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ABSTRACT
Preference-based reinforcement learning (PbRL) provides a power-
ful paradigm to avoid meticulous reward engineering by learning
rewards based on human preferences. However, real-time human
feedback is hard to obtain in online tasks. Most work suppose there
is a "scripted teacher" that utilizes privileged predefined reward
to provide preference feedback. In this paper, we propose a RL
Self-augmented Large Language Model Feedback (RL-SaLLM-F)
technique that does not rely on privileged information for online
PbRL. RL-SaLLM-F leverages the reflective and discriminative capa-
bilities of LLM to generate self-augmented trajectories and provide
preference labels for reward learning. First, we identify a failure
issue in LLM-based preference discrimination, specifically "query
ambiguity", in online PbRL. Then LLM is employed to provide pref-
erence labels and generate self-augmented imagined trajectories
that better achieve the task goal, thereby enhancing the quality
and efficiency of feedback. Additionally, a double-check mecha-
nism is introduced to mitigate randomness in the preference labels,
improving the reliability of LLM feedback. The experiment across
multiple tasks in the MetaWorld benchmark demonstrates the spe-
cific contributions of each proposed module in RL-SaLLM-F, and
shows that self-augmented LLM feedback can effectively replace the
impractical "scripted teacher" feedback. In summary, RL-SaLLM-F
introduces a new direction of feedback acquisition in online PbRL
that does not rely on any online privileged information, offering
an efficient and lightweight solution with LLM-driven feedback.1

1Corresponding author: Qichao Zhang (zhangqichao2014@ia.ac.cn) and Xiangyuan
Lan (lanxy@pcl.ac.cn). Code Page: https://github.com/TU2021/RL-SaLLM-F
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1 INTRODUCTION
Designing complex artificial reward functions is labor-intensive and
time-consuming for reinforcement learning (RL) [8, 25]. Preference-
based RL (PbRL) is considered a key paradigm to address this chal-
lenge by learning rewards based on human preference [5, 12].

However, the substantial human effort required to label a large
number of preference queries significantly hinders its widespread
application in real-world scenarios [13, 32]. Especially for online
PbRL [20], obtaining real-time preference feedback necessitates
immediate human interactionwith the environment. Current online
PbRL methods often assume a "scripted teacher" that provides real-
time preference feedback by comparing handcrafted rewards of
two trajectories from replay buffer [11, 12]. Unfortunately, relying
on privileged rewards undermines the original intent of PbRL.

Large Pre-trained Models (LPMs), such as large language models
(LLMs) [19] and vision-languagemodels (VLMs) [38], equippedwith
extensive human prior knowledge, have recently gained significant
attention. Recently, some studies have explored using LPMs instead
of human supervision for reward design, including generating re-
ward code [16, 31, 36] or calculating dense rewards directly based
on the comparison of policy trajectories and targets [15, 22, 23].
Unfortunately, the first type of approach requires access to the
simulation environment’s code, and evaluating the reward code
often involves multiple full RL training cycles, which is impractical
for real-world applications. The other type of approach relies on
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comparing image-text similarities, but a single image may fail to re-
flect the underlying dynamic information described in the text, and
reward variance is easily introduced by visual noise in the images
[30]. Instead of designing reward functions or codes, PbRL learns
rewards by comparing trajectory pairs. This approach requires only
a single complete online training cycle and does not necessitate
access to any low-level information, such as the environment’s
code [12, 30]. The learned downstream policies are guaranteed to
have a suboptimal performance bound [42].

Instead of relying on "scripted teacher", some works [29, 30]
try to obtain preference labels by querying LPMs with manually
designed prompts, to train rewards and policies that align with
human intentions. Although LPMs have substantial capabilities in
analyzing trajectories, we find that they still struggle to distinguish
the quality of suboptimal trajectories generated by the poor policy,
especially during the early stages of training. The failure in pref-
erence discrimination impacts the learning of the reward model,
further hindering performance. We refer to this phenomenon as
"query ambiguity." Recently, LPMs have demonstrated reflective
[18, 35, 41] and planning abilities in decision-making tasks, under-
standing the environment and predicting or planning future actions
to achieve the task goal [3, 4, 21, 37, 39, 40]. These works inspire
us with the following thought:

In addition to the discriminative capability, can LPMs lever-
age reflection to generate self-augmented trajectories that pro-
moting efficient reward learning in online PbRL?

