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ABSTRACT
Multi-agent systems strategic verification is a branch of formal

methods to model, reason about, and verify strategic behavior in

complex environments. The notion of agent capacity was intro-

duced alongside the strategic logic CapATL to model multi-agent

systems in which each player may exhibit diverse abilities or pro-

files. These capacities can represent various aspects, such as an

agent’s experience level, personality traits, type, or version. In real-

world applications, domain knowledge or prior statistical analyses

may provide a probability distribution over the possible profiles of

each agent. This leads to the concept of stochastic abilities, where

capacities are assigned probabilistically, yet remain private to other

agents. In this context, we introduce a novel probabilistic strate-

gic logic, called ATL-SA, that allows the expression of properties

concerning the likelihood that agents or coalitions can achieve

specific temporal objectives under uncertainty about their capaci-

ties. We study the upper and lower complexity bounds of ATL-SA

model checking and demonstrate its practical applicability through

a use case in cybersecurity, showcasing its potential for analysing

systems with probabilistic agent profiles.
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1 INTRODUCTION
As modern systems grow increasingly complex, their specifica-

tions become more intricate, making it challenging for humans to

ensure that implementations perform as intended. This difficulty

often leads to errors, motivating the development of formal verifica-

tion techniques that rigorously prove system correctness. Among
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these techniques, model checking [14] stands out as a powerful ap-

proach, ensuring that all possible system behaviors meet specified

requirements. Model checking involves three essential components:

a modeling formalism to abstract the system, a logical formalism

to define properties, and a model-checking algorithm to verify if

the system model satisfies these properties.

With the growing interconnection of systems, the need to anal-

yse open systems has become more pronounced, particularly in the

context of Multi-Agent Systems (MAS), that describe the interac-

tions between autonomous entities with distinct objectives. In this

domain, Concurrent Game Structures (CGS) model agents’ actions,

the system’s states, and the propositions true in each state. From

any given state, agents choose actions, and the system transitions

to a new state based on the joint actions of the agents. Alur et al.

introduced Alternating-time Temporal Logic (ATL) [3] to express

the strategic capabilities of agent coalitions in achieving temporal

objectives within a CGS. For example, one might specify that if a

read command is sent to a memory controller, a register cannot be

written until the read operation completes, which can be expressed

using the ATL property 𝑟𝑒𝑎𝑑𝐶𝑚𝑑 → ⟨𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ⟩(¬𝑤𝑟𝑖𝑡𝑒) U 𝑟𝑒𝑎𝑑 .
Since ATL model checking is computationally feasible in polyno-

mial time, it has gained widespread use in verifying MAS.

Over time, ATL has been extended to address a variety of objec-

tives, including epistemic properties [18–20, 25, 26, 28, 29], quantita-

tive aspects [2, 23], probabilistic outcomes [7, 10, 13, 18, 21, 23, 25],

real-time constraints [12, 15], strategy specifications [22, 30, 31], or

action specifications [1, 5, 8, 9, 17]. These extensions have signifi-

cantly broadened the scope of ATL in practical applications.

Our work resides at the intersection of probabilistic strategic

logics and action specifications. We introduce the notion of sto-

chastic agents in CGS with ATL objectives, formalized in a new

framework called Alternating-time Temporal Logic with Stochastic

Abilities (ATL-SA). Stochastic agents possess a profile, referred to

as a capacity, which limits the actions available to them during the

system’s execution, similar to the approach in [5]. The distribution

of these profiles is given as part of the game structure. For example,

an agent might be either right- or left-handed, and the agent’s hand-

edness could restrict the set of actions it can perform. However, as

opposed to [5], we consider a probability distribution over agent

profiles. For instance, we can model the fact that 90% of agents are

right-handed and 10% are left-handed, and compute optimal strate-

gies for agents aiming to achieve temporal objectives with highest
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probability in this uncertain context. The concept of agents’ capaci-

ties is relevant in various contexts, including distributed computing,

where systems have different resources; heterogeneous robot fleets,

where robots exhibit varying capabilities; social structures, where

agents possess distinct personality traits (e.g., altruistic, adventur-

ous, or selfish); and cybersecurity, where different attacker profiles

require tailored defense strategies. In the cybersecurity domain,

defending against all potential attackers may be infeasible, but op-

timizing the probability of defending against a stochastic attacker

becomes a crucial and challenging problem. The stochastic aspect

introduced in this work is distinct from the conventional notion

of stochastic concurrent game structures, where each joint action

results in probabilistic outcomes. It also differs from stochastic

strategies, where agents select distributions over actions based on

history. The notion of stochastic agents can be combined with these

elements, opening up interesting avenues for future research. We

refer to Section 6 for further explanation of how stochastic agents

differ from previous notions of stochasticity in MAS.

Contributions. This paper makes the following contributions:

(i) we introduce ATL-SA to reason about strategic and temporal

objectives in the context of stochastic agents, considering both

communicating and uniform semantics, (ii) for both semantics, we

prove the NEXPTIME-completeness of ATL-SA model checking

with single strategy, the PTIME-completeness for the bounded-ca-

pacity case, and the PNEXPTIME
-membership in the general case,

(iii) we demonstrate the applicability of ATL-SA with a cyberse-

curity illustration, where we compute optimal defense strategies

against stochastic attackers.

Outline. Section 2 introduces the game structure and Section 3

formalizes ATL-SA’s syntax and semantics. Section 4 studies the

model-checking problem. Section 5 illustrates the practical use of

ATL-SA through a cybersecurity case study. Finally, Sections 6 and 7

compare our work to existing research and conclude the paper.

2 GAME STRUCTURE
This section introduces some foundational concepts and outlines

the structure of the game and its related definitions.

Let 𝑋 and 𝑌 be two sets. We denote by P(𝑋 ) the power set of
𝑋 , by 𝑓 : 𝑋 → 𝑌 a total function from 𝑋 to 𝑌 , and by 𝑔 : 𝑋 ⇀ 𝑌

a partial function from 𝑋 to 𝑌 . For two functions 𝑓 : 𝑋1 → 𝑌 and

𝑔 : 𝑋2 → 𝑌 , where 𝑋1 ∩𝑋2 = ∅, the function 𝑓 ⊕ 𝑔 from 𝑋1 ∪𝑋2 to
𝑌 assigns 𝑓 (𝑥) (resp. 𝑔(𝑥)) to an input 𝑥 in 𝑋1 (resp. 𝑋2). The set

of positive natural numbers is denoted by N. A signature is a tuple

⟨Ag,Π⟩, where Ag = {1, . . . , 𝑛} is a set of 𝑛 ∈ N agents, and Π is a

finite set of atomic propositions.

A countable probability space (Ω, P) is a non-empty countable

set Ω of outcomes, defining the set P(Ω) of events, and a probability
function P : P(Ω) → [0, 1] that assigns a probability to each

event.
1
It must satisfy P(Ω) = 1 and, for any𝑊 ⊆ Ω, P(𝑊 ) =∑

𝜔∈𝑊 P({𝜔}). Alternatively, a countable probability space can

be defined via a probability distribution over Ω, i.e., a function

𝛿 : Ω → [0, 1] such that

∑
𝜔∈Ω 𝛿 (𝜔) = 1. The corresponding

probability space is (Ω, P), where for𝑊 ⊆ Ω, P(𝑊 ) = ∑
𝜔∈𝑊 𝛿 (𝜔).

1
In the general case, a probability space is given by (Ω, F, P) , where F ⊆ P(Ω) is a
𝜎-algebra. However, since Ω is countable, we implicitly take F = P(Ω) .

Action Description

𝑤 wait

𝑖 intimidate

𝑔 give up

𝑛𝑔 do not give up

𝑐𝑙 compete with left hand

𝑐𝑟 compete with right hand

𝑠𝑟 use strong right hand

𝑠𝑙 use strong left hand

𝑤𝑟 use weak right hand

𝑤𝑙 use weak left hand

(a) Actions.

Agent Cap Actions Proba

1

𝑐𝑟
1

𝑤, 𝑖, 𝑐𝑙, 𝑐𝑟, 𝑠𝑟, 𝑤𝑙 0.8

𝑐𝑙
1

𝑤, 𝑖, 𝑐𝑙, 𝑐𝑟, 𝑠𝑙, 𝑤𝑟 0.2

2

𝑐𝑟
2

𝑤,𝑛𝑔, 𝑠𝑟, 𝑤𝑙 0.75

𝑐𝑙
2

𝑤,𝑛𝑔, 𝑠𝑙, 𝑤𝑟 0.15

𝑐𝑟𝑐
2

𝑤,𝑔, 𝑠𝑟, 𝑤𝑙 0.08

𝑐𝑙𝑐
2

𝑤,𝑔, 𝑠𝑙, 𝑤𝑟 0.02

(b) Capacities.

Table 1: Arm wrestling parameters.

A discrete random variable over a discrete probability space (Ω, P)
with values in a countable set 𝐸 is a function 𝑉 : Ω → 𝐸.

We model the environment using a Concurrent Game Structure

with Stochastic Abilities (CGS-SA), an extension of a deterministic

CGS that includes a probability distribution for each agent over

subsets of actions.

