
InCLET: Large Language Model In-context Learning can Improve
Embodied Instruction-following

Peng-Yuan Wang
∗

National Key Laboratory for Novel

Software Technology

School of Artificial Intelligence

Nanjing University, Nanjing, China

Polixir.ai, Nanjing, China

wangpy@lamda.nju.edu.cn

Jing-Cheng Pang
∗

National Key Laboratory for Novel

Software Technology

School of Artificial Intelligence

Nanjing University, Nanjing, China

Polixir.ai, Nanjing, China

pangjc@lamda.nju.edu.cn

Chen-Yang Wang
∗

National Key Laboratory for Novel

Software Technology

School of Artificial Intelligence

Nanjing University, Nanjing, China

221300004@smail.nju.edu.cn

Xuhui Liu

National Key Laboratory for Novel

Software Technology

School of Artificial Intelligence

Nanjing University, Nanjing, China

liuxh@lamda.nju.edu.cn

Tian-Shuo Liu

National Key Laboratory for Novel

Software Technology

School of Artificial Intelligence

Nanjing University, Nanjing, China

Polixir.ai, Nanjing, China

liuts@lamda.nju.edu.cn

Si-Hang Yang

National Key Laboratory for Novel

Software Technology

School of Artificial Intelligence

Nanjing University, Nanjing, China

Polixir.ai, Nanjing, China

yangsh@lamda.nju.edu.cn

Hong Qian

Shanghai Institute of AI for Education

and School of Computer Science and

Technology,

East China Normal University,

Shanghai, China

hqian@cs.ecnu.edu.cn

Yang Yu
†

National Key Laboratory for Novel

Software Technology

School of Artificial Intelligence

Nanjing University, Nanjing, China

Polixir.ai, Nanjing, China

yuy@nju.edu.cn

ABSTRACT
Natural language-conditioned reinforcement learning (NLC-RL)

empowers embodied agent to complete various tasks following

human instruction. However, the unbounded natural language ex-

amples still introduce much complexity for the agent that solves

concrete RL tasks, which can distract policy learning from com-

pleting the task. Consequently, extracting effective task represen-

tation from human instruction emerges as the critical component

of NLC-RL. While previous methods have attempted to address

this issue by learning task-related representation using large lan-

guage models (LLMs), they highly rely on pre-collected task data

and require extra training procedure. In this study, we uncover

the inherent capability of LLMs to generate task representations

and present a novel method, in-context learning embedding as task

representation (InCLET). InCLET is grounded on a foundational

finding that LLM in-context learning using trajectories can greatly

help represent tasks. We thus firstly employ LLM to imagine task

trajectories following the natural language instruction, then use

in-context learning of LLM to generate task representations, and

∗
Equal Contribution

†
Corresponding Author.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

finally aggregate and project into a compact low-dimensional task

representation. This representation is then used to train a human

instruction-following agent. We conduct experiments on various

embodied control environments and results show that InCLET cre-

ates effective task representations. Furthermore, this representation

can significantly improve the RL training efficiency, compared to

the baseline methods.

KEYWORDS
Reinforcement Learning; In-context Learning; Embodiment Agent

ACM Reference Format:
Peng-Yuan Wang

∗
, Jing-Cheng Pang

∗
, Chen-Yang Wang

∗
, Xuhui Liu, Tian-

Shuo Liu, Si-Hang Yang, Hong Qian, and Yang Yu
†
. 2025. InCLET: Large

Language Model In-context Learning can Improve Embodied Instruction-

following. In Proc. of the 24th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23,
2025, IFAAMAS, 9 pages.

1 INTRODUCTION
Developing robots capable of executing tasks following human

instructions is a highly attractive area of research [4, 16, 25, 26].

Natural language-conditioned reinforcement learning (NLC-RL)

has emerged as a powerful approach in this field, as it focuses

on training agents to perform tasks specified by natural language

instructions [23, 28, 29]. The key of NLC-RL lies in processing the

complex and diverse natural language (NL) into a task representation,
which is then exposed to agent to complete the control task.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2134

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Traditional methods typically employ pre-trained large language

models (LLMs) such as BERT [19] and Llama [9] to extract seman-

tic information directly from natural language. They convert the

NL instruction into LLM embeddings as the task representations,

and then train a policy conditioned on these embeddings. How-

ever, these embeddings generated by LLMs are typically learned

independently of the RL task, making it challenging to capture

the task-related information in the natural language instruction.

An alternative method is to train a natural language translator

that converts natural language instructions into a low-dimensional

machine-readable representations, leveraging pre-collected data

from environmental interactions [29, 40]. Despite their potential,

such methods are heavily dependent on high-quality interaction

data and necessitate a separate training process for translator, which

in turn increases the cost and reduces the flexibility of the approach.

This highlights the pressing need to develop efficient task represen-
tations that require minimal additional efforts.

In this work, we introduce a novel method, in-context learn-

ing embedding as task representation (InCLET), which produces

effective task representation for NLC-RL without relying on pre-

collecting environment data or additional training. Instead of di-

rectly utilizing LLM’s embedding or additionally training a transla-

tor, InCLET leverages the in-context learning paradigm to extract

task representations, capturing more intrinsic information, which

is inspired by [12]. InCLET consists of three components: (1) an in-

context generator that generates few task-related trajectories; (2) a

task representation extractor that extracts task representation from

generated few trajectories; (3) a policy that solves concrete RL tasks

given task representation from human instructions. Specifically,

in the in-context generator, we leverage the extensive knowledge

of LLMs to automatically generate (initial state, terminal state)

trajectory pairs about task, which are used for task representa-

tion extraction. In the second module, we format these as "[Initial
state]→[Terminal state]", extracting the hidden state at the ’→’

position. These hidden states are then fused to form the task rep-

resentation. In the third module, we combine the state and task

representations for policy training in reinforcement learning. To

address the high dimensionality of the task representation space

[46], we employ random projection to map it onto a much lower-

dimensional subspace [35], making the representation more effi-

cient for training. In contrast to previous methods, InCLET obtains

effective task representations without requiring any task-specific

information or additional training.