In this paper, we propose Reinforcement Learning from Self-
augmented LLM Feedback (RL-SaLLM-F). This method seeks to
mitigate query ambiguity in online PbRL and replaces "scripted
teacher" with LLM-driven feedback. RL-SaLLM-F operates without
relying on any predefined privileged rewards, thereby establishing
a practical new paradigm for online PbRL. Specifically, state tra-
jectories in the replay buffer are converted into text descriptions,
and LLMs are queried to assign preference labels based on these
trajectories. Furthermore, a second round of queries is performed to
prompt the LLM to generate imagined trajectories aligned with task
goals, serving as as new preference pairs for reward learning. In ad-
dition, we mitigate the randomness of LLM-based preference labels
using a double-check mechanism that swaps the order of two input
trajectories. Finally, we evaluate RL-SaLLM-F on multiple tasks in
the Metaworld benchmark [34], it achieves comparable or better
success rates than feedback from "scripted teacher" with privileged
rewards. The core contributions in this paper are as follows:

• We identify an issue of query ambiguity in online PbRL
with LLM feedback, and propose the RL-SaLLM-F method
to mitigate the potential challenges.

• We leverage self-augmented LLM feedback to obtain prefer-
ence labels efficiently and use a double-check mechanism to
reduce randomness in the LLM-based labels.

• RL-SaLLM-F achieves comparable performance to that of
"scripted teacher" with privileged reward information in the
Metaworld benchmark, requiring only the lightweight and
cost-effective GPT-4o-mini.

• The overall framework of RL-SaLLM-F does not rely on any
predefined rewards or real-time human interaction, estab-
lishing a practical new paradigm for online PbRL.

2 RELATEDWORKS
2.1 Large Pre-trained Models as Rewards
Applying RL in reward-free environments is challenging. Some
studies assist in reward code design with the perceptual capabili-
ties of LPMs [16, 27, 31, 33, 36]. A notable example is Eureka [16],
which leverages GPT-4 [1] to evaluate environment and task infor-
mation and generate reward code, followed by iterative updates
using evolutionary algorithms. Building on this, [36] introduces a
reflective mechanism to achieve further self-alignment. However,
these methods assume that the environment code is accessible, and
each evaluation of reward code requires a full RL training cycle,
which is impractical for real-world deployment. Instead of design-
ing reward code directly, we utilizes a LLM to provide preference
labels for trajectory pairs from online replay buffer, relying on a
more accessible textual description of the environment rather than
full access to its code.

Another line of research obtains rewards from visual observa-
tions by VLMs [14, 15, 17, 22, 23]. For example, RoboCLIP [23]
computes reward signals by comparing video representations of
expert demonstrations with those of policy trajectories. Recently,
FuRL [7] incorporates a learnable layer into CILP, and fine-tunes it
to align with real tasks. Despite achieving impressive performances,
these methods often need to fine-tune with expert data to reduce
variance and noise in the reward [7, 23]. On the other hand, some
works compare image-text similarities to obtain dense rewards, but
a single image is insufficient to capture the required dynamic infor-
mation [30]. For example, in robotic tasks like picking up an object,
a single image cannot indicate if the arm is approaching or moving
away, causing confusion reward learning. Different from the afore-
mentioned methods, we abstracts observed trajectories into text
and learns a reward model through pairwise trajectory compar-
isons. Our approach enhances the ability to understand trajectories,
reduces query costs, and guarantees the convergence properties of
downstream RL with preference-based reward modeling [42].

2.2 Preference-based Reinforcement Learning
A new paradigm for learning reward functions during interactions
with the environment, known as online PbRL, leverages human
feedback given in the form of trajectory preferences [5, 12]. Most of
online PbRL research aims to address challenges such as preference
noise [26], reward credit assignment [28], limited preference data
[10] and efficient querying [20]. However, frequent querying of
human preferences during online training is impractical. In previous
online PbRL methods, a "scripted teacher" is assumed to provide
preference labels by comparing privileged predefined rewards of
two trajectories in the specific task [11].