Definition 2.1 (Concurrent Game Structure with Stochastic Abil-

ities). A CGS-SA G =
〈
Ag, St,Π, 𝜋,Ac, 𝑑, 𝑜,Δ1, . . . ,Δ |Ag |

〉
over a

signature ⟨Ag,Π⟩ is a structure with: a finite set of states St, a label-
ing function 𝜋 : St → P(Π), a finite set of actions Ac, a protocol
function 𝑑 : Ag × St → P(Ac) where 𝑑 (𝑎, 𝑠) is the set of actions
available for the agent 𝑎 ∈ Ag in the state 𝑠 ∈ St, a transition

function 𝑜 : St × Ac𝑛 ⇀ St defined for all (𝑠, 𝛼1, . . . , 𝛼𝑛) verifying
𝛼𝑎 ∈ 𝑑 (𝑎, 𝑠) for all 𝑎 ∈ Ag, and, for each 𝑎 ∈ Ag, a probability

distribution Δ𝑎 : P(Ac) → [0, 1] over action subsets. We assume

that the probability distribution of each agent is independent. A

CGS-SA must verify the progression condition, that is, for all agents

𝑎 ∈ Ag, for all 𝐴 ⊆ Ac such that Δ𝑎 (𝐴) > 0, for all states 𝑠 ∈ St, we
have 𝐴 ∩ 𝑑 (𝑎, 𝑠) ≠ ∅.

Throughout this paper, when referring to a CGS-SA G, we as-
sume that G =

〈
Ag, St,Π, 𝜋,Ac, 𝑑, 𝑜,Δ1, . . . ,Δ |Ag |

〉
, with a signa-

ture ⟨Ag,Π⟩ where |Ag| = 𝑛. During the game execution, each

agent 𝑎 ∈ Ag is assigned a subset of actions 𝑐 ⊆ Ac according

to a probability Δ𝑎 (𝑐). The agent must use actions from this sub-

set for the remainder of the game (or until a new subset is as-

signed). A subset 𝑐 ⊆ Ac is called a (positive-probability) capacity

of agent 𝑎 if Δ𝑎 (𝑐) > 0. We denote the set of such capacities by

Δ>0
𝑎 = {𝑐 ⊆ Ac | Δ𝑎 (𝑐) > 0}. The progression condition from Defini-

tion 2.1 ensures that any agent 𝑎 ∈ Ag, assigned a capacity 𝑐 ∈ Δ>0
𝑎 ,

can perform at least one action in every state. A CGS is a CGS-SA

where, for all 𝑎 ∈ Ag, Δ𝑎 (Ac) = 1, allowing us to omit distributions

and simply define a CGS by ⟨Ag, St,Π, 𝜋,Ac, 𝑑, 𝑜⟩.

Example 2.2. Consider an arm wrestling match between two

agents Ag = {1, 2}. Agent 1 decides whether to compete with the

right or left arm. Additionally, agent 1 can attempt to intimidate

agent 2, hoping for a forfeit. The outcome depends on the agents’

handedness. The available actions are Ac = {𝑤, 𝑖, 𝑔, 𝑛𝑔, 𝑐𝑙, 𝑐𝑟, 𝑠𝑟, 𝑠𝑙,
𝑤𝑟,𝑤𝑙}, with interpretations shown in Table 1a. Agent 1 may

be right-handed (𝑐𝑟
1
= {𝑤, 𝑖, 𝑐𝑙, 𝑐𝑟, 𝑠𝑟,𝑤𝑙}, probability 0.8) or left-

handed (𝑐𝑙
1
= {𝑤, 𝑖, 𝑐𝑙, 𝑐𝑟, 𝑠𝑙,𝑤𝑟 }, probability 0.2). Agent 2 has the

capacities: right-handed (𝑐𝑟
2
= {𝑤,𝑛𝑔, 𝑠𝑟,𝑤𝑙}, probability 0.75), left-

handed (𝑐𝑙
2
= {𝑤,𝑛𝑔, 𝑠𝑙,𝑤𝑟 }, probability 0.15), right-handed cow-

ard (𝑐𝑟𝑐
2

= {𝑤,𝑔, 𝑠𝑟,𝑤𝑙}, probability 0.08), or left-handed coward
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𝑆 𝐼 𝑊 𝐹

𝑅

𝐿

𝑖,𝑤

𝑤,𝑛𝑔 𝑤,𝑔

𝑐𝑟,𝑤

𝑐𝑙,𝑤

𝑠𝑟
,𝑤
𝑟

𝑠𝑟, 𝑠𝑟

𝑤
𝑟, 𝑠𝑟𝑤

𝑟,𝑤
𝑟

𝑠𝑙,𝑤
𝑙

𝑠𝑙
, 𝑠
𝑙

𝑤
𝑙,
𝑠𝑙

𝑤
𝑙,
𝑤
𝑙

𝑤
,𝑤

𝑤
,𝑤

Figure 1: CGS-SA for the arm wrestling game.

(𝑐𝑙𝑐
2
= {𝑤,𝑔, 𝑠𝑙,𝑤𝑟 }, probability 0.02). These probabilities are shown

in Table 1b. The game is modeled as the CGS-SA shown in Figure 1.

State 𝑆 is the initial state, 𝐼 means intimidation, 𝑅 (resp. 𝐿) is for

right-hand (resp. left-hand) competition,𝑊 (resp. 𝐹 ) is accessed

when agent 1 wins (resp. fails).

A CGS-SA is interpreted through paths, which specify possible

executions of the game, keeping track of both the visited states

and actions taken. Unlike ATL, which records only the states, our

definition includes actions to reflect the agents’ capacities.

Definition 2.3 (Path). A path in a CGS-SA G is a possibly infinite

word of the form 𝑠1 ®𝛼1𝑠2 ®𝛼2 . . . , where ®𝛼𝑖 = (𝛼1
𝑖
, . . . , 𝛼𝑛

𝑖
) ∈ Ac𝑛

represents the joint action of the agents at step 𝑖 . The path must

satisfy the condition that for all 𝑖 , 𝑠𝑖+1 = 𝑜 (𝑠𝑖 , 𝛼1𝑖 , . . . , 𝛼
𝑛
𝑖
). If a path

is finite, it ends with a state. The set of all paths is denoted by PtG ,
and the set of finite paths is denoted by Pt<𝜔G .

Given a path 𝜌 = 𝑠1 ®𝛼1𝑠2 ®𝛼2 . . . in G, for any state index 𝑖 in 𝜌 ,

we define the prefix 𝜌≤𝑖 = 𝑠1 ®𝛼1 . . . 𝑠𝑖 , the suffix 𝜌≥𝑖 = 𝑠𝑖 ®𝛼𝑖 . . . , the
𝑖th state 𝜌 [𝑖] = 𝑠𝑖 and, the last state (if finite) last(𝜌). Given a joint

action ®𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Ac𝑛 , we denote by ®𝛼 [𝑎] = 𝛼𝑎 the action
of agent 𝑎. A transition is a path with exactly two states, and the

set of transitions in G is denoted Pt⟨2⟩G .

We call a capacity assignment for a set of agents 𝑌 ⊆ Ag (re-

ferred to as coalition) a function 𝜅 : 𝑌 → P(Ac) such that, for all

agents 𝑎 ∈ Ag, 𝜅 (𝑎) ∈ Δ>0
𝑎 . A capacity assignment 𝜅 is complete

if its domain is Ag and the set of complete capacity assignments

in G is denoted by ΓG . The distributions Δ1, . . . ,Δ𝑛 induce the dis-

crete probability space (ΓG, PG) such that, for 𝜅 ∈ ΓG , we have

PG [{𝜅}] =
∏
𝑎∈Ag Δ𝑎 (𝜅 (𝑎)). As the events for different agents are

assumed independent, PG [{𝜅}] measures the probability of the

event that all agents in 𝑎 ∈ Ag have respectively the capacity 𝜅 (𝑎).
The agents’ action choice in G at each time point is formalized

as a strategy. It is a function 𝑠 : ΓG × Pt<𝜔G → Ac that maps each

complete capacity assignment and finite path (history) to an action.

A strategy assignment is a partial function 𝜎 : Ag ⇀ (ΓG×Pt<𝜔G →
Ac) that assigns strategies to agents such that, for all 𝑎 ∈ dom(𝜎),
𝜅 ∈ ΓG , and 𝜌 ∈ Pt<𝜔G , it verifies 𝜎 (𝑎) (𝜅, 𝜌) ∈ 𝜅 (𝑎) ∩ 𝑑 (𝑎, last(𝜌)).
We say that a strategy assignment is complete if and only if its

domain is Ag. A strategy assignment 𝜎 with domain 𝑌 ⊆ Ag is

uniform (resp. distributed) if, for all agents 𝑎 ∈ 𝑌 , all finite paths
𝜌 ∈ Pt<𝜔G , and all complete capacity assignments 𝜅 and 𝜅′, we have
𝜅 (𝑎) = 𝜅′ (𝑎) (resp. for all 𝑏 ∈ 𝑌 , 𝜅 (𝑏) = 𝜅′ (𝑏)) implies 𝜎 (𝑎) (𝜅, 𝜌) =
𝜎 (𝑎) (𝜅′, 𝜌). We abbreviate by u- and d-strategy assignment the

uniform and distributed strategy assignments, respectively.