We justify the effectiveness of InCLET method through theoreti-

cal analysis, which shows that our method achieves tighter error

bound compared to traditional methods. Besides, through exten-

sive experiments in two embodied control environments: FrankaK-

itchen [10] and CLEVR-Robot [17], we demonstrate that the policy

learned by InCLET outperforms previous methods, in terms of the

ability to follow different natural language instructions and adapt

to previously unseen NL instructions. Furthermore, we verify the

source of InCLET’s effectiveness, by performing t-SNE [39] dimen-

sionality reduction on the task representations for visualization.

We observe that InCLET effectively separates the representations

of different tasks, indicating the feasibility of the way to leverage

in-context learning to extract task representations. Finally, we con-

ducted an ablation study to analyze the impact of each module

in InCLET on the overall performance.

We highlight the main contributions of our work as follows:

• We successfully verify that the in-context learning capabili-

ties of LLMs can be harnessed to guide the embodied agents

to follow human instructions.

• We introduce a novel approach, InCLET that creates task

representations using a pre-trained LLM, without the need

for pre-collected datasets or additional training procedures.

• Theoretical analysis and empirical results demonstrate that

InCLET effectively generates task-related representations,

enabling agents to understand the task, complete the in-

struction successfully, and outperform the baseline NLC-RL

methods.

2 BACKGROUND
2.1 RL and NLC-RL
We consider environments represented as a finite Markov deci-

sion process (MDP) [30, 32, 36], which is described by a tuple

(S,A, 𝑃, 𝜌, r, 𝛾), whereS represents the state space,A is the action

space. 𝑃 represents the probability of transition while 𝜌 represents

the initial state distribution. 𝑟 is a reward function while 𝛾 repre-

sents the discount factor determining the weights of future rewards.

In NLC-RL, the agent receives an NL instruction (𝐿𝑁) that reflects

the human’s instruction. The policy 𝜋 (·|𝑠𝑡 , 𝐿𝑁) which is used for

decision making is trained conditioned on the state 𝑠𝑡 ∈ S and lan-

guage instruction 𝐿𝑁 which describes the task (e.g. ’Can you open

the light?’). It is crucial to highlight that in our work, we assume

no prior knowledge of the exact number of tasks, the relevant task

details, or the task instruction descriptions. The overall objective

of NLC-RL is to maximize the expected return under different NL

instructions:

E

[∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝐿𝑁) | 𝑠0 ∼ 𝜌, 𝑎𝑡 ∼ 𝜋 (· | 𝑠𝑡 , 𝐿𝑁)
]
. (1)

2.2 ICL and task representations
ICL is a paradigm that enables language models to learn tasks by

providing only a few examples as demonstrations [6, 8]. Formally,

given a query input prompt 𝑝 , a pre-trained language modelM
takes the candidate answer conditioned on a demonstration 𝑆 . 𝑆

contains 𝑘 demonstrations, thus 𝑆 = {(𝑥1, 𝑦1), · · · (𝑥𝑘 , 𝑦𝑘)}. To per-

form specified tasks for a given query 𝑝 , the model is asked to

predict 𝑦 based on the demonstrations namely,

𝑦 = argminM([𝑆, 𝑝]), (2)

where [𝑆, 𝑝] represents a concatenation of the demonstrations 𝑆

and input prompt 𝑝 .

There has been work [12] demonstrating that the mechanism

behind in-context learning involves using demonstrations to extract

a task representation 𝜃 . The 𝜃 is used to identify the task and

generate the output 𝑦 for the current query 𝑝 .

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2135

Prompt for In-context
Demonstration generation

Please imagine a scenario and
create both the initial state and
terminal state for the task. in the
following format: Initial state:
[Imagined initial state]. Terminal
state: [Imagined terminal state].

Task description: [Human
instruction].

(A) Generating Imaginary in-context demonstrations

Human
instruction

Generation
Prompt

LLM

𝓢: In-context
demonstrations
𝑇!"!#$, 𝑇#%&'!"()

$
$

Example: Initial state:
You are standing
in the living room,
facing the cabinet...
Terminal State: You
have fully opened the
cabinet door, and ...

(B) Extracting task representation by in-context learning

...
average

task
representation

(C) Policy learning

Intrinsic task
representation

environment
state

policy 𝜋

action

𝑇!"!#$ → 𝑇#%&'!"()$ 𝑇!"!#* → 𝑇#%&'!"()* ...

...

...

...

...

...

...

...

...

...

...

...

...

LLM in-context learning

N
layers

Figure 1: Overall framework of InCLET method.

2.3 Random Projection Technique for
Dimension Reduction

In real-world applications, the task of optimizing black-box func-

tions that operate within high-dimensional spaces (often surpassing

1000 dimensions) presents significant challenges, making direct

black-box optimization in high-dimensional space difficult [31].

One effective approach is to use random projection, which trans-

forms the data into a intrinsic dimensional space. The intrinsic

dimensionality of an objective function refers to the minimum num-

ber of parameters required to achieve satisfactory solutions [20].

As demonstrated by [2], large-scale pre-training empirically com-

presses the intrinsic dimensionality of downstream tasks. [20] pro-

poses a method to measure this intrinsic dimensionality in neural

networks by identifying the minimal subspace dimensionality de-

rived through random projections. This approach to random map-

ping is rooted in the Johnson-Lindenstrauss lemma [18], which

posits that when points in a vector space are projected onto a ran-

domly chosen subspace of sufficiently high dimension, the distances

between points are approximately preserved.

3 METHOD
Given a task description, we aim to extract a corresponding task rep-

resentation to guide the agent in completing instruction-following

task. The method leverages LLM’s internal ability to generate in-

context demonstrations 𝑆 . Then we construct task pairs with 𝑆 and

extract a task-specific vector to serve as the conditioning input for

policy training.