This "scripted teacher" relying on privileged rewards serves as a
compromise to investigate online PbRL algorithms as immediate
human feedback is not available. In this work, we aim to replace
the "scripted teacher" with a LLM to provide preference feedback.
Recently, existing works such as RL-VLM-F [30] and PrefCLM [29]
have explored using VLMs to evaluate the quality of trajectories
for visual input tasks. However, repeated image pair queries [30]
and the aggregation of multiple GPT4 feedback [29] make these
methods costly. Additionally, we find samples with no significant
preference difference in the replay buffer can lead to a potential risk
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(a) The sampled trajectory pairs that the LLM failed to assess. (b) Training curves of LLM feedback. (c) Double-check & Extra self-augmentation.

Figure 1: Query ambiguities in online PbRL. (a) Two failed trajectories are provided, converted into text form, and input into
the LLM, showing that the LLM struggles to evaluate such trajectories. (b) Training curves of PEBBLE with LLM feedback. The
blue line represents the labeling accuracy of the LLM and the red line represents the predefined episode rewards. (c) Training
curves of double-check mechanism and additional self-augmented LLM feedback.

of query ambiguity, which will further increase costs and reduce ef-
ficiency. In contrast, we use a self-augmented and double-checking
feedback to improve the efficiency and reliability based on two-
round preference queries, mastering robotic manipulation tasks
with with cost-effective GPT-4o-mini [1].

3 PRELIMINARIES
3.1 Reinforcement Learning
RL is formulated as a Markov Decision Process (MDP) [24], which
is characterized by the tuple𝑀 = ⟨𝑆,𝐴, 𝑃, 𝑟, 𝛾⟩. 𝑆 is the state space,
𝐴 is the action space, 𝑃 : 𝑆 ×𝐴×𝑆 → R is the transition probability
distribution, 𝑟 : 𝑆 → R is the reward function, and 𝛾 ∈ (0, 1) is
the discount factor. The objective of RL is to determine an optimal
policy 𝜋 that maximizes the expected cumulative reward: 𝜋 =

argmax𝜋 E𝑠0,𝑎0,...
[∑∞

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 )

]
.

We use Soft Actor-Critic (SAC) [9], an off-policy RL algorithm, as
our low-level approach. Specifically, transitions from interactions
with the environment are stored in the replay buffer. The actor-critic
is then trained by sampling data from the buffer and maximizing
the entropy of the stochastic policy.

3.2 Learning Rewards from Human Feedback
Following previous studies [6], we consider state-only trajecto-
ries of length 𝐻 composed of states and actions, defined as 𝜎 =

{𝑠𝑘 , . . . , 𝑠𝑘+𝐻 }. The goal is to align human preference 𝑦 between
pairs of trajectory segments 𝜎0 and 𝜎1, where 𝑦 denotes a distribu-
tion indicating human preference, captured as 𝑦 ∈ {1, 0, 0.5}. The
preference label 𝑦 = 1 indicates that 𝜎0 is preferred to 𝜎1, namely,
𝜎0 ≻ 𝜎1, 𝑦 = 0 indicates 𝜎1 ≻ 𝜎0, and 𝑦 = 0.5 indicates equal pref-
erence for both. The preference data are stored as triples, denoted
as D: (𝜎0, 𝜎1, 𝑦). Then, the Bradley-Terry model [2] is employed
to couple preferences with rewards. The preference predictor is
defined as follows:

𝑃𝜓 [𝜎1 ≻ 𝜎0] =
exp

(∑
𝑡 𝑟𝜓 (𝑠1𝑡 )

)
∑
𝑖∈{0,1} exp

(∑
𝑡 𝑟𝜓 (𝑠𝑖𝑡 )

) (1)

where 𝑟𝜓 is the reward model to be trained, and𝜓 is its parameters.
Subsequently, the reward function is optimized using the cross-
entropy loss, incorporating the human predefined label 𝑦 and the
preference predictor 𝑃𝜓 :

LCE = −E(𝜎0,𝜎1,𝑦)∼D
{
(1 − 𝑦) log 𝑃𝜓 [𝜎0 ≻ 𝜎1]

+𝑦 log 𝑃𝜓 [𝜎1 ≻ 𝜎0]
} (2)

In online PbRL, we train an off-policy RL algorithm while pe-
riodically sampling trajectory pairs from the replay buffer B for
preference queries, as done in PEBBLE [12]. As online human pref-
erence is often not available, the "scripted teacher" is used to provide
preference labels 𝑦 in most previous works [5, 12]. Specifically, it
generates preferences based on predefined task reward 𝑟 from the
environment as follows:𝑦 = 𝑖 , where 𝑖 = argmax𝑖∈{0,1}

∑
𝑡 𝑟 (𝑠𝑖𝑡 , 𝑎𝑖𝑡 ).