An outcome of a complete strategy assignment starting from a

given state in a CGS-SA is a discrete random variable, which yields

the unique path that adheres to the specified strategy assignment.

Definition 2.4 (Outcome). Let G be a CGS-SA, 𝑠 ∈ St, and 𝜎 be

a complete strategy assignment. The outcome OutG (𝑠, 𝜎) : ΓG →
PtG is a discrete random variable defined such that for a complete

capacity assignment 𝜅, OutG (𝑠, 𝜎) (𝜅) is the unique infinite path
𝑠1 ®𝛼1𝑠2 ®𝛼2 . . . with 𝑠1 = 𝑠 . For all 𝑖 ∈ N and 𝑎 ∈ Ag, it holds that
®𝛼𝑖 [𝑎] = 𝜎 (𝑎) (𝜅, 𝑠1 ®𝛼1 . . . ®𝛼𝑖−1𝑠𝑖 ).

To provide context, we compare our definition of outcomes with

those used in ATL [3] and its probabilistic extension Probability ATL

(PATL) [13]. In ATL, the strategy assignment is partial, meaning

that the outcome is a set of paths representing all possible responses

from the opponents, with one path per response. In PATL, the strat-

egy assignment is also partial, but the outcome is a set of probability

distributions over paths, each corresponding to different opponent

responses. In contrast, our approach fixes the opponent’s strategy

by requiring the second argument of Out to be a complete strategy

assignment, as described in Definition 2.4. This change simplifies

the outcome to a single probability distribution rather than a set

of distributions, one for each possible response from the opponent.

Consequently, the semantics of ATL-SA (cf., Definition 3.3) involves

a universal quantification over the opponent’s strategies, rather

than over a set of outcomes (as in ATL and PATL). This design

choice has several advantages. By avoiding the need to define a

function that returns a set of distributions, it clarifies the fact that

there is exactly one distribution corresponding to each response of

the opponent. Furthermore, this approach makes the formulation

of the semantics more intuitive, as it directly quantifies over the

strategies of both the strategic coalition and the opponents. More-

over, this allows writing the probability of an outcome satisfying a

given formula in a simple form (cf., Definition 3.3).

With the game structure, paths, and outcomes defined, we are

now ready to introduce the logic ATL-SA, which will express the

properties of CGS-SA in the following section.

3 LOGIC
The properties of CGS-SAs encompass the strategic abilities of

agents, temporal conditions, and probabilistic aspects. This section

formalizes ATL-SA, an extension of ATL [3], to articulate these

properties.

Syntax. ATL-SA extends ATL [3] by introducing a threshold on

the strategic operator. This threshold specifies the probability with

which a given temporal objective must be satisfied.

Definition 3.1 (Syntax). The following grammar defines an ATL-

SA formula 𝜙 on a signature ⟨Ag,Π⟩:
𝜙 ::= ℓ | ¬𝜙 | 𝜙 ∧ 𝜙 | ⟨𝑌 ⟩⊲⊳𝑝𝜓
𝜓 ::= X𝜙 | 𝜙 U 𝜙 | 𝜙 R 𝜙

where ℓ ∈ Π is an atomic proposition, 𝑌 ⊆ Ag is an agent coalition,

⊲⊳ ∈ {≤, <, >, ≥} is a comparison operator, and 𝑝 ∈ [0, 1] represents
a probability threshold.

The Boolean operators ∨, →, and ↔ are defined in the usual

manner. The set of agents 𝑌 is referred to as a strategic coalition,
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while ⟨·⟩ is called the strategic operator. The expression ⟨𝑌 ⟩⊲⊳𝑝𝜓
means “there exists a strategy for 𝑌 to ensure𝜓 with a probability

comparable to 𝑝 with ⊲⊳.” A subformula𝜓 is termed a temporal for-

mula, where X is the “next” operator, U is the “until” operator, and

R is the “releases” operator. We also define the “finally” operator

F such that F𝜙 := ⊤ U 𝜙 , and the “globally” operator G such that

G𝜙 := ⊥R𝜙 . Notably, ATL-SA shares the same syntax as PATL [13]

(with the exception of the = operator, which is arguably less inter-

esting in practice and omitted for simplicity; see Remark 1). We

can encompass ATL’s syntax by restricting ATL-SA with ⊲⊳ set to

≥ and 𝑝 = 1. Thus, the 𝑝 and ⊲⊳ can be omitted when we clearly

define an ATL formula.

Example 3.2. Building on Example 2.2, the formula 𝜙 = ⟨1⟩≥0.37
F(𝑤𝑖𝑛), where 𝑤𝑖𝑛 is a label that is true in state𝑊 only, means:

“there exists a strategy for agent 1 to ensure reaching the state𝑊

in the future with a probability greater than or equal to 0.37.”

Semantics. ATL-SA semantics extends ATL with the probability

of agents’ capacities as defined by the CGS-SA. We define the u-

and d-semantics for u- and d-strategy assignments, respectively.

Definition 3.3 (Semantics). Let G be a CGS-SA over a signature

⟨Ag,Π⟩, 𝜌 be an infinite path in G, ℓ ∈ Π be an atomic proposition,

𝑎 ∈ Ag be an agent, and 𝑌 ⊆ Ag be a coalition of agents. Let

(𝜙, 𝜙1, 𝜙2) denote three ATL-SA formulae on ⟨Ag,Π⟩, and 𝜓 be a

temporal formula on ⟨Ag,Π⟩. For 𝑥 ∈ {d, u}, we define ATL-SA

𝑥-semantics through the following satisfaction relation:

• (G, 𝜌) |=𝑥 ℓ iff ℓ ∈ 𝜋 (𝜌 [1]),
• (G, 𝜌) |=𝑥 ¬𝜙 iff (G, 𝜌) ̸|=𝑥 𝜙 ,
• (G, 𝜌) |=𝑥 𝜙1 ∧ 𝜙2 iff (G, 𝜌) |=𝑥 𝜙1 and (G, 𝜌) |=𝑥 𝜙2,
• (G, 𝜌) |=𝑥 ⟨𝑌 ⟩⊲⊳𝑝𝜓 iff there exists an 𝑥-strategy assignment

𝜎𝑌 , called a winning strategy assignment for 𝑌 , such that

for all strategy assignments 𝜎Ag\𝑌 for Ag \ 𝑌 , we have2

PG
[
(G,OutG (𝜌 [1], 𝜎𝑌 ⊕ 𝜎Ag\𝑌 )) |=𝑥 𝜓

]
⊲⊳ 𝑝

• (G, 𝜌) |=𝑥 X𝜙 iff (G, 𝜌≥2) |=𝑥 𝜙 ,
• (G, 𝜌) |=𝑥 𝜙1U𝜙2 iff there exists 𝑖 ∈ N such that (G, 𝜌≥𝑖 ) |=𝑥
𝜙2 and for all 𝑗 ∈ N where 𝑗 < 𝑖 , we have (G, 𝜌≥ 𝑗 ) |=𝑥 𝜙1,

• (G, 𝜌) |=𝑥 𝜙1 R 𝜙2 iff either (i) for all 𝑖 ∈ N, (G, 𝜌≥𝑖 ) |=𝑥 𝜙2,
or (ii) there exists 𝑖 ∈ N such that (G, 𝜌≥𝑖 ) |=𝑥 𝜙1 ∧ 𝜙2 and
for all 𝑗 ∈ N where 𝑗 < 𝑖 , (G, 𝜌≥ 𝑗 ) |=𝑥 𝜙2.

For an ATL-SA formula 𝜙 , a CGS-SA G, and an infinite path 𝜌 ,

the satisfaction relation (G, 𝜌) |=𝑥 𝜙 depends only on the first state

of 𝜌 . Therefore, we may simply write (G, 𝑠) |=𝑥 𝜙 as shorthand for

(G, 𝜌) |=𝑥 𝜙 , where 𝑠 = 𝜌 [1]. Moreover, when 𝜙 is an ATL formula

and G is a CGS, the relation |=𝑥 coincides with the semantics of

ATL for any 𝑥 ∈ {d, u}. We explicitly denote this as |=ATL when the

formula is in ATL and G is a CGS. It is well known that the ATL

model-checking problem is PTIME [3].