Our framework, as illustrated in Fig. 1, consists of three stages

Specifically. In the first stage, given a task description 𝐿𝑁 , we utilize

LLM to generate multiple task-relevant <initial state, terminal state>

trajectory pair. In the second stage, we concatenate the generated

pairs with 𝐿𝑁 in the form of "initial state→ terminal state," using
these as input to the LLM to extract the corresponding hidden states.

These hidden states are then fused to form the task representation

𝜃 . In the third stage, the high-dimensional task representation is

mapped to a lower-dimensional space and used as the condition for

policy learning.

3.1 Generating Imaginary In-context
Demonstrations by Prompting LLM

To leverage the in-context learning ability of LLMs, the first step is

to obtain a set of in-context learning trajectories and construct the

demonstration set, which we refer to as imaginary in-context demon-
strations. InCLET generates imaginary in-context demonstrations

by prompting LLMs to imagine specific trajectories (initial/terminal

states) corresponding to the human instructions. Given a human

instruction 𝑥 , we utilize the the following prompt 𝑝 for the input

of LLMM: ’Please help me imagine a scenario and create both the

initial state and terminal state for the task · · · ’. During generation,

we create one trajectory at a time, repeating the process 𝑛 times

until the entire trajectory set is generated. We extract the initial

state and terminal state from the trajectory to construct the set of

imaginary in-context demonstrations 𝑆 :

𝑆 = {(𝑇 1

init
,𝑇 1

terminal
), · · · , (𝑇𝑛

init
,𝑇𝑛

terminal
)},

where (𝑇 𝑖
init

,𝑇 𝑖
terminal

) =M(𝑥, 𝑝) is the imaginary in-context demon-

strations extracted from the output by the LLM.

The demonstration is structured by presenting the initial state

as 𝑇init and the terminal state as 𝑇
terminal

. This format is chosen

because, when given the task and the initial state 𝑇init, the output

𝑇
terminal

from the LLM represents task completion. Namely,𝑇init →

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2136

Algorithm 1 Train Procedure of In-context Learning Embedding

as Task Representation (InCLET)

Require: LLMM; imaginary in-context demonstrations num 𝑛;

random projection matrix 𝐴 ∈ R𝑘×𝑑
; interaction steps𝑀 .

Output: instruction following policy 𝜋𝜙 ;

1: Initialize parameters of the policy network 𝜋𝜙 , and value net-

work 𝑉𝜓 .

2: for 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑘 = 0 to𝑀 do
3: Sample a natural language task instruction 𝐿𝑁 from the

environment.

4: // Generate Imaginary In-context Demonstrations

5: for 𝑖 = 1 to 𝑛 do
6: Query LLMM to generate imaginary in-context demon-

strations (𝑇 𝑖
init

,𝑇 𝑖
terminal

) with NL 𝐿𝑁 .

7: end for
8: // Extract Task Representation

9: Construct mapping 𝑇 𝑖
init
→ 𝑇 𝑖

terminal
with demonstrations.

10: Extract hidden state with Eq. (3). And fuse it with Eq. (4)

11: // Train Policy with RL

12: Use random projection metric to transfer into intrisic task

representation 𝑍𝐿𝑁 with Eq. (5).

13: while episode not terminal do
14: Observe current state 𝑠𝑡 .

15: Execute action 𝑎𝑡 ∼ 𝜋𝜙 (·|𝑠𝑡 , 𝑍𝐿𝑁), and receive a reward

𝑟𝑡 from the environment.

16: end while
17: Update the policy 𝜋𝜙 and value functions 𝑉𝜓 based on the

samples collected from the environment.

18: end for

𝑇
terminal

implicitly signifies the successful completion of the current

task, making it easier for us to extract task-related representations.

3.2 Extracting Task Representations via
In-context Learning from LLM

In the previous subsection, we introduce how InCLET generates

a set of imaginary in-context demonstrations. Now we elaborate

on the process for obtaining the task representation that indicates

the tasks corresponding to the human instruction. Specifically, we

leverage the imaginary in-context demonstrations generated in

section 3.1 to perform the task of mapping 𝑇 𝑖
init
→ 𝑇 𝑖

terminal
. In

particular, the latent state ℎ𝑖 ∈ R𝑑 for each 𝑇 𝑖
init
→ 𝑇 𝑖

terminal
is

obtained by inputting them into the LLM. Specifically, we extract

the hidden state corresponding to the arrow position token and

take the hidden state from the final layer of the attention block

as the task representation. All the demonstrations are input into

LLM total, namely, {ℎ𝑖 }𝑛𝑖=1 ←M({𝑇
𝑖
init
→ 𝑇 𝑖

terminal
}𝑛
𝑖=1
). However,

directly inputting it into the LLM can lead to the following problem:

If 𝐿𝑁 were placed after the demonstration, the → for the first

demonstration would only have seen the initial state without being

exposed to the task description, leading to an inaccurate hidden

state. Therefore, we concatenate 𝐿𝑁 before the demonstration 𝑆 .

This method is finally formalized as:

{ℎ𝑖 }𝑛𝑖=1 ←M([𝐿𝑁 , {𝑇 𝑖
init
→ 𝑇 𝑖

terminal
}𝑛𝑖=1]) . (3)

For a total of 𝑛 demonstrations, the extracted hidden states form

the set 𝐻 := {ℎ1, ℎ2, · · · , ℎ𝑛}. Finally, we average the hidden states

vectors as the final task representation 𝜃 :

𝜃 =
1

𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 . (4)

Due to the complexity and diversity of language, directly inputs

the task description 𝐿𝑁 into the LLM M to obtain the hidden

state embedding as task representation struggles to get the exact

task representation. In contrast, our in-context learning approach

extracts a more specific task representation by leveraging provided

demonstrations [22], enabling better task representation.