These trajectory pairs, along with the preference labels, form the
preference dataset D. We train the reward model on D, and subse-
quently relabel the data in B using this model.

4 QUERY AMBIGUITY IN ONLINE PBRL
In this section, we highlight a potential risk of query ambiguity in
online PbRL. This risk stems from the inherent challenges due to the
trajectories sampled from the replay buffer tend to be suboptimal
and of insufficient quality. Figure 1a illustrates an example from
the MetaWorld Button-Press task, with two suboptimal trajecto-
ries sampled from the replay buffer. Neither trajectory successfully
achieves the target: trajectory A deviates upward with larger move-
ment amplitude, while trajectory B moves to the left-rear with
smaller movement amplitude. For such low-quality trajectories,
human may be able to evaluate their quality from multiple per-
spectives (e.g., distance to the button, trajectory smoothness), but
it is challenging to determine which trajectory is better in terms
of achieving the target. The "scripted teacher" obtains labels from
privileged task rewards by comparing the rewards of two trajec-
tories and selecting the one with the higher cumulative rewards
as the preferred trajectory, thereby avoiding this potential issue.
However, when human or LLM provide feedback evaluations, the
situation becomes significantly more complex. In Figure 1b, we
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Figure 2: The overall framework of RL-SaLLM-F. First, trajectories are sampled from the replay buffer and converted into
coordinate text descriptions. Next, the text representation of the trajectory pairs are selected and queried through the LLM twice
with different orderings to obtain feedback labels. Subsequently, based on the sampled trajectories, the ’imagined’ trajectories
that better achieve the goal are generated by the LLM to train the reward model.

train PEBBLE [12] by directly replacing the "scripted teacher" with
GPT-4o-mini as feedback, and record the label accuracy (compared
to the ”scripted teacher“) and episode rewards. The policy perfor-
mance remain poor throughout the training, and the accuracy of
the LLM labels is consistently low, with an average accuracy of
only 58.2%.

How can we improve policy learning in online PbRL? An intu-
itive approach is to enhance the reliability of the labels. In Section
5.2, we reduce the randomness of the labels through a double-check
mechanism, which further improve the accuracy of the LLM queries.
In Figure 1c, we plot the training curves and average label accu-
racy (pink and cyan lines) after incorporating the double-check
mechanism. The label accuracy increase from 58.2% to 64.8%, which
accompanies an improvement in policy performance. However, it
still demonstrates low sample efficiency and fails to achieve the
task goal.

Another idea is, can we use additional high-quality data to train
the reward model, thereby driving both reward and policy learn-
ing? In Section 5.3, we propose a self-augmented LLM feedback
method, which generates high-quality additional trajectory pairs
to facilitate the learning of the reward model. Similarly, we plot the
corresponding training curves and average accuracy (red and blue
lines) in Figure 1c. Note that we do not enhance the discriminative
ability of LLM by prompt engineering; instead, we simply use the
higher-quality data generated by the LLM to train the reward model.

As the training policy gradually approaches optimality, the average
label accuracy further increases from 64.8% to 72.3%.

Based on these observations, we think self-augmented LLM feed-
back is effective for mitigating the risk of query ambiguity in online
PbRL. This approach not only directly improves the discrimina-
tive reliability of the LLM but also further drives reward learning
through self-augmented data. In turn, the highly discriminative re-
ward function encourages the policy to sample diverse, high-quality
data, enriching the LLM’s query diversity and indirectly enhancing
its discriminative accuracy, forming a positive feedback loop in the
training process.

5 RL-SALLM-F
5.1 The Overall Framework
In this section, we propose Reinforcement Learning from Self-
augmented LLM Feedback (RL-SaLLM-F).

The overall training process is shown in Figure 2, following
PEBBLE[12], with an off-policy SAC agent as the policy, consisting
of three steps:

• Step 1 (Unsupervised Pre-training): In the early stage of train-
ing, to encourage exploration and increase trajectory diversity, an
intrinsic reward 𝑟 int (s𝑡 ) = log(∥s𝑡 − s𝑘𝑡 ∥) is used for pre-training
downstream policy 𝜋𝜙 , here 𝑠𝑘𝑡 is the 𝑘-th nearest neighbor of 𝑠𝑡 .
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• Step 2 (Label Querying and Reward Learning): Sampling
candidate trajectory pairs and querying labels from the LLM (see
Section 5.2), followed by generating self-augmented imagined
trajectory to train the reward model 𝑟𝜓 (see Section 5.3).