Example 3.4. Following from the arm wrestling game G de-

scribed in Example 2.2, we consider the formula𝜙 = ⟨1⟩≥0.37F(𝑤𝑖𝑛)
from Example 3.2. The formula 𝜙 holds true (in both u- and d-

semantics, since there is a single agent in the coalition) if and only

2
Using a common shortcut from probability theory, for a complete strategy assignment

𝜎 and a state 𝑠 in a CGS-SA G, we let (G,OutG (𝑠, 𝜎 ) ) |=𝑥 𝜓 stand for {𝜅 ∈ ΓG |
(G,OutG (𝑠, 𝜎 ) (𝜅 ) ) |=𝑥 𝜓 }.

if agent 1 has a strategy to win with a probability greater than

0.37. We can intuit that a good strategy for agent 1 is to first in-

timidate, and if that does not work, to compete using either the

right or left hand depending on whether agent 1 has the capacity

𝑐𝑟
1
or 𝑐𝑙

1
, respectively. We denote this strategy as 𝜎1 (with domain

{1}). Let 𝜎2 represent a strategy assignment with domain {2}. If
agent 2 is a coward or has a different handedness than agent 1,

the outcome of 𝜎1 ⊕ 𝜎2 starting from state 𝑆 necessarily reaches

the state 𝑤𝑖𝑛. Thus, we have (G,OutG (𝑆, 𝜎1 ⊕ 𝜎2) (𝜅)) |=𝑥 𝜙 un-

der the sufficient condition that 𝜅 ∉ {𝜅𝑟𝑟 , 𝜅𝑙𝑙 }, where 𝜅𝑟𝑟 (1) = 𝑐𝑟1 ,
𝜅𝑟𝑟 (2) = 𝑐𝑟

2
, 𝜅𝑙𝑙 (1) = 𝑐𝑙

1
, and 𝜅𝑙𝑙 (2) = 𝑐𝑙

2
. Therefore, we have

PG
[
(G,OutG (𝑆, 𝜎1 ⊕ 𝜎2)) |=𝑥 𝜙

]
≥ 1−PG [{𝜅𝑟𝑟 , 𝜅𝑙𝑙 }] = 1− (0.8×

0.75) − (0.2 × 0.15) = 0.37. Finally, we conclude that (G, 𝐼 ) |=𝑥
⟨1⟩≥0.37F(𝑤𝑖𝑛) for both 𝑥 ∈ {d, u}.

The distributed semantics allows agents within the strategic

coalition to share their capacities, enhancing their strategy space.

Notably, since a uniform strategy assignment is a distributed strat-

egy assignment, we establish Proposition 3.5.

Proposition 3.5. Let G be a CGS-SA, 𝑌 ⊆ Ag, 𝑠 ∈ St, 𝑝 ∈ [0, 1],
⊲⊳ ∈ {≤, <, >, ≥}, and 𝜓 be a temporal formula without a strategic

operator. We have (G, 𝑠) |=u ⟨𝑌 ⟩⊲⊳𝑝𝜓 implies (G, 𝑠) |=
d
⟨𝑌 ⟩⊲⊳𝑝𝜓 .

Having established a formal semantics for ATL-SA, we now

turn our attention to model checking, which involves determining

whether a given model satisfies the specified formula.

4 MODEL CHECKING
This section presents ATL-SA model checking for both uniform and

distributed semantics. For 𝑥 ∈ {d, u}, we denote by Atl-Sa-MC𝑥

the ATL-SA model-checking problem with 𝑥-semantics. It takes as

input a CGS-SA G, an ATL-SA formula 𝜙 over the same signature,

and a state 𝑠 ∈ St, and returns whether (G, 𝑠) |=𝑥 𝜙 . Moreover,

we denote by ⟨·⟩-Atl-Sa-MC𝑥 the restriction of Atl-Sa-MC𝑥 to

formulae of the form 𝜙 = ⟨𝑌 ⟩⊲⊳𝑝𝜓 where𝜓 does not have strategic

operators. We begin by establishing the NEXPTIME-completeness

of ⟨·⟩-Atl-Sa-MC𝑥 . Then, we deduce the PNEXPTIME
-membership

of Atl-Sa-MC𝑥 and show a PTIME-complete restriction.

Proposition 4.1 demonstrates that we only need to consider

⊲⊳ ∈ {≥, >} in the semantics, as equivalent formulae can be ob-

tained for other relations. Specifically, for ⊲⊳ ∈ {≤, <, >, ≥}, let ⊲⊳ ∈
{≤, <, >, ≥} be the symbol such that 𝑝1 ⊲⊳ 𝑝2 iff 𝑝2 ⊲⊳ 𝑝1. Moreover,

let𝜓 denote the negation of a temporal formula𝜓 , i.e., X𝜙 = X(¬𝜙),
𝜙1 U 𝜙2 = (¬𝜙1) R (¬𝜙2), and 𝜙1 R 𝜙2 = (¬𝜙1) U (¬𝜙2).

Proposition 4.1. Let G be a CGS-SA, 𝑌 be a coalition, 𝑠 ∈ St,
𝑥 ∈ {d, u}, 𝑝 ∈ [0, 1], ⊲⊳ ∈ {≤, <, >, ≥}, and let 𝜓 be a temporal

ATL-SA formula. We have:

(G, 𝑠) |=𝑥 ⟨𝑌 ⟩⊲⊳𝑝𝜓 ⇐⇒ (G, 𝑠) |=𝑥 ⟨𝑌 ⟩⊲⊳(1−𝑝 )𝜓

Proof. For all infinite path 𝜌 and temporal formula𝜓 , we have

(G, 𝜌) ̸|=𝑥 𝜓 iff (G, 𝜌) |=𝑥 𝜓 . So, for all complete strategy assign-

ment 𝜎 and state 𝑠 , we have PG
[
(G,OutG (𝑠, 𝜎)) |=𝑥 𝜓

]
⊲⊳ 𝑝 iff

1 − 𝑝 ⊲⊳ PG
[
(G,OutG (𝑠, 𝜎)) ̸|=𝑥 𝜓

]
. □

For the model-checking procedure, we focus on particular sets of

complete capacity assignments called rectangular complete capacity
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assignment sets. Given a list of capacities in G for each agent

(𝐶1, . . . ,𝐶𝑛) ∈ P(Δ>0
1

) × · · · × P(Δ>0
𝑛 ), let 𝑅G (𝐶1, . . . ,𝐶𝑛) denote

the rectangular complete capacity assignment set, where each agent

𝑎 has a capacity in𝐶𝑎 . Let RG denote the set of all such rectangular

complete capacity assignments. Given a CGS-SA G, we define the

CGS TG = ⟨Ag′, St′,Π′, 𝜋 ′,Ac′, 𝑑′, 𝑜′⟩ as follows:
• Ag′ = Ag ∪ {𝑛 + 1}, where agent 𝑛 + 1 decides the active

capacity assignment in each state.

• St′ = St × RG . A state (𝑠, 𝐾) ∈ St′ means that G is in state 𝑠

and the feasible capacity assignments are within 𝐾 .

• Π′ = Π ∪ ΓG .
• For 𝑞 = (𝑠, 𝐾) ∈ St′, set 𝜋 ′ (𝑞) = 𝜋 (𝑠) ∪ 𝐾 .
• Ac′ includes Ac, ΓG , and partial functions 𝑓 : P(Ac) ⇀ Ac.
• For 𝑞 = (𝑠, 𝐾) ∈ St′, the protocol for agent 𝑎 ∈ Ag, 𝑑′ (𝑎, 𝑞),
consists of functions 𝑓 defined on {𝜅 (𝑎) | 𝜅 ∈ 𝐾} and such

that for each 𝜅 ∈ 𝐾 , we have 𝑓 (𝜅 (𝑎)) ∈ 𝑑 (𝑎, 𝑠) ∩𝜅 (𝑎). Agent
𝑛+1 selects a complete capacity assignment: 𝑑′ (𝑛+1, 𝑞) = 𝐾 .

• For 𝑞 = (𝑠, 𝐾) ∈ St′ and (𝑓1, . . . , 𝑓𝑛, 𝜅) ∈ 𝑑′ (1, 𝑞) × · · · ×
𝑑′ (𝑛 + 1, 𝑞), we have 𝑜′ (𝑞, 𝑓1, . . . , 𝑓𝑛, 𝜅) = (𝑠′, 𝐾 ′), where
𝑠′ = 𝑜 (𝑠, 𝑓1 (𝜅 (1)), . . . , 𝑓𝑛 (𝜅 (𝑛))) and 𝐾 ′ = {𝜅′ ∈ 𝐾 | ∀𝑎 ∈
Ag, 𝑓𝑎 (𝜅′ (𝑎)) = 𝑓𝑎 (𝜅 (𝑎))}. Notice that, indeed, 𝐾 ′ ∈ RG .
Verbally expressed, the game progresses with the actions for

Ag of the capacity assignment chosen by agent 𝑛 + 1 and

the new set of possible capacity assignments contains those

where all agents would have chosen the same action.

Let 𝜙1 and 𝜙2 be two propositional formulae, 𝐾 ⊆ ΓG , and 𝜙𝐾 =∨
𝜅∈𝐾 𝜅. We define the function 𝑔 as follows:

𝑔(𝜓, 𝐾) =


X(𝜙𝐾 → 𝜙1) if𝜓 = X𝜙1,

𝜙1 U (𝜙𝐾 → 𝜙2) if𝜓 = 𝜙1 U 𝜙2,

(𝜙𝐾 → 𝜙1) R 𝜙2 if𝜓 = 𝜙1 R 𝜙2 .

Given a set of complete capacity assignments 𝐾 ⊆ ΓG , Proposi-
tion 4.2 shows that ensuring strategic objectives with u-semantics

for a coalition 𝑌 is equivalent to solving an ATL formula on TG .

Proposition 4.2. Let G be a CGS-SA, 𝑠 ∈ St, 𝑌 ⊆ Ag, 𝐾 ⊆
ΓG , and 𝜓 be a temporal formula without a strategic operator. The

following two propositions are equivalent:

(i) There exists a uniform strategy assignment 𝜎𝑌 for 𝑌 such that,

for every strategy assignment 𝜎Ag\𝑌 for Ag \ 𝑌 and for all

𝜅 ∈ 𝐾 , we have (G,OutG (𝑠, 𝜎𝑌 ⊕ 𝜎Ag\𝑌 ) (𝜅)) |=u 𝜓 .
(ii) (TG, (𝑠, ΓG)) |=ATL ⟨𝑌 ⟩𝑔(𝜓, 𝐾).