3.3 Policy Learning with Task Representation
InCLET uses RL to train an instruction-following policy (IFP).When

the agent collects samples in the environment, the environment ran-

domly generates natural language instruction based on the current

task. We utilize the method introduced in section 3.1 and section

3.2 to extract task representation. Next, the policy makes decisions

for the entire episode based on the current observation and task

representation until either the task is completed or the maximum

timestep is reached. However, typically the task representation

𝜃 ∈ R𝑑 from the LLM is a high-dimensional vector, which is chal-

lenging when directly inputting it to the policy. We address this by

random projection technique, which converts the task representa-

tion into a low intrinsic dimensionality, easing the burden on the

policy. Specifically, InCLET uses a random matrix A ∈ R𝑘×𝑑
to

project the original 𝑑-dimensional data, 𝜃 , onto a 𝑘-dimensional

subspace (𝑘 ≪ 𝑑) , as expressed in the equation below:

𝑍𝑘 = A𝑘×𝑑𝜃𝑑 , (5)

where𝑍𝑘 is defined as intrinsic task representation and 𝑘 represents

the dimension of subspace. By sampling from a uniform distribution,

we set the values of the random matrix A, similar to Sun et al. [35].

Therefore, we utilize the intrinsic task representation 𝑍 as the

policy condition input rather than task representation 𝜃 . The IFP

can be optimized with an arbitrary RL algorithm using the samples

collected from the environments. In our implementation, we use

PPO [34] for both InCLET and all baselines. During IFP training, the

LLM’s parameters are frozen. We provide the pseudo-code shown

in Algorithm 1 for InCLET to further clarify the process.

4 THEORETICAL JUSTIFICATION
Let Z denote the embedding space, and T denote the task. We

assume that the value function can be represented as:

𝑉 (𝑠) = 𝜙 (𝑠)𝑇𝑤,

where 𝜙 (𝑠) ∈ R𝑑 is the representation of the state 𝑠 in some feature

space. This assumption is not too restrictive. When using a neural

network to represent the value function, 𝜙 (𝑠) corresponds to the

output of the penultimate layer (i.e., the second-to-last layer).

Without loss of generality, we assume:

∥𝜙 (𝑠)∥ ≤ 1 and ∥𝑤 ∥ ≤𝑊max .

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2137

Based on this setup, we aim to minimize the regularized expected

risk function:

𝑅T,𝜙 (𝑤) = E(𝑠𝑖)∼T

[(
𝜙 (𝑠𝑖)𝑇𝑤 − 𝑦𝑖

)
2

]
+ 1

2

∥𝑤 ∥2,

where 𝑦𝑖 =
∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 is the cumulative discounted return.

Since computing the full expectation is often infeasible, we in-

stead minimize the regularized empirical risk function:

𝑅𝐷 (𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

(
𝜙 (𝑠𝑖)𝑇𝑤 − 𝑦𝑖

)
2

+ 1

2

∥𝑤 ∥2,

where 𝐷 = {(𝑠𝑖 , 𝑦𝑖)}𝑛𝑖=1 is dataset sampled from the distribution T .
Now, when we concatenate the task representation 𝑧 ∈ Z with

the state representation, the feature vector becomes 𝜙 (𝑠, 𝑧). Thus,
the new regularized empirical risk function becomes:

𝑅𝐷,Z (𝑤) =
1

𝑛

𝑛∑︁
𝑖=1

(
𝜙 (𝑠𝑖 , 𝑧𝑖)𝑇𝑤 − 𝑦𝑖

)
2

+ 1

2

∥𝑤 ∥2 .

Here, 𝑧𝑖 ∈ Z corresponds to the embedding associated with the

state 𝑠𝑖 .

In our algorithm, the goal is to solve the following problem:

min

𝑤
E(Z), where E(Z) = E(T𝑖 ,𝑧𝑖)∼𝑝 (T,Z)E𝐷∼T𝑖

[
𝑅𝐷,Z (𝑤)

]
.

The objective is to find the weights𝑤 that minimize the expected

risk over all possible tasks T and task representations 𝑧 ∈ Z.

Finally, let E∗ denote the optimal minimum risk, expressed as:

E∗ = ET∼𝑝 (T)
[
𝑅T,𝜙 (𝑤T)

]
, where 𝑤T = argmin

𝑤
𝑅T,𝜙 (𝑤) .

Then we derive the error bound of value function of NLC-RL.

Theorem 4.1. Let (𝑒𝑖)𝑆𝑖=1 ⊂ R𝑆 be the standard basis and

𝑃 ≜ E𝑖∼𝜈 [𝑒𝑖𝑒𝑇𝑖] .

We use Φ𝑧 to represent the feature matrix when task representation
exists. We assume further that Φ𝑧Φ

†
𝑧 is diagonal, then with probability

at least 1 − 𝜂

E(Z) − E∗ ≤ 4𝑅max√︁
𝑛(1 − 𝛾)

(
𝑊max +

𝑅max

1 − 𝛾 𝐸𝑧∼𝑝 (𝑧) Tr(𝑀 (𝑧)𝑁 (𝑧))
) 1

2

+𝑂 ©­«
√√√

1

2𝑛
log

(
2

𝜂

)
+
𝑑𝜙 (𝑠,𝑧)

𝑛
log

(
𝑛

𝑑𝜙 (𝑠,𝑧)

)ª®¬ ,
where𝑊max, 𝑅max, and 𝛾 are constants defined in the context,𝑀 (𝑧) =
ET∼𝑝 (T |𝑧)𝑃 , 𝑁 (𝑧) = ET∼𝑝 (T |𝑧)𝑃

†, and 𝑑𝜙 is VC dimension of func-
tion space of 𝜙 (𝑠, 𝑧).

The proof of this theorem is in Appendix B. The bound presented

in Theorem 4.1 consists of two terms. The first term highlights the

performance improvement achieved through the additional infor-

mation provided by task representations. In contrast, the second

term accounts for the performance degradation arising from the

increasing complexity of the representation function. Therefore,

NLC-RL establishes a trade-off between these two terms.