• Step 3 (Policy Learning): Relabeling the replay buffer B with
𝑟𝜓 and updating the policy 𝜋𝜙 and Q-function 𝑄𝜃 using SAC.

• Repeat Step 2 and Step 3.

5.2 Query Feedback Labels Judged by LLM
First, we sample a trajectory pair {𝜎0, 𝜎1} from the replay buffer
B, convert it into textual representations {text(𝜎0), text(𝜎1)}, and
query the LLM with task-directed Chain-of-Thought (CoT) prompt
for preference labels:

𝑦 = LLM
(
Task,Traj 0 = text(𝜎0),Traj 1 = text(𝜎1)

)
(3)

To improve query accuracy, we use a double-check mechanism
to mitigate the randomness in the labels. Specifically, we reverse
the order of the input trajectories and query the LLM again:

𝑦𝑖𝑛𝑣 = LLM
(
Task,Traj 0 = text(𝜎1),Traj 1 = text(𝜎0)

)
(4)

If the values of 𝑦 and 𝑦𝑖𝑛𝑣 indicate the same preference feedback
is labeled, namely 𝑦 = 0, 𝑦𝑖𝑛𝑣 = 1 or 𝑦 = 1, 𝑦𝑖𝑛𝑣 = 0, we consider the
feedback label to be valid. Otherwise, we consider this trajectory
pair to be indistinguishable for the LLM, and discard it. When the
label is valid, the trajectory pair triple (𝜎0, 𝜎1, 𝑦) is stored into the
preference dataset D.

Remark 1. An alternative is to consider the LLM’s evaluation
of the trajectory pair as equivalent, retaining the pair and setting
the label as 𝑦 = 0.5, treating it as soft label in reward learning. We
compare this approach and find that, during early training, the LLM
struggle to distinguish the quality of sampled trajectories, resulting
in numerous hallucinated labels. Including such trajectory pairs is
detrimental to reward model learning, so we conclude that discarding
them leads to more efficient reward training.

5.3 Self-augmented Feedback Generated by LLM
Since the differences between trajectory pairs sampled from the re-
play buffer are small, particularly during early training, we leverage
the reflective and planning abilities of LLM to generate an imagined
trajectory that is more goal-directed to accelerate reward model
training. Specifically, we prompt the LLM to generate a textual
trajectory text(𝜎𝐿𝐿𝑀 ) that outperform the better trajectory 𝜎0/1 of
the current trajectory pair {𝜎0, 𝜎1}, while ensuring that it shares
the same initial state as the input:

text(𝜎𝐿𝐿𝑀 ) = LLM
(
Generate Prompt,Traj = text(𝜎0/1)

)
(5)

Next, the algorithm checks whether 𝜎𝐿𝐿𝑀 has the same step
length and data format as the sampled trajectory segments. Once
the generated trajectory passes the format check, it is converted
into a state-based trajectory 𝜎𝐿𝐿𝑀 and the imagined pair triple
(𝜎𝐿𝐿𝑀 , 𝜎0/1, 𝑦 = 0) (i.e., self-augmented feedback) is stored into D.

Remark 2. The imagined trajectories do not have to adhere to
physical constraints, as they serve solely for preference comparisons
to train the reward model, rather than for extracting policies or con-
structing a world model. We assume the reward model is Markovian,

implying that the immediate reward relies exclusively on the current
state. We find that once the LLM understands the task goal, the gen-
erated trajectories, even if not physically feasible, are still beneficial
for training the reward model efficiently. This insight enables us to
use a lightweight LLM with simple prompts for trajectory generation
without incorporating numerous executable trajectory constraints.

After several rounds of querying and generating, D contains
trajectory pairs sampled from the replay buffer B with LLM-judged
labels, and self-augmented trajectory pairs and labels generated by
the LLM. These labeled trajectory pairs will be used to train the
reward model by minimizing Equation 2.