Proof. Let𝑚 : PtTG → PtG be a function such that, for any path

𝜂 = (𝑠1, 𝐾1) (𝑓 1
1
, . . . , 𝑓 𝑛

1
, 𝜅1) (𝑠2, 𝐾2) (𝑓 1

2
, . . . , 𝑓 𝑛

2
, 𝜅2) . . . in TG , we

have𝑚(𝜂) = 𝑠1 ®𝛼1𝑠2 ®𝛼2 . . . , where ®𝛼𝑖 = (𝑓 1
𝑖
(𝜅𝑖 (1)), . . . , 𝑓 𝑛𝑖 (𝜅𝑖 (𝑛)))

for all 𝑖 ∈ N. Notice that𝑚 is a surjection. Let 𝜅0 be the unique com-

plete capacity assignment in the CGS TG . For a capacity-uniform
strategy assignment 𝜎 for 𝑌 in G, we define the strategy assign-

ment 𝑡 (𝜎) = 𝜎′ for 𝑌 in TG , such that, for all 𝑎 ∈ Ag and 𝜂 ∈ Pt<𝜔TG
with last(𝜂) = (𝑠, 𝐾), we let 𝜎′ (𝑎) (𝜅0, 𝜂) = 𝑓 , where for all 𝜅 ∈
𝐾 , we set 𝑓 (𝜅 (𝑎)) = 𝜎 (𝑎) (𝜅,𝑚(𝜂)). This is well-defined because

𝜎 (𝑎) (𝜅,𝑚(𝜂)) does not depend on the values 𝜅 (𝑏) with 𝑏 ≠ 𝑎 by

capacity-uniformity. The function 𝑡 is surjective.

Suppose case (i) from Proposition 4.2 holds with a winning strat-

egy 𝜎𝑌 and 𝜓 = 𝜙1 U 𝜙2. Let 𝜎
′
𝑌
be such that 𝑡 (𝜎′

𝑌
) = 𝜎𝑌 (re-

member the surjectivity), and let 𝜎′Ag\𝑌 be a strategy for Ag \ 𝑌
in TG . Consider the path 𝜂 = OutTG ((𝑠, ΓG), 𝜎′𝑌 ⊕ 𝜎′Ag\𝑌 ) (𝜅0). If
(TG, 𝜂) ̸|=ATL 𝜙1, then (G,𝑚(𝜂)) ̸|= 𝜙1, so (G,𝑚(𝜂)) |= 𝜙2. Thus,

(TG, 𝜂) |=ATL 𝜙𝐾 → 𝜙2, implying (TG, 𝜂) |=ATL 𝑔(𝜓, 𝐾). Other-
wise, let 𝑖 ∈ N be the smallest index such that (TG, 𝜌≥𝑖 ) ̸|=ATL 𝜙1,

and let (𝑠𝑖 , 𝐾𝑖 ) = 𝜂 [𝑖]. If 𝐾 ∩ 𝐾𝑖 = ∅, then (TG, 𝜌≥𝑖 ) |=ATL ¬𝜙𝜅 ,
thus (TG, 𝜂) |=ATL 𝑔(𝜓, 𝐾). Otherwise, let 𝜅 ∈ 𝐾 ∩ 𝐾𝑖 , and define

𝜎Ag\𝑌 = 𝑡 (𝜎′Ag\𝑌 ). The path 𝜌 = OutG (𝑠, 𝜎𝑌 ⊕ 𝜎Ag\𝑌 ) (𝜅) satisfies
𝜌≤𝑖 = 𝑚(𝜂)≤𝑖 , (G, 𝜌≥𝑖 ) ̸|= 𝜙1, and, for all 𝑗 < 𝑖 , (G, 𝜌≥ 𝑗 ) |= 𝜙1.

Hence, (G, 𝜌≥𝑖 ) |= 𝜙2 and (TG, 𝜂) |=ATL 𝑔(𝜓, 𝐾). Finally, we con-
clude that (TG, (𝑠, ΓG)) |=ATL ⟨𝑌 ⟩𝑔(𝜓, 𝐾). The cases for𝜓 = 𝜙1 R𝜙2
and𝜓 = X𝜙1 are analogous. Conversely, suppose (TG, (𝑠, ΓG)) |=ATL

⟨𝑌 ⟩𝑔(𝜓, 𝐾) with a winning strategy 𝜎′
𝑌
. Then, 𝑡 (𝜎′

𝑌
) satisfies item (i)

of Proposition 4.2. □

Based on this equivalence, we deduce theNEXPTIME-membership

of ⟨·⟩-Atl-Sa-MC𝑥 for 𝑥 ∈ {d, u}.

Proposition 4.3. For 𝑥 ∈ {d, u}, the problem ⟨·⟩-Atl-Sa-MC𝑥 is

in NEXPTIME.

Proof. Let G, 𝑠 , and 𝜙 = ⟨𝑌 ⟩⊲⊳𝑝𝜓 be a positive instance of ⟨·⟩-
Atl-Sa-MCu, i.e., (G, 𝑠) |=u 𝜙 . By Proposition 4.1, we can assume

⊲⊳ ∈ {≥, >}. By the semantics, (G, 𝑠) |=u 𝜙 iff there is 𝐾 ⊆ ΓG and

a distributed statregy assignment 𝜎𝑌 for 𝑌 such that PG [𝐾] ⊲⊳ 𝑝
and, for all strategy assignment 𝜎Ag\𝑌 for Ag \ 𝑌 and all 𝜅 ∈ 𝐾 ,

we have (G,OutG (𝑠, 𝜎𝑌 ⊕ 𝜎Ag\𝑌 ) (𝜅)) |=d 𝜓 . Such a 𝐾 is the non-

deterministic exponential certificate of (G, 𝑠) |=u 𝜙 . By Propo-

sition 4.2, verifying (G, 𝑠) |=u 𝜙 with the help of 𝐾 boils down

to verifying (TG, (𝑠, ΓG)) |=ATL ⟨𝑌 ⟩𝑔(𝜓, 𝐾). The number of states

in TG is bounded by |St| · |RG | = |St| · 2
∑

𝑎∈Ag |Δ>0
𝑎 |

. The size of

TG is determined by its number of transitions, which is less than

|ΓG | ·
∏
𝑎∈Ag |Ac| |Δ

>0
𝑎 |

for each state. Therefore, the overall size of

TG is less than |St|2 · |Ac|
∑

𝑎∈Ag |Δ>0
𝑎 | · 2

∑
𝑎∈Ag |Δ>0

𝑎 | ≤ 2
𝑃 ( | G | )

for

some polynomial 𝑃 . Moreover, the size of 𝑔(𝜓, 𝐾) is 𝑂 ( |𝜓 | + |𝐾 |) =
𝑂 ( |𝜓 | + 2

| G | ). Since ATL model checking is known to be polyno-

mial [3], we check (G, 𝑠) |=u 𝜙 in EXPTIME with the help of 𝐾 .

Finally, ⟨·⟩-Atl-Sa-MCu is in NEXPTIME.
The distributed semantics can be simulated by merging agents

in the strategic coalition and using the uniform case. Precisely, to

verify ⟨𝑌 ⟩⊲⊳𝑝𝜓 , we merge the agents in 𝑌 into a single agent 𝑎𝑌 ,

whose capacities correspond to the possible tuples of capacities for

each agent in 𝑌 . The actions of 𝑎𝑌 are the tuples of actions from the

agents in 𝑌 . Let G𝑌 denote the CGS-SA after merging 𝑌 . Although

the CGS-SA G𝑌 may exhibit an exponentially larger number of

capacities, the number of complete capacity assignments in both

G and G𝑌 remains the same. Additionally, the size of TG is equal

to that of TG𝑌
. Using the same procedure as the uniform case, we

conclude that ⟨·⟩-Atl-Sa-MC
d
is in NEXPTIME. □

Remark 1. We could extend the construction to handle ⊲⊳ ∈ {=}.
For instance, suppose 𝜙 = ⟨𝑌 ⟩=𝑝𝜙1 U 𝜙2, and let 𝑠 ∈ St. For 𝐾 ⊆ ΓG ,
define 𝜙𝐾 =

∨
𝜅∈𝐾 𝜅 and 𝜙¬𝐾 =

∨
𝜅∈ΓG\𝐾 𝜅. We have: (G, 𝑠) |=u 𝜙

if and only if (TG, (𝑠, ΓG)) |=ATL 𝜙
′
where

𝜙 ′ = ⟨𝑌 ⟩ (𝜙1 ∧ (𝜙¬𝐾 → ¬𝜙2) U ((𝜙𝐾 → 𝜙2) ∧ (𝜙¬𝐾 → ¬𝜙2)))
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𝑠1 𝑠2 𝑠3 . . . 𝑠2𝑛

𝑠𝑡1,𝑡2,𝑡3

𝑠𝑡 ′
1
,𝑡 ′
2
,𝑡 ′
3

.

.