For one-hot method, task representation 𝑧 only corresponds to

one task T . Therefore, 𝑝 (T |𝑧) is a deterministic distribution, and

the results of one-hot method can be derived as follows:

Corollary 4.2. Under the condition of Theorem 4.1, with proba-
bility at least 1 − 𝜂, the error bound of one-hot method is

E(Z) − E∗ ≤ 4𝑅max√︁
𝑛(1 − 𝛾)

(
𝑊max +

𝑅max

1 − 𝛾

) 1

2

+𝑂 ©­«
√√√

1

2𝑛
log

(
2

𝜂

)
+
𝑑𝜙 (𝑠,𝑧one-hot)

𝑛
log

(
𝑛

𝑑𝜙 (𝑠,𝑧one-hot)

)ª®¬ .
Similarly, for naive method without NL instruction, the result

can be derived by setting 𝑝 (T |𝑧) = 𝑝 (T).

Corollary 4.3. Under the condition of Theorem 4.1, with proba-
bility at least 1 − 𝜂, the error bound of naive method is

E − E∗ ≤ 4𝑅max√︁
𝑛(1 − 𝛾)

(
𝑊max +

𝑅max

1 − 𝛾 𝐸𝑧∼𝑝 (𝑧) Tr(𝑀𝑁)
) 1

2

+𝑂 ©­«
√√√

1

2𝑛
log

(
2

𝜂

)
+
𝑑𝜙 (𝑠)
𝑛

log

(
𝑛

𝑑𝜙 (𝑠)

)ª®¬ ,
where𝑀 = ET∼𝑝 (T)𝑃 and 𝑁 = ET∼𝑝 (T)𝑃

†.

Compared to Theorem 4.1, one-hot encoding method yields the

finest task representation, resulting in the smallest first component

but the largest second component. Conversely, the naive method

has the largest first component and the smallest second component.

NLC-RL, on the other hand, offers a balanced approach. Addition-

ally, Theorem 4.1 outlines a method for comparing different NLC-RL

approaches. Specifically, the less random the distribution 𝑝 (T |𝑧)
is, the better the resulting error bound. This finding elucidates the

characteristics of an effective task representation. In Figure 6, we

visualize the results from our method alongside several baseline

methods, illustrating why our approach outperforms the others.

5 EXPERIMENTS
We conduct extensive experiments to evaluate the effectiveness of

the proposed InCLET method. Our experiments aim to answer the

following important questions:

• How does InCLET perform compared to previous methods

on NLC-RL tasks? (Section 5.2)

• How are the task representations generated by InCLET and

how do they compare to the task representations from base-

lines (Section 5.3)?

• Can InCLET be compatible with different large language

models? (Section 5.4)

• What is the impact of each component on the overall perfor-

mance of InCLET? (Section 5.5)

5.1 Experiment Setup
Environments. We conduct experiments on FrankaKitchen [10]

and CLEVR-Robot environments [17] as shown in Fig. 2. FrankaK-

itchen is a multitask environment in which a 9-DoF Franka robot

is placed in a kitchen. The goal is to control the robot to interact

with the items in order to reach a desired goal configuration. In the

environment, we choose four sub-tasks: activate the bottom burner,

move the kettle to the top left burner, turn on the light switch,

and open the slide cabinet. We treat each sub-task as a different

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2138

goal configuration. In each trajectory, the environment randomly

generates an NL instruction that describes a goal configuration.

The language instruction is generated by ChatGPT [1]. The CLEVR-

Robot environment is designed for agent manipulation in object

interaction tasks and is built on the MuJoCo physics engine [37].

It contains five different colored balls and an agent (silver point).

In each task, the agent moves a ball to achieve a specific position

relative to another ball (including four possible positions: front,

behind, left, or right) to complete the goal.

(a) FrankaKitchen (b) CLEVR-Robot

Figure 2: Visualization of the environments in our experi-
ments. (a) FrankaKitchen. The agent controls a 9-DoF Franka
robot to manipulate various objects in a kitchen. (b) CLEVR-
Robot. The agent (silverpoint) manipulates five different col-
ored balls to reach a specific goal position

Details of natural language instructions. For FrankaKitchen
environment, we used ChatGPT to generate 15 different task de-

scriptions for each goal configuration, yielding 60 different NL

descriptions. For example, in the task "open the sliding cabinet," one

of the descriptions is "Can you please open the sliding cabinet door

for me?". In the CLEVR-Robot task, the variation between tasks

comes from the different colored balls selected and their relative

positions. Therefore, we used 18 natural language sentence patterns

to generate different tasks. We fixed the combinations of balls and

relative positions, resulting in 8 distinct tasks and a total of 144

distinct NL instructions. An example of NL instruction is "Push the

red ball behind the blue ball". We split the total NL instructions into

two sets: training and testing set. The training set comprises 10 and

9 different NL instructions for each goal configuration in FrankaK-

itchen and CLEVR-Robot, respectively. The testing set consists of

the remaining NL instructions. During policy training, the agent

can only interact with the NL instructions in the training set. The

full set of task descriptions can be found in Appendix A.1.

Baselines for comparison.We consider multiple representa-

tive methods in NLC-RL that do not train the LLM as baselines: (1).

One-hot method encodes all natural language instructions (includ-

ing both training and testing set) into a one-hot vector. (2). BERT
method processes all language instructions using a pre-trained

BERT model to generate task representations. These representa-

tions are then mapped into a continuous space using a fully con-

nected neural network. (3). Llama3-8B method is similar to BERT,

except that it uses Llama-3.1-8B-Instruct [9] as the pre-trained LLM

instead of the BERT model.

ImplementationDetails. In our experiments, we use Llama-3.1-

8B-Instruct [9] to generate imaginary in-context demonstrations

and extract task representation, with temperature factor 𝑇 = 1.

We conducted all experiments with three random seeds, and the

shaded area in the figures represents the standard deviation across

all three trials. we use the open-sourced RL repository, stable-

baselines3 [33] for PPO training. For detailed implementation and

hyper-parameters, please refer to Appendix A.1.

5.2 Main Results
Fig. 3 shows the performance of InCLET and baselines on FrankaK-

itchen and Ball environments. Overall, InCLET outperforms all base-

lines on both training and testing NL instructions. In the Kitchen

environment, baselines that directly employ LLM embedding such

as BERT and Llama3-8B struggle to improve the policy performance.

