—the variant that
is akin to simpler local-search methods (cf. Appendix A)—always
demonstrates inferior speed, but as a consequence, exhibits lower

discomfort levels since agents do not explore mutually beneficial
decisions to the same extent. This is also less aligned with the main
focus of the factors towards motivating agents to overtake in a
coordinated manner whenever desired.

In order to fully capture the efficiency in the large-scale environ-
ment and underline this “marginal, but consistent” performance
increase for the revised message update of Cond-Max-Sum, we
additionally provide Fig. 8, where we divide the 1ℎ time span of the
simulation to 5𝑚𝑖𝑛 intervals and measure the average speed 𝑣𝑎𝑣𝑔𝑥

of all agents. There, we see how each Max-Sum variant handles
the open environment during each time interval of the simulation.
Furthermore, in Appendix D.6, we verify that the results in Fig. 8
are statistically significant with 𝛼 = 0.05, and contain a (histogram)
plot that shows the percentages calculated from all jerk measure-
ments, divided into bins. For the central bin (ideal case, containing
0𝑚/𝑠3), we have measured 90.8%, 89.4% and 87.2% for No-Max-Sum,
Cond-Max-Sum and Max-Sum, respectively. With these additional
measurements, we can conclude with more confidence that Cond-
Max-Sum achieves higher speeds with lower passenger discomfort
across all cases, thereby combining two (practically opposing) goals
better than the standard Max-Sum update in large-scale settings.

6 CONCLUSIONS AND FUTUREWORK
In this work, we proposed a framework for asynchronous deci-
sion making in multiagent environments, along with Conditional
Max-Sum for enhanced coordination in these settings. Experimen-
tal evaluation in our FG formulation for lane-free traffic exempli-
fies the applicability of this more realistic framework, along with
the enhanced efficiency of Conditional Max-Sum. In future work,
a natural extension involves environments with external agents,
that is, other entities not complying with the DCOP formulation,
and thereby introducing uncertainty to the formulation. Existing
work [4] already addresses this issue, which can be bundled directly
with our approach for a more expansive framework. Moreover,
other algorithms (outside of Max-Sum) in the literature [3] could be
alternatively considered, albeit with possible correspondent adjust-
ments/extensions (as in this case) to accommodate the introduced
flexibility. Finally, in relation to existing work in lane-free traffic,
we should point out that to the best of our knowledge this is the
only approach that constructs a hybrid system for lane-free envi-
ronments using safety rules based on dynamic lateral regions for
collision avoidance, instead of relying on mathematical models in
static environments [7] or soft constraints as part of a utility/cost
function [21, 22]. Nevertheless, outside of these qualitative differ-
ences, direct comparisons could shed light on other trade-offs.
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