.

𝑠𝑡 ′′
1
,𝑡 ′′
2
,𝑡 ′′
3

𝑉 (𝑡1, 𝑡2, 𝑡3)

𝑉 (𝑡 ′
1
, 𝑡 ′
2
, 𝑡 ′
3
)

𝑉 (𝑡 ′′
1
, 𝑡 ′′
2
, 𝑡 ′′
3
)

𝛼0, ·, . . . , ·

𝛼 ′
0
, ·, . . . , ·

𝛼1, ·, . . . , ·

𝛼 ′
1
, ·, . . . , ·

·, 𝛼0, ·, . . . , ·

·, 𝛼 ′
0
, ·, . . . , ·

·, 𝛼1, ·, . . . , ·

·, 𝛼 ′
1
, ·, . . . , ·

·, .
. .
, ·,
(𝑡 1
, 𝑡
2
, 𝑡
3
)

·, . . . ,
·, (𝑡

′
1

, 𝑡
′
2

, 𝑡
′
3

)

·, . . . , ·, (𝑡 ′′
1 , 𝑡 ′′

2 , 𝑡 ′′
3 )

Figure 2: CGS-SA for the NEXPTIME-completeness proof.

for some 𝐾 ⊆ ΓG such that PG [𝐾] = 𝑝 . With similar formula trans-

formations for R and X, we maintain an NEXPTIME model-checking

algorithm for the extended logic where ⊲⊳ can be in {≤, <,=, >, ≥}.

In some settings, allowing agents in the strategic coalition 𝑌 to

share private information (i.e., moving from uniform semantics to

distributed semantics) simplifies the model checking [16]. However,

in ATL-SA, the cost of finding uniform strategy assignments with

respect to distributed ones is negligible when compared to the

cost of finding a maximal-probability subset of complete capacity

assignment 𝐾 ⊆ ΓG that cannot prevent 𝑌 from achieving their

objective. Indeed, Theorem 4.4 demonstrates that ⟨·⟩-Atl-Sa-MC𝑥

is NEXPTIME-complete for 𝑥 ∈ {d, u}.
We reduce the tiling problem from [11], which is known to be

NEXPTIME-complete [11, 27], to ⟨·⟩-Atl-Sa-MC𝑥 with a single

agent in the coalition (so that uniform and distributed semantics

are equivalent). An instance of the NEXPTIME-tiling problem is

given by (𝑇, 𝑡∗,𝑚), where𝑇 is a set of tile types, 𝑡∗ ∈ 𝑇 , and𝑚 ∈ N
(written in binary). A tile type 𝑡 ∈ 𝑇 is a tuple of four colors, 𝑡 =

(left(𝑡), right(𝑡), up(𝑡), down(𝑡)). The output of a tiling problem

instance (𝑇, 𝑡∗,𝑚) is yes if the𝑚 ×𝑚 plane can be tiled with tiles

of types in 𝑇 and with 𝑡∗ at the plane’s origin, and no otherwise.

Formally, the output is yes if there exists a function 𝜏 : {0, . . . ,𝑚 −
1}2 → 𝑇 , called a tiling, that satisfies the following conditions:

(i) 𝜏 (0, 0) = 𝑡∗,
(ii) up(𝜏 (𝑥,𝑦)) = down(𝜏 (𝑥,𝑦 + 1)) for all 𝑥 ∈ {0, . . . ,𝑚 − 1}

and 𝑦 ∈ {0, . . . ,𝑚 − 2}, and
(iii) right(𝜏 (𝑥,𝑦)) = left(𝜏 (𝑥 + 1, 𝑦)) for all 𝑥 ∈ {0, . . . ,𝑚 − 2}

and 𝑦 ∈ {0, . . . ,𝑚 − 1}.
The main completeness result follows.

Theorem 4.4. The problem ⟨·⟩-Atl-Sa-MC𝑥 isNEXPTIME-complete

for both uniform (𝑥 = u) and distributed (𝑥 = d) semantics.

Proof. Proposition 4.3 establishes the NEXPTIME-membership.

Conversely, we reduce the tiling problem to ⟨·⟩-Atl-Sa-MC𝑥 (for

both 𝑥 ∈ {d, u}). Consider a tiling instance (𝑇, 𝑡∗,𝑚) and assume,

without loss of generality, that 𝑚 = 2
𝑛
. The goal is to construct

a CGS-SA G with a specific state 𝑠1 and an ATL-SA formula 𝜙 =

⟨𝑌 ⟩⊲⊳𝑝𝜓 such that (G, 𝑠1) |=𝑥 𝜙 iff there exists a tiling for (𝑇, 𝑡∗,𝑚).
The structure of the CGS-SA is outlined in Figure 2. For the agents

inG, we denote them as𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑛, 𝑄, 𝑃 (from 1 to 2𝑛+2).
Let 𝑍 = {𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑛}. Agents in 𝑍 possess four equiprob-

able capacities: 𝑐0 = {𝛽0, 𝛼 ′
0
, 𝛼1, 𝛼

′
1
, ·}, 𝑐′

0
= {𝛽′

0
, 𝛼0, 𝛼1, 𝛼

′
1
, ·}, 𝑐1 =

{𝛽1, 𝛼0, 𝛼 ′
0
, 𝛼 ′

1
, ·}, and 𝑐′

1
= {𝛽′

1
, 𝛼0, 𝛼

′
0
, 𝛼1, ·}. The action · indicates

that the agent performs no action. Note that 𝛽′
0
can be used by all

capacities except 𝑐′
0
, and 𝛽0 can only be used by 𝑐′

0
, with a similar

distinction for the other actions. When agent 𝑋𝑖 (resp. 𝑌𝑖 ) has a

capacity in {𝑐0, 𝑐′
0
}, it means that the 𝑖th bit of the binary represen-

tation of a position 𝑥 (resp. 𝑦) is 0. Conversely, if the capacity is

in {𝑐1, 𝑐′
1
}, then the bit is 1. Thus, the capacity assignments of 𝑍

encode a position (𝑥,𝑦) on the grid, where we denote 𝑥𝑖 and 𝑦𝑖 as

the 𝑖th bit of 𝑥 and 𝑦. Agent 𝑄 has 𝑙 equiprobable capacities repre-

sented by 𝑐𝑡 = {𝑡, ·} for each 𝑡 ∈ 𝑇 . Agent 𝑃 , the picker, possesses a
single capacity 𝑐 = {𝛼0, 𝛼 ′

0
, 𝛼1, 𝛼

′
1
, 𝑛} ∪ {(𝑡1, 𝑡2, 𝑡3) ∈ 𝑇 3 | up(𝑡1) =

down(𝑡3) ∧ right(𝑡1) = left(𝑡2)}, and acts as the strategic agent

attempting to prove the existence of a tiling.

The first phase is called the challenge phase (from state 𝑠1 to

𝑠2𝑛 in Figure 2), during which agents in 𝑍 commit to a challenge

position (𝑥𝑐 , 𝑦𝑐 ) of their choice by revealing one of the capacities

from {𝑐0, 𝑐′
0
, 𝑐1, 𝑐

′
1
} that each of these agents do not possess. For

example, agent 𝑋𝑖 will use action 𝛼1 or 𝛼
′
1
(at least one is available

to 𝑋𝑖 ) to indicate that the bit 𝑥𝑐
𝑖
is 1.

In the subsequent pick phase, agent 𝑃 must select three tiles 𝑡1,

𝑡2, and 𝑡3, which 𝑃 claims are located at positions (𝑥𝑐 , 𝑦𝑐 ), (𝑥𝑐 +
1, 𝑦𝑐 ), and (𝑥𝑐 , 𝑦𝑐 + 1) of a solution to the tiling problem. By the

construction of 𝑃 ’s action set, 𝑡1, 𝑡2, and 𝑡3 adhere to the tiling

adjacency conditions (ii) and (iii).

Finally, there is a verification phase 𝑉 (𝑡1, 𝑡2, 𝑡3) for each tuple

picked by 𝑃 , where agent 𝑃 loses if any of the following conditions

are met: (i) (𝑥𝑐 , 𝑦𝑐 ) = (0, 0) and 𝑡1 ≠ 𝑡∗ (ii) (𝑥,𝑦) = (𝑥𝑐 , 𝑦𝑐 ) and 𝑄
does not have capacity 𝑐𝑡1 , (iii) (𝑥,𝑦) = (𝑥𝑐 + 1, 𝑦𝑐 ) and 𝑄 does not

have capacity 𝑐𝑡2 , or (iv) (𝑥,𝑦) = (𝑥𝑐 , 𝑦𝑐 + 1) and 𝑄 does not have

capacity 𝑐𝑡3 . Notice that, verifying 𝑧 = 𝑧
𝑐 +1 can be accomplished by

finding 𝑖 ∈ {1, . . . , 𝑛} such that: 𝑧𝑖 = 1, 𝑧𝑐
𝑖
= 0, for all 𝑗 < 𝑖 , 𝑧 𝑗 = 𝑧

𝑐
𝑗
,

and for all 𝑗 > 𝑖 , 𝑧 𝑗 = 0 and 𝑧𝑐
𝑗
= 1. So, during the verification

phase 𝑉 (𝑡1, 𝑡2, 𝑡3), the opponents (e.g., agent 𝑄) decide which of

the four verifications to perform. For verifications involving 𝑥𝑐 + 1

or 𝑦𝑐 + 1, 𝑄 determines which cutoff 𝑖 to utilize (totaling 2𝑛 + 2

options). The verification requires checking equality (or difference)

between 𝑥𝑖 (or 𝑦𝑖 ), 𝑥
𝑐
𝑖
(or 𝑦𝑐

𝑖
), 1, and 0 for each 𝑖 ∈ {1, . . . , 𝑛}, as

well as between the capacities of 𝑄 , 𝑐𝑡1 , 𝑐𝑡2 , 𝑐𝑡3 , and 𝑐𝑡∗ (resulting

in 2𝑛 + 1 checks for each of the 2𝑛 + 2 options). Each of these

equality or difference checks can be conducted with a fixed-size

game structure or a size of 𝑂 (𝑙) in the case of verifying the tile

types. For instance, to test the equality involving 𝑥𝑖 , 𝑥
𝑐
𝑖
, 0, and 1 in

a state 𝑠 , we allow the actions available for 𝑃 to be {𝛼0, 𝛼 ′
0
, 𝛼1, 𝛼

′
1
},

the actions for 𝑋𝑖 to be {𝛽0, 𝛽′
0
, 𝛽1, 𝛽

′
1
}, and other agents are idle.