6 EXPERIMENTS
6.1 Setup
We evaluate RL-SaLLM-F on multiple robotic manipulation tasks
in the MetaWorld [34] benchmark. The states include the coordi-
nates of the Tool Center Point (TCP), the extent of TCP’s opening,
the coordinates of the manipulated object and the target position.
All of these states can be easily converted into text-based string
representations. We conduct experiments on eight tasks:

- Button Press: Press a button;
- Drawer Open: Open a drawer;
- Drawer Close: Push and close a drawer;
- Door Open: Open a door with a revolving joint;
- Door Unlock: Rotate the lock and unlock the door;
- Window Open: Push and open a window;
- Handle Pull: Pull a handle up;
- Reach: Reach a goal position.

To be deemed successful, the agent must achieve the task target
within a limited number of steps and maintain it until the end of
the episode. All the positions are randomized at each initialization.
In the following sections, we aim to address five key questions:

(1) Can RL-SaLLM-F master robot control without any privileged
predefined rewards or human feedback? (Section 6.2)

(2) Does each component of RL-SaLLM-F contribute to perfor-
mance improvement? (Section 6.3)

(3) Does the learned reward function align effectively with task
progress? (Section 6.4)

(4) How accurately does RL-SaLLM-F assess the quality of trajecto-
ries, and how high is the quality of the LLM-based generated
trajectories? (Section 6.5 and 6.6)

(5) How do larger LLM impact performance? (Section 6.7)

6.2 Comprehensive Performance Comparison
To evaluate whether RL-SaLLM-F can master robotic manipulation
tasks without relying on prior reward information, we compare it
against PEBBLE[12] and SAC. PEBBLE serves as a popular approach
for evaluation in online PbRL and relies on the "scripted teacher"
feedback based on task rewards. SAC directly leverages task rewards
for policy learning, representing the refer upper bound of online
RL performance.

Remark 3. At the outset, it should be clarified that our goal is not
to surpass these methods, as they both rely on privileged information
from the environment, whereas RL-SaLLM-F operates without such
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Figure 3: Learning curves of all compared methods on 8 tasks. Results are averaged over 5 seeds, and shaded regions represent
standard error. RL-SaLLM-F masters robotic manipulation without any online privileged reward, performing on par with
PEBBLE, which uses ’scripted teacher’ feedback, and even SAC with predefined reward functions in partial tasks.

Figure 4: Learning curves of the ablation study. When any component of RL-SaLLM-F is removed, the performance decreases.
Specifically, the absence of self-augmented feedback leads to notably poor success rate.

assumptions. Due to the lack of baseline comparisons under the same
settings, we consider the comparison in this section as reference only.

All methods share the same hyperparameters, including the re-
ward model structure, query number and feedback segment length.
The total query budget for the entire training process is 2000, with
each session of concentrated queries consisting of 20 queries, each
involving a trajectory segment length of 10. Due to the cost and
time constraints of queries, RL-SaLLM-F uses GPT-4o-mini-2024-07-
18 as the LLM feedback. Each task is trained with 5e5 environment
steps,and the learning curves are shown in Figure 3.

Overall, RL-SaLLM-F achieve comparable or even superior per-
formance compared to PEBBLE. Notably, in the Button Press and
Drawer Open tasks, the success rate of RL-SaLLM-F is on par with
that of SAC with real-time task rewards. This indicates that SaLLM
effectively implement feedback and leverage improved imagine
trajectories to drive more efficient and superior reward function

training. Specifically, in the Button Press task, RL-SaLLM-F gener-
ated significantly higher-quality imagined trajectories (see Section
6.6 for detail analysis). Meanwhile, we observe that imperfect LLM
feedback labels led to RL-SaLLM-F exhibiting lower training effi-
ciency on some tasks compared to PEBBLE with "scripted teacher"
feedback, see Section 6.5 for further analysis on label accuracy.

6.3 Ablation Study
To investigate the role of each component in RL-SaLLM-F, we con-
duct ablation studies. Specifically, we remove different modules
from the algorithm the training curves of 4 chosen tasks are shown
in the Figure 4. In the legend, ’w/o double-check’ indicates exe-
cuting sampling feedback and self-augmented feedback without
checking the feedback labels; ’w/o LLM feedback’ indicates execut-
ing only LLM self-augmented feedback without sampling feedback;
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Figure 5: Normalized step rewards for the expert and sub-
optimal trajectories in the Button Press task. The rewards
of RL-SaLLM-F show better alignment with the predefined
task reward than the ablation variants, particularly in the
suboptimal trajectory.

and ’w/o self-augmented’ indicates executing only LLM sampling
feedback (with double-check) without self-augmented feedback.