This is due to the complexity of diverse NL instructions and the

robotic control. The experimental results in Fig. 6 further justify

this conclusion. Though one-hot performs well on training NL in-

structions, it suffers from a significant performance degradation on

the test instructions. This can be attributed to that one-hot baseline

can only deal with these seen NL instructions, and fail to generalize

to unseen instructions. Notably, on these training NL instructions

that are unseen during the RL training process, InCLET also ob-

tains a high score. These results highlight InCLET’s potential to

develop an agent capable of dealing with diverse NL instructions

from different scenarios.

5.3 Effectiveness of the InCLET
Previous experiments show InCLET can effectively improve the

policy performance compared to the baseline methods. This sec-

tion investigates the source of such improvement. First of all, we

utilize t-SNE projection technique to convert the generated task

representation into two-dimensional vectors, as shown in Fig. 6.

The points with the same color represent the task representations

of the same task, but with different natural language descriptions.

We observe that the task representations generated by InCLET get

together closer. In contrast, baselines’ task representations are more

dispersed and scattered. These results justify that InCLET policy

can learn more efficiently, as the task representations more accu-

rately capture the meaning of the tasks. Then, we reviewed the

examples generated by the LLM, as shown in Fig. 4, which depicts

the imaginary demonstrations in the FrankaKitchen environment.

We found that the LLM generates demonstrations are highly related

to the task description, and these demonstrations cover various

scenarios which are helpful to extract task representations.

5.4 Compatibility with Different LLMs
We further verify the effectiveness of InCLET method by conduct-

ing experiments with different LLMs of various sizes and structures.

We conducted experiments with three models in the FrankaKitchen

environment and reported their test performance. Specifically, we

implement InCLET with Llama3-8B [9], Gemma-7B [3] and Mistral-

7B [15], respectively. Additionally, we implemented baseline meth-

ods that directly use LLM embeddings for policy training with the

models mentioned above. Fig. 5 presents the experimental results.

We find that InCLET can effectively improve the NLC-RL perfor-

mance compared to directly using LLM embeddings as the task

representations. Notably, our method delivers consistent perfor-

mance across different models.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2139

(a) Kitchen Training (b) Kitchen Testing (c) Ball Training (d) Ball Testing

Figure 3: Performance of different methods in two environments on training and testing NL instructions. The shaded area
stands for the standard deviation across three random trials.

Task: Activate the bottom burner
Task Description: Can you turn the knob on the oven that
activates the bottom right burner?
Imaginary In-context Demonstrations:
(1). Initial State: The oven is turned off and the kitchen is quiet,
with no one around. the knob on the oven that activates the
bottom right burner is in the \"off\" position. Terminal State:
The knob on the oven that activates the bottom right burner is
in the \"on\" position, and the burner is heating up with a gentle
blue flame. the kitchen is now bustling with activity, with the
aroma of baking bread filling the air.
(2). Initial State: The oven door is open, the knob is not turned,
and the bottom burner is off. Terminal State: The oven door is
open, the knob is turned, and the bottom right burner is on.
(3). ⋯

Imaginary Trajectories Example

Figure 4: Examples of the imaginary in-context trajecto-
ries on FrankaKitchen. The generated language trajectories
highly relevant to the instruction are highlighted with green
shading, demonstrating that the generated initial and termi-
nal states are strongly aligned with the given instruction.

Figure 5: Performance of InCLET with different LLMs on
FrankaKitchen environment.

5.5 Ablation Study
We conduct ablation study to evaluate the impact of each com-

ponent in InCLET on the overall performance. We consider the

following components:in-context learning (ICL) that generates
task vectors, random projection (RP) and different fusion methods.

(a) InCLET (b) Baseline (Bert) (c) Baseline (Llama)

Figure 6: T-SNE projection of the task representations gener-
ated by different methods.

Ablation study on ICL and RP. We conduct ablation studies on

the ICL and RP techniques of InCLET method. To implement In-

CLET w/o ICL, we directly utilize Llama to convert NL instructions

into embeddings, and random projection to reduce the dimension.

Fig. 7 presents the results of ablation study. The results indicate that

both ICL and RP play an important role in InCLET’s effectiveness,

as InCLET gets the highest scores and InCLET w/o RP & ICL gets

the lowest scores. Notably, InCLET w/o RP suffers from a large devi-

ation across different random trials. This could be attributed to that

the origin embedding from the LLM could be high-dimensional and

complex, highlighting the importance of the dimension reduction

by random projection techniques.

Comparing different fusionmethod. We conducted a fusion-specific

ablation to evaluate the impact of the fusion method in InCLET.

We conducted a comparative experiment, directly using the hidden

state corresponding to→ in the last demonstration, rather than

utilizing the fusion of the hidden states from all demonstrations

𝑆 . The t-SNE visualization of the representations is shown in the

Fig. 8. Experimental results indicate that using only the last hidden

state results in less efficient representations. Upon examining the

responses shown in Fig. 4, we think this is because the demonstra-

tions imagined by the LLM contain some scene-specific information.

By fusing multiple hidden states, we can improve the representation

of task-related information.

6 RELATEDWORK
Natural Language Conditioned Reinforcement Learning. Nat-
ural language conditioned reinforcement learning (NLC-RL) re-

quires agents to complete tasks based on natural language instruc-

tions. Previous approaches have mainly focused on two areas. One

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2140

Figure 7: Ablation study on FrankaKitchen environment. The
error bar stands for the half standard deviation over three
random trials.

involves directly using natural language representations as input

for the RL policy and training the policy. For example, [13] uses a

pre-trained language model to encode natural language, and pro-

vides the encoded NL as input to the policy. [7] combines language

instruction with observation via Gated-Attention mechanism and

then learns policy to execute the instruction. The other involves

training an additional encoder, where natural language is first input

into the encoder to obtain its representation, which is then used as

input for the policy to train the RL model. For example, [17] learns

a high-level policy that generates abstract language representations

to guide hierarchical RL. [40] learns a task manager module to han-

dle the language representation for reinforcement learning. Our

approach is similar to the first one. The key difference is that we

use in-context learning to extract representations that are better

suited for policy learning.