We force agent 𝑃 to repeat the action used by agent 𝑋𝑖 during

the challenge phase through transitions of the form 𝑠 ®𝛼𝐿 where

( ®𝛼 [𝑋𝑖 ], ®𝛼 [𝑃]) ∈ {(𝛽0, 𝛼0), (𝛽′
0
, 𝛼 ′

0
), (𝛽1, 𝛼1), (𝛽′

1
, 𝛼 ′

1
)} and 𝐿 is a sink

losing state for 𝑃 . This allows us to easily verify the outcome of our

test on 𝑥𝑖 , 𝑥
𝑐
𝑖
, 1, and 0. Finally, the size of the CGS-SA to encode the

verification𝑉 (𝑡1, 𝑡2, 𝑡3) is𝑂 (𝑛2 · 𝑙), and the overall verification size

is𝑂 (𝑛2 · 𝑙4), which is polynomial in the input of the tiling instance.

Thus, the entire CGS-SA is also polynomial in size.

Consider the formula 𝜙 = ⟨𝑃⟩≥ 1/𝑙F𝑤𝑖𝑛, where𝑤𝑖𝑛 is a label in

the states such that the verification phase succeeds. Each strategy

of 𝑃 can win against at most one capacity of 𝑄 . Therefore, F𝑤𝑖𝑛 is

achieved with a probability of at most 1/𝑙 , implying that 𝜙 holds

if and only if 𝑃 ’s strategy wins against a capacity of 𝑄 for each
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capacity assignment of 𝑍 . Suppose there exists a tiling 𝜏 . Given

the challenge (𝑥𝑐 , 𝑦𝑐 ) from the challenge phase, 𝑃 can choose 𝑡1 =

𝜏 (𝑥𝑐 , 𝑦𝑐 ), 𝑡2 = 𝜏 (𝑥𝑐 +1, 𝑦𝑐 ), and 𝑡3 = 𝜏 (𝑥𝑐 , 𝑦𝑐 +1), succeeding in the

verification phase whenever 𝑄 has capacity 𝑐𝜏 (𝑥,𝑦) , where (𝑥,𝑦) is
the coordinate encoded by the capacities of 𝑍 . This occurs with a

probability of 1/𝑙 , so 𝜙 holds.

Conversely, suppose there is no tiling. If 𝑃 does not pick 𝑡1 = 𝑡
∗

when the challenge is (0, 0), then 𝑃 loses against all capacities of

𝑄 when the capacities of 𝑍 encode (𝑥,𝑦) = (0, 0) and 𝑍 gives

the challenge (0, 0). (Note that there are several ways to encode

a single challenge, so we mean “𝑍 gives the challenge (0, 0) with
that particular encoding” here and later.) In this case, 𝜙 cannot

be verified. Otherwise, there must be two challenges (𝑥𝑐 , 𝑦𝑐 ) and
(𝑥 ′𝑐 , 𝑦′𝑐 ) such that: (i) 𝑥 ′𝑐 = 𝑥𝑐 + 1 and 𝑦′𝑐 = 𝑦𝑐 (or 𝑥 ′𝑐 = 𝑥𝑐 and

𝑦′𝑐 = 𝑦𝑐 + 1, which case is treated similarly and omitted here), (ii) 𝑃

picks (𝑡1, 𝑡2, 𝑡3) for the challenge (𝑥𝑐 , 𝑦𝑐 ), (iii) 𝑃 picks (𝑡 ′
1
, 𝑡 ′
2
, 𝑡 ′
3
) for

the challenge (𝑥 ′𝑐 , 𝑦′𝑐 ), and (iv) 𝑡 ′
1
≠ 𝑡2. Now, assume 𝑍 encodes

(𝑥,𝑦) = (𝑥 ′𝑐 , 𝑦′𝑐 ). If 𝑄 encodes neither 𝑡 ′
1
nor 𝑡2, then 𝑃 loses as

usual. When 𝑄 encodes 𝑡 ′
1
, 𝑍 can present the challenge (𝑥𝑐 , 𝑦𝑐 ),

leading to a loss for 𝑃 since it chooses 𝑡2, which differs from 𝑡 ′
1
.

Similarly, if 𝑄 encodes 𝑡2, 𝑍 can present the challenge (𝑥 ′𝑐 , 𝑦′𝑐 ),
and 𝑃 loses by choosing 𝑡 ′

1
, which differs from 𝑡2. Consequently, 𝑃

loses against all capacities of 𝑄 when 𝑍 encodes (𝑥 ′𝑐 , 𝑦′𝑐 ), thus 𝜙
is not satisfied. □

The previous results about ⟨·⟩-Atl-Sa-MC𝑥 consider formu-

lae without nested strategic operators. Theorem 4.5 states the

PNEXPTIME
upper complexity bound (polynomial with NEXPTIME

oracle) and NEXPTIME lower bound in the general case.

Theorem 4.5. For 𝑥 ∈ {d, u}, the problem Atl-Sa-MC𝑥 is in

PNEXPTIME
and is NEXPTIME-hard.

Proof. Starting from innermost strategic subformulae 𝜙 , we

label the states 𝑠 with a new atomic proposition ℓ𝜙 iff (G, 𝑠) |=𝑥 𝜙
and replace the subformulae 𝜙 by ℓ𝜙 . □

Sometimes, the number of agents and their capacities are small

or fixed relative to the size of the game structure. Thus, it is worth-

while to study the complexity of ATL-SA model checking when

the number of complete capacity assignments grows exponentially

slower than the number of transitions in a CGS-SA.

Proposition 4.6. For any function 𝑓 : N→ N in 𝑂 (log𝑛) and
𝑥 ∈ {d, u}, the problem Atl-Sa-MC𝑥 , restricted to CGS-SA such that

|ΓG | ≤ 𝑓 ( |Pt⟨2⟩G |) is PTIME-complete.

Proof. Given that |ΓG | ≤ 𝑓 ( |Pt⟨2⟩G |), the certificates 𝐾 (from

the procedure of Proposition 4.3) can be iterated over in polynomial

time and the size of TG is polynomial in |G|. This gives the PTIME
membership, and the hardness derives from the PTIME-hardness
of Computation Tree Logic (CTL) which is included in ATL-SA with

one agent and one capacity [24]. □

In the next section, we provide evidence of the applicability of

ATL-SA in practice and demonstrate why the properties expressible

in ATL-SA can be of interest.

5 CYBERSECURITY ILLUSTRATION
A team of cybersecurity experts aims to identify the best strategy to

defend their industrial system. They rely on Moving Target Defense

(MTD), a defense paradigm that promotes regularly changing the

system configuration to increase security. The experts also possess

a set of probes that notify them of attacker activities, as well as

knowledge of their system’s vulnerabilities and potential attack

methods.

System Model. The system is characterized by a set of configura-

tion parameters 𝑝1, . . . , 𝑝𝑛 , and a set of attack subgoals 𝑔1, . . . , 𝑔𝑘 .

Each parameter 𝑝𝑖 can be configured to one of the values 𝑣1
𝑖
, . . . , 𝑣

𝑘𝑖
𝑖
.

Each attack subgoal is either active or inactive. MTDs can be trig-

gered to modify a configuration parameter. If a configuration param-

eter 𝑝𝑖 has a value 𝑣
𝑗
𝑖
, then the MTD is defined by the set of acces-

sible configuration values 𝑉 (𝑝𝑖 , 𝑣 𝑗𝑖 ) ⊆ {𝑣1
𝑖
, . . . , 𝑣

𝑘𝑖
𝑖
}. Moreover, the

security experts are aware of a set of attacker exploits {𝑒1, . . . , 𝑒𝑡 },
where each exploit 𝑒 is defined as a tuple 𝑒 = (𝜒𝑒 , 𝑝𝑟𝑒𝑒 , 𝑝𝑜𝑠𝑡𝑒 ). Here,
𝜒𝑒 is a partial configuration parameter valuation, and 𝑝𝑟𝑒𝑒 , 𝑝𝑜𝑠𝑡𝑒 ⊆
{𝑔1, . . . , 𝑔𝑘 } represent the attack subgoals necessary before the ex-

ploit and obtained after the attack success, respectively.