As Figure 4 shows, when any component of RL-SaLLM-F is
removed, the performance decreases. Specifically, the absence of
self-augmented feedback leads to notably poor success rate. On
the other hand, only self-augmented feedback may lead to rapid
performance gains in early training but often causes instability later
on. The double-check mechanism serves as a valuable enhancement
to the algorithm. When incorporating self-augmented feedback,
the double-check mechanism further stabilizes performance by
increasing the accuracy of sampled trajectory labels.

6.4 Analysis of The Learned Reward Model
In addition to evaluating the quality of the learned policy by compar-
ing the performance, a remaining problem is, whether the learned
reward model aligns with task progress? To answer this question,
we compare the reward models learned by PEBBLE and RL-SaLLM-
F with different ablation versions. Specifically, we choose an expert
trajectory and a suboptimal trajectory in the Button Press task, then
label the rewards for these two trajectories. In the expert trajectory,
the robotic arm moves directly to the button, presses it, and then
stays still. In the suboptimal trajectory, the robotic arm moves for
a while, presses the button, and then moves away from the button
center, causing it to spring back. The normalized step rewards of
each method are shown in the Figure 5.

We observe that the rewards of PEBBLE exhibit a very similar
trend to the predefined task reward, which aligns with our intuition,
as PEBBLE’s reward model is trained relying on the task reward

Table 1: Label accuracy and discard rate comparison for RL-
SaLLM-F and the ablation variants.

Button Press Door Open Door Unlock Handle Pull

RL-SaLLM-F 72.30% 65.21% 71.66% 67.73%
w/o double-check 63.06% 60.07% 66.29% 61.13%
w/o LLM feedback 62.77% 59.62% 59.64% 57.65%
w/o self-augmented 64.79% 60.60% 66.25% 65.89%

Discard Rate 36.70% 37.89% 34.14% 37.42%

Figure 6: Comparison of task rewards for trajectories gener-
ated by the RL-SaLLM-F and evaluated by LLM and "scripted
teacher". The red bars represent trajectories generated by the
LLM. The others represent trajectories sampled from the en-
vironment during training, with the green bars judged by the
LLM and the blue bars evaluated by the "scripted teacher".

indirectly. The rewards of RL-SaLLM-F show changes that are more
aligned with the task reward compared to the two ablation variants,
particularly in the suboptimal trajectory. The ’w/o LLM feedback’
variant unexpectedly shows a reward peak at 𝑡 = 146, while the
’w/o self-augmented’ variant maintains a high reward value from
𝑡 = 130 to 𝑡 = 145. This anomaly may be due to insufficient fine-
grained understanding by the LLM, leading to distort generated
trajectories and labeling errors.

Remark 4. Interestingly, although the rewards of RL-SaLLM-
F appear to have a larger discrepancy from the predefined rewards
compared to PEBBLE, RL-SaLLM-F achieves higher task success rates.
We suspect this may be due to the predefined reward being less effective
than the goal-based evaluation reward, or the trajectory augmentation
in RL-SaLLM-F contributing to greater stability in reward model
training, leading to better policy improvement.

6.5 Feedback Labels Quality Evaluation
We further compare the quality of feedback labels to investigate the
performance of our method in labeling. We extract all sampled tra-
jectory pairs from the training process and analyze the accuracy of
the LLM in judging these trajectory pairs (compared to the "scripted
teacher"). The average results of five training seeds are presented in
Table 1. Apart from the header, the first four rows show the query
label accuracy for RL-SaLLM-F and its ablation variants, while the
last row indicates the proportion of query trajectory pairs discarded
due to the the double-check mechanism in RL-SaLLM-F. For the
’w/o LLM feedback’ variant, we still query trajectory preferences
during training but does not perform self-checking of the LLM
labels.