Large Language Model for Reinforcement Learning. Large
language models store a wealth of knowledge [1, 9, 38, 45], which

can be effectively used to guide policy training [5] by aligning

the prior knowledge with the knowledge learned by RL. LLMs

are leveraged to decompose complex, high-level tasks into multi-

ple low-level, executable step-by-step plans [5, 14, 40, 42]. These

decomposed plans are then used as conditions for downstream re-

inforcement learning tasks. However, due to the limited reasoning

capabilities of LLMs, they often struggle to deliver precise, effec-

tive reasoning. In addition, some works directly use large language

models for extracting useful embed information [24], generating

reward functions [27, 44], or generating imaginary rollouts for

world modeling and policy learning [28]. Compared with the above

methods, we use large language models as both a generator and

task information extractor module. The model automatically gen-

erates in-context learning trajectories and uses these to construct

demonstrations and extract relevant task information.

In-context Learning. In-context learning (ICL) enables lan-

guage models to learn tasks given a few demonstrations [8] which

is similar to the decision process of human beings by learning from

analogy [43]. The language model is expected to learn the hidden

task pattern and accordingly make the right prediction. Therefore,

“How to effectively generate high-quality demonstrations” is an

(a) InCLET w/ {ℎ𝑖 } fusion (b) InCLET w/ only ℎ𝑛

Figure 8: T-SNE projection of the task representations gener-
ated by different fusion method.

important area of research in ICL. Traditional methods heavily

rely on human-written demonstrations, which are often limited

in quantity, diversity, and creativity. Some work leverages LLM

to generate demonstrations [11, 41] which is similar to InCLET’s

trajectories generation (see details in section 3.1). Furthermore,

some studies focus on extracting the latent representations from

demonstrations [21] and find that these can provide good task infor-

mation [12, 22]. Compared to previous methods, our approach does

not rely on human-written demonstrations. Instead, InCLETlever-

ages the internal knowledge of LLMs to generate demonstrations

and extract task-specific information. In contrast to [21, 22], we

validate our method on more complex RL control tasks.

7 CONCLUSION
In this paper, we study the integration of LLMs for embodied

instruction-following control. We propose a simple and effective

approach, InCLET, that processes natural language instruction into

task representation. This is the first study investigating the usage

of ICL for embodied instruction-following control. Compared to

previous NLC-RL methods, InCLET removes the requirements for

pre-collecting data from the environment and improves the perfor-

mance over LLM embeddings. However, there are still some limita-

tions. First, it is challenging to utilize ICL from LLMs to produce

effective task representations, when natural language instructions

become too complex. When NL instructions are long and detailed,

e.g., ‘place the apple on the table, but only after the orange is placed

next to the cup’, it is hard to generate the trajectories that capture

the conditional or sequential nature of these tasks, leading to failed

task representations. Fortunately, the development of LLMs has

the potential to mitigate this issue. Second, our method relies on

LLMs to generate multiple demonstrations through imagination. If

the model is too small, the quality of the generated demonstrations

may be sub-optimal. In the future, we will explore the effective-

ness of using closed-source models to generate demonstrations in

resource-constrained environments, while using smaller models to

generate task representations.

ACKNOWLEDGMENTS
Thiswork is supported byNSFC (62495093) and Jiangsu SF (BK20243039).

The authors thank anonymous reviewers for their helpful discus-

sions and suggestions for improving the article.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2141

REFERENCES
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. 2023. Gpt-4 technical report. CoRR abs/2303.08774 (2023).

[2] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. 2021. Intrinsic Di-

mensionality Explains the Effectiveness of Language Model Fine-Tuning. In

ACL/IJCNLP.
[3] Jeanine Banks and Tris Warkentin. 2024. Gemma: Introducing new

state-of-the-art open models. Google. Available online at: https://blog.
google/technology/developers/gemma-open-models/(accessed 6 April, 2024) (2024).

[4] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,

Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine

Hsu, et al. 2022. Rt-1: Robotics transformer for real-world control at scale. CoRR
abs/2212.06817 (2022).

[5] Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander

Herzog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. 2023.

Do as i can, not as i say: Grounding language in robotic affordances. In CoRL.
PMLR.

[6] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[7] Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pa-

sumarthi, Dheeraj Rajagopal, and Ruslan Salakhutdinov. 2018. Gated-attention

architectures for task-oriented language grounding. In AAAI, Vol. 32.
[8] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu

Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey on in-context learning. CoRR
abs/2301.00234 (2022).

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad

Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,

et al. 2024. The llama 3 herd of models. CoRR abs/2407.21783 (2024).

[10] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman.

2020. Relay Policy Learning: Solving Long-Horizon Tasks via Imitation and

Reinforcement Learning. In CoRL.
[11] Wei He, Shichun Liu, Jun Zhao, Yiwen Ding, Yi Lu, Zhiheng Xi, Tao Gui, Qi

Zhang, and Xuanjing Huang. 2024. Self-Demos: Eliciting Out-of-Demonstration

Generalizability in Large Language Models. CoRR abs/2404.00884 (2024).

[12] Roee Hendel, Mor Geva, and Amir Globerson. 2023. In-context learning creates

task vectors. CoRR abs/2310.15916 (2023).

[13] Felix Hill, Sona Mokra, Nathaniel Wong, and Tim Harley. 2020. Human

instruction-following with deep reinforcement learning via transfer-learning

from text. CoRR abs/2005.09382 (2020).

[14] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. 2022. Lan-

guage models as zero-shot planners: Extracting actionable knowledge for em-

bodied agents. In ICML.
[15] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-

vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,

Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7B. CoRR abs/2310.06825

(2023).