Modeling the Attacker-Defender Interaction. The interaction be-

tween the attacker and the defender can be modeled as a CGS-SA

with two agents: the defender 𝐷 = 1 and the attacker 𝐴 = 2. The

set of states St takes the form (𝜒,𝐺, 𝑥), where:

• 𝜒 (𝑝𝑖 ) ∈ {𝑣1
𝑖
, . . . , 𝑣

𝑘𝑖
𝑖
} is a complete configuration parameter

valuation,

• 𝐺 ⊆ {𝑔1, . . . , 𝑔𝑘 } is the set of active attack subgoals,

• 𝑥 ∈ {𝐷,𝐴} indicates whose turn it is, defender or attacker.

From a state (𝜒,𝐺,𝐴), there is an outgoing transition controlled

by agent 𝐷 for each possible MTD activation. For example, an

MTD activation that reconfigures 𝑝𝑖 to value 𝑣
𝑗
𝑖
leads to a new

state (𝜒 [𝑝𝑖 ↦→ 𝑣
𝑗
𝑖
],𝐺,𝐴). The defender can also choose the ac-

tion 𝑛𝑜𝑡ℎ𝑖𝑛𝑔, which indicates no reconfiguration, thus passing

the turn to the attacker and transitioning to the state (𝜒,𝐺, 𝐷).
From state (𝜒,𝐺, 𝐷), the attacker can execute one of the exploits

𝑒 = (𝜒𝑒 , 𝑝𝑟𝑒𝑒 , 𝑝𝑜𝑠𝑡𝑒 ), provided that 𝜒𝑒 is a subfunction of 𝜒 and

𝑝𝑟𝑒𝑒 ⊆ 𝐺 . This results in a new state (𝜒,𝐺 ∪ 𝑝𝑜𝑠𝑡𝑒 , 𝐷). We assume

that the defender has a single profile, i.e., Δ𝐷 (Ac) = 1. However,

there exists a set of attacker profiles with associated probabilities.

For example, if 90% of attackers are novices and can only perform

exploits 𝑒1, 𝑒2, and 𝑒3, we set Δ𝐴 ({𝑒1, 𝑒2, 𝑒3}) = 0.9.

System Objectives. Each state (𝜒,𝐺, 𝑥) is labeled with 𝑞𝑝,𝑣 when-
ever 𝜒 (𝑝) = 𝑣 , and with the set of labels 𝐺 representing active

attack subgoals. The primary objective is to prevent severe system

compromise, which is defined by a propositional formula 𝜙𝑔 over

{𝑔1, . . . , 𝑔𝑘 }, e.g., 𝜙𝑔 = (𝑔3 ∧ 𝑔4) ∨ 𝑔7. Additionally, we need to

avoid specific undesirable configurations, represented by a propo-

sitional formula 𝜙𝑝 over {𝑞𝑝1,𝑣1
1

, . . . , 𝑞
𝑝𝑛,𝑣

𝑘𝑛
𝑛

}, for instance, 𝜙𝑝 =

¬(𝑞𝑝3,𝑣2 ∧𝑞𝑝4,𝑣1 ). These bad configurations could, for example, lead

to poor service quality for regular users. The defense team’s goal

can be expressed using the formula: 𝜙 = ⟨𝐷⟩≥0.98 G(¬𝜙𝑔 ∧ ¬𝜙𝑝 ),
i.e., find a strategy for the defender that guarantees, with at least
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98% probability, that the system will always avoid 𝜙𝑔 (system com-

promise) and 𝜙𝑝 (bad configurations).

6 RELATEDWORK
First, this section relates ATL-SA to Capacity Alternating-time Tem-

poral Logic (CapATL) [5]. Then, it demonstrates the novelty of our

probabilistic approach in comparison to the two notions of stochas-

ticity commonly found in the literature on strategic verification in

MAS: stochastic CGS and stochastic strategies.

CapATL. The concept of capacity is shared between ATL-SA

and CapATL: each agent has a set of capacities corresponding to a

subset of actions the agent can perform. However, there are two

significant differences. First, CapATL assumes that the actions of

other agents are indistinguishable. For example, the paths 𝑠 (𝛼, 𝛽1)𝑠′
and 𝑠 (𝛼, 𝛽2)𝑠′ are indistinguishable for agent 1 but distinguishable
for agent 2. Moreover, CapATL includes a knowledge operator to

express whether agents know certain facts about capacities com-

patible with the history. In contrast, ATL-SA assumes that actions

are publicly observable and does not include a knowledge operator.

This design choice emphasizes the probabilistic aspect on capaci-

ties with as little changes to ATL as possible. Second, in CapATL,

agents can choose their capacities. Specifically, a coalition wins

if there is a capacity assignment for them that succeeds against

all capacity assignments of their opponents. In ATL-SA, however,

agents do not choose their capacities; instead, capacities are as-

signed probabilistically according to predefined distributions. This

enables ATL-SA to express more nuanced objectives, such as win-

ning with a certain probability. It is important to note that CapATL

is not expressible within ATL-SA (ignoring the indistinguishability

aspect). One might attempt to use a probability threshold of 1, but

this would imply that all capacities of the coalition (instead of some,

in CapATL) must win against all capacities of the opponents.

Probabilistic concepts in strategic logics. The literature on sto-

chastic MAS and probabilistic model checking introduces two key

probabilistic concepts: stochastic CGS and stochastic strategies. We

compare our notion of stochastic abilities with these two.

Stochastic CGS were introduced by Chen and Lu in 2007 [13],

referred to as probabilistic CGS in their paper. At a low level, these

extend CGS by incorporating a stochastic transition function into

the game structure, where a state and a joint action by all agents

correspond to a probability distribution over the next states. At a

higher level, given the strategies of all agents, the stochastic CGS be-

comes a Markov chain, providing a probability distribution over the

outcomes. Semantically, the strategic coalition first chooses its strat-

egy, followed by the opponent, and finally random events occur at

runtime. Stochastic CGS have been explored to define probabilistic

versions of ATL [13], imperfect information ATL and ATL* [18, 25]

with memoryless agents [6, 7] or natural strategies [10], Strategy

Logic (SL) [4], and resource-bounded ATL [23]. However, stochastic

CGS differ from stochastic abilities in ATL-SA because, in ATL-SA,

an agent’s capacities imply a probabilistic commitment to the rest of

the outcome, whereas in stochastic CGS, random events occurring

at one moment are independent of those occurring later.

A second probabilistic concept in strategic logics is stochastic

strategies. While a deterministic strategy maps each history (or

state, depending on the definition) to the action that the agent

performs, a stochastic strategy maps each history (or state) to a

distribution over actions. At runtime, the agent selects an action

according to that distribution. Opponents are similarly constrained

to a stochastic strategy, which transforms a CGS or stochastic CGS

into a Markov chain. Conceptually, stochastic strategies expand

the strategy space available to agents. To the best of our knowl-

edge, stochastic strategies do not increase an agent’s power in

deterministic game structures (except for purposes of deliberate

failure). Nonetheless, they become relevant when applied to proba-

bilistic CGS. Stochastic strategies have been used in [4, 7, 23] and

in combination with natural strategies in [10]. Once again, stochas-

tic strategies do not imply the commitment found in ATL-SA: the

probability that a stochastic strategy selects an action at a given

history cannot be explicitly restricted by past events in the game.

The main difference we emphasize, is that ATL-SA’s stochastic

aspect arises only when agents choose their strategies, as agents

are probabilistically assigned capacities. This probabilistic event

implies a commitment for the remainder of the play, which is absent

in stochastic CGS and stochastic strategies. As a result, ATL-SA’s

probabilistic nature is distinct and could be explored in conjunction

with these other concepts in future research. Last but not least,

the outcome of the stochastic capacity assignment is private to

each agent (or shared within a coalition), aligning our work more

closely with imperfect information PATL [18, 25]. However, we

adopt perfect recall semantics, which is known to be undecidable

in general for PATL under perfect recall conditions.

7 CONCLUSION
This article introduces a novel probabilistic dimension to ATL, in-

spired by the concept of capacities in CapATL. In our framework,

ATL-SA, each agent is associated with a probability distribution

over subsets of actions (their capacities), representing different

agent profiles. Agents are restricted to using only actions from

their assigned capacity in their strategies, enabling the modeling

of MAS with uncertainty regarding agent profiles and the expres-

sion of properties related to the probability that a coalition can

achieve a temporal objective. We examine scenarios where coali-

tions may or may not communicate their capacities, and establish

the NEXPTIME-completeness for single strategy formulae and both

semantics, along with PTIME-completeness under certain capac-

ity restrictions. The general model-checking problem is between

NEXPTIME and PNEXPTIME
. Finally, we illustrate the applicability

of ATL-SA in a cybersecurity use case.

In the future, we plan to combine stochastic CGS with stochastic

abilities. We will also analyse the impact of stochastic strategies in

this setting. Finally, we aim to incorporate imperfect information on

strategies and CapATL’s knowledge operators regarding capacities.
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