As shown in the Table 1, RL-SaLLM-F achieve the highest label
accuracy among all variants. The absence of the double-checkmech-
anism lead to a decrease in accuracy, indicating that self-checking
can reduce label randomness. Furthermore, compared to the ’w/o
self-augmented’ variant, the label accuracy of RL-SaLLM-F is still
higher, suggesting that self-augmentation improves reward and
policy performance, leading to greater diversity in sampled tra-
jectories. The diversity of trajectories helps the LLM make more
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Figure 7: Two examples of 2D projections of trajectories gen-
erated by the LLM. Compared to the sampled trajectories, the
generated trajectories successfully achieve the task goals.

accurate preference judgments, consistent with our intuition in
Section 4. However, even the best RL-SaLLM-F method achieves
only around 70% label accuracy. This could be due to the bias of the
"scripted teacher", which provides binary reward labels based solely
on absolute reward comparisons. Such labels may not align with
human or LLM intentions for trajectories with similar performance.

6.6 Generated Trajectories Quality Evaluation
Furthermore, we study the quality of the trajectories generated by
the LLM. As analyzed in the previous section, we extract the better
and worse trajectories from the pairs buffer during RL-SaLLM-F
training, alongwith the imagined trajectories generated by the LLM,
and calculate the average rewards and variance across different
seeds using the predefined task reward function. Then, we evaluate
the same trajectories using the labels of "scripted teacher" and
record the average rewards, as shown in Figure 7. Only tasks related
to the reward function and state are considered, as the generated
trajectories do not include action information.

Comparing the rewards of the LLM-generated trajectories with
those it judged as better, we find that RL-SaLLM-F can generate
higher-quality trajectories than those it initially preferred, which in
turn benefits reward learning. When comparing the LLM-generated
trajectories with those evaluated by the "scripted teacher", we find
that the LLM-generated trajectories perform comparably to, or
even better than, those deemed preferred by the ”scripted teacher“.
Moreover, a positive correlation is observed between the quality of
generated trajectories and task performance, particularly in the But-
ton Press and Drawer Open tasks, where RL-SaLLM-F outperforms
PEBBLE. The average reward of the generated trajectories is also
higher than that of the trajectories deemed superior by PEBBLE.

Finally, we provide two visualization examples of 2D projections
of trajectories generated by the LLM in Figure 7. In the Door Open
task, compared to the sampled trajectories, the generated one first
moves directly towards the door and then pulls it open to the target
position. In the Handle Pull task, the generated trajectory first
locates the handle and then pulls it upward to the target position.
The examples demonstrate a thorough understanding of task goals
and trajectory information by the LLM.

6.7 Impact of LLM Scale
An intuitive question is: would scaling up the LLM boost the per-
formance of RL-SaLLM-F? The answer is certainly yes. To clearly

Figure 8: Comparison of RL-SaLLM-F performance with GPT-
4o and GPT-4o-mini. Albeit the larger LLM delivers superior
results, it comes with increased resource consumption.

showcase this improvement, we repeat the experimental analysis
from the previous sections on the Drawer Open task with GPT-4o
as the LLM, and conduct a comprehensive performance evaluation,
as shown in Figure 8. In addition to the familiar metrics, we define
an additional one: "Equal Rate", which is the proportion of queries
where the LLM assigns equal preferences to two trajectories.

In terms of policy performance, trajectory quality, and prefer-
ence label accuracy, GPT-4o significantly outperforms its smaller
counterpart, GPT-4o-mini. Additionally, GPT-4o tends to provide
more labels with 𝑦 = 0.5, suggesting a more cautious evaluation,
and avoiding making arbitrary judgments when the trajectories are
similar. However, querying GPT-4o is expensive: about 20 times the
price of GPT-4o-mini for the same number of tokens. Therefore, we
still believe that combining more affordable LLMs offers a highly
cost-effective solution.

7 CONCLUSIONS
In this work, we introduce RL-SaLLM-F, a novel technique that
leverages self-augmented feedback from LLMs for online PbRL. By
abstracting state trajectories into textual descriptions and utiliz-
ing LLMs to generate self-augmented imagined trajectories and
provide preference labels, RL-SaLLM-F successfully addresses the
limitations of relying on online privileged rewards or real-time hu-
man feedback. The experimental analysis from various perspectives
have demonstrated the effectiveness of the proposed method.

Additionally, we find that the accuracy of the LLM labels in
trajectory evaluation remains limited, and further improving this
accuracy is essential for more efficient task training. Meanwhile, our
method may not directly handle image inputs, future work could ex-
plore obtaining precise object coordinates through methods such as
camera coordinate calibration to align with our algorithmic frame-
work, or applying VLMs and diffusion models for discrimination
and generation of image trajectories.
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