[16] Shengyi Jiang, Jing-Cheng Pang, and Yang Yu. 2020. Offline Imitation Learning

with a Misspecified Simulator. In NeurIPS.
[17] Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. 2019. Lan-

guage as an abstraction for hierarchical deep reinforcement learning. Advances
in Neural Information Processing Systems 32 (2019).

[18] William B Johnson. 1984. Extensions of Lipshitz mapping into Hilbert space. In

CMAP.
[19] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert:

Pre-training of deep bidirectional transformers for language understanding. In

NAACL-HLT.
[20] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. 2018. Measuring

the Intrinsic Dimension of Objective Landscapes. In ICLR.
[21] Jiahao Li, Quan Wang, Licheng Zhang, Guoqing Jin, and Zhendong Mao. 2024.

Feature-Adaptive and Data-Scalable In-Context Learning. CoRR abs/2405.10738

(2024).

[22] Sheng Liu, Haotian Ye, Lei Xing, and James Y Zou. 2024. In-context Vectors:

Making In Context Learning More Effective and Controllable Through Latent

Space Steering. In ICML.

[23] Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob N. Foerster, Jacob

Andreas, Edward Grefenstette, Shimon Whiteson, and Tim Rocktäschel. 2019. A

Survey of Reinforcement Learning Informed by Natural Language. In IJCAI.
[24] Vivek Myers, Andre Wang He, Kuan Fang, Homer Rich Walke, Philippe Hansen-

Estruch, Ching-An Cheng, Mihai Jalobeanu, Andrey Kolobov, Anca Dragan, and

Sergey Levine. 2023. Goal representations for instruction following: A semi-

supervised language interface to control. In CoRL. PMLR.

[25] Jing-Cheng Pang, Si-Hang Yang, Xiong-Hui Chen, Xinyu Yang, Yang Yu, Mas

Ma, Ziqi Guo, Howard Yang, and Bill Huang. 2023. Object-Oriented Option

Framework for Robotics Manipulation in Clutter. In IROS.
[26] Jing-Cheng Pang, Nan Tang, Kaiyuan Li, Yuting Tang, Xin-Qiang Cai, Zhen-Yu

Zhang, GangNiu, Masashi Sugiyama, and Yang Yu. 2025. Learning View-invariant

World Models for Visual Robotic Manipulation. In ICLR.
[27] Jing-Cheng Pang, Pengyuan Wang, Kaiyuan Li, Xiong-Hui Chen, Jiacheng Xu,

Zongzhang Zhang, and Yang Yu. 2024. Language Model Self-improvement by

Reinforcement Learning Contemplation. In ICLR.
[28] Jing-Cheng Pang, Si-Hang Yang, Kaiyuan Li, Jiaji Zhang, Xiong-Hui Chen, Nan

Tang, and Yang Yu. 2024. Knowledgeable Agents by Offline Reinforcement

Learning from Large Language Model Rollouts. In NeurIPS.
[29] Jing-Cheng Pang, Xin-Yu Yang, Si-Hang Yang, Xiong-Hui Chen, and Yang Yu. 2024.

Natural language instruction-following with task-related language development

and translation. NeurIPS (2024).
[30] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons.

[31] Hong Qian, Yi-Qi Hu, and Yang Yu. 2016. Derivative-Free Optimization of High-

Dimensional Non-Convex Functions by Sequential Random Embeddings. In IJCAI.
1946–1952.

[32] Hong Qian and Yang Yu. 2021. Derivative-free reinforcement learning: a review.

Frontiers of Computer Science 15, 6 (2021), 156336.
[33] Antonin Raffin, AshleyHill, AdamGleave, Anssi Kanervisto, Maximilian Ernestus,

and Noah Dormann. 2021. Stable-baselines3: Reliable reinforcement learning

implementations. Journal of Machine Learning Research 22, 268 (2021).

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017).

[35] Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu.

2022. Black-Box Tuning for Language-Model-as-a-Service. In ICML, Vol. 162.
20841–20855.

[36] Richard S Sutton. 2018. Reinforcement learning: An introduction. A Bradford
Book (2018).

[37] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine

for model-based control. In IROS.
[38] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. CoRR
abs/2307.09288 (2023).

[39] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9 (2008).

[40] Zoya Volovikova, Alexey Skrynnik, Petr Kuderov, and Aleksandr I Panov. 2024.

Instruction Following with Goal-Conditioned Reinforcement Learning in Virtual

Environments. CoRR abs/2407.09287 (2024).

[41] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel

Khashabi, and Hannaneh Hajishirzi. 2023. Self-Instruct: Aligning Language

Models with Self-Generated Instructions. In ACL.
[42] ZihaoWang, Shaofei Cai, Guanzhou Chen, Anji Liu, XiaojianMa, Yitao Liang, and

Team CraftJarvis. 2023. Describe, explain, plan and select: interactive planning

with large language models enables open-world multi-task agents. In NeurIPS.
[43] Patrick H Winston. 1980. Learning and reasoning by analogy. Commun. ACM

23, 12 (1980).

[44] Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong,

Yanchao Yang, and Tao Yu. 2024. Text2Reward: Reward Shaping with Language

Models for Reinforcement Learning. In ICLR.
[45] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Cheng-

peng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 technical

report. CoRR abs/2407.10671 (2024).

[46] Yangwenhui Zhang, Hong Qian, Xiang Shu, and Aimin Zhou. 2023. High-

Dimensional Dueling Optimization with Preference Embedding. In AAAI.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2142

	Abstract
	1 Introduction
	2 Background
	2.1 RL and NLC-RL
	2.2 ICL and task representations
	2.3 Random Projection Technique for Dimension Reduction

	3 Method
	3.1 Generating Imaginary In-context Demonstrations by Prompting LLM
	3.2 Extracting Task Representations via In-context Learning from LLM
	3.3 Policy Learning with Task Representation

	4 Theoretical Justification
	5 Experiments
	5.1 Experiment Setup
	5.2 Main Results
	5.3 Effectiveness of the InCLET
	5.4 Compatibility with Different LLMs
	5.5 Ablation Study

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

