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ABSTRACT
Communication enhances collaboration among artificial intelli-
gence agents. Given the conflicts between limited communication
resources and communication needs, learning effective communi-
cation strategies is essential. We observe that incorporating learn-
ing to communicate can complicate mastering primary tasks. This
is due to the uncertainty in information acquisition during the
learning process, which can lead to an unstable environment for
primary tasks. In this paper, we introduce ReSCOM, an efficient
joint learning framework that combines learning-to-communicate
with primary tasks. ReSCOM progressively adjusts the learning
emphasis through reward-shaped curriculums, allowing agents to
shift their focus from primary tasks and basic communication tasks
(e.g., how to encode) to advanced communication strategies (e.g.,
determining when it is worthwhile to communicate). This approach
minimizes the impact on the learning efficiency of primary tasks
while simultaneously facilitating communication learning. We eval-
uate ReSCOM against state-of-the-art methods across various tasks,
and experimental results demonstrate its effectiveness.
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1 INTRODUCTION
Decentralized intelligence has proven to offer significant advan-
tages across various modern applications, including smart grid con-
trol [4, 31, 38], wireless communication [17], autonomous driving
[16], and network management [39]. However, agents often en-
counter difficulties when tackling complex tasks independently due
to partial and limited information. To overcome these challenges,
emerging applications require the use of collective intelligence (CI)
to facilitate cooperation among agents [5, 27]. By integrating the
capabilities of multiple devices, CI enables agents to achieve shared
intentions and joint objectives.

Communication among agents is considered crucial for promot-
ing cooperation and building CI [6, 24, 30]. Through information
sharing, agents can acquire observations and actions from others
to perceive the environment more effectively, leading to improved
decision-making and more stable cooperation [28]. However, the
ideal fully communicative environment often does not exist due
to limited environmental resources. For instance, in vehicular net-
works, constant information exchange between vehicles rapidly
depletes limited bandwidth resources. More importantly, not every
message can provide useful information. Redundant information
could make communication barely help and even jeopardize the
learning process [8, 14, 19, 41]. Therefore, agents are expected to
learn appropriate communication strategies. In recent years, various
methods have been developed to optimize agent communication,
enabling agents to decide how, when, and with whom to communi-
cate. This process, referred to as learning to communicate (L2C),
employs several components for information compression [32] and
message filtering [22, 29].

While L2C can foster cooperation among agents, it also presents
a complex learning task requiring the optimization of multiple
components. Without a suitable learning framework, the uncer-
tainty introduced during the L2C process can hinder the agent’s
exploration and negatively impact the learning of the primary task
[24, 40]. Unfortunately, existing L2C schemes almost exclusively
employ the end-to-end differentiable training paradigm, where gra-
dients are propagated across the entire model, and the agent’s policy
network as well as all L2C components are trained simultaneously.
This may results in slow convergence and suboptimal performance
when the training samples are limited [36, 42].
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In this paper, we introduce ReSCOM, an efficient joint learning
framework that integrates L2C with multi-agent reinforcement
learning (MARL) as primary tasks. ReSCOM features well-designed
reward-shaped curriculums specifically tailored for L2C. It guides
the learning process from basic communication tasks, such as learn-
ing to encode observations, to mastering communication strategies,
such as determining when to communicate. Our principal contribu-
tions are summarized as follows:

• To the best of our knowledge, this is the first work to design
a curriculum learning approach for L2C in multi-agent sys-
tems. By introducing a curriculum for L2C, ReSCOM reduces
the impact of L2C on the learning of primary tasks by 16.3%
to 21.9% compared to the baselines.

• We design three reward-shaping methods specifically for
L2C in MARL, including one discrete curriculum and two
continuous curricula. It enables effective L2C training com-
pared to training all L2C components from scratch. Besides,
bandwidth consumption during training remains stable, and
with continuous curricula, it can actually decrease when the
number of agents exceeds 10 in our scenarios.

• We implement ReSCOM and test its performance in various
multi-agent cooperative tasks. Experimental results demon-
strate that ReSCOM accelerates the convergence of L2C com-
ponents and significantly enhances performance compared
to state-of-the-art L2C methods.

2 RELATEDWORK
2.1 Learn to communicate
Efficient communication is widely recognized as essential for fos-
tering cooperation among agents. DIAL [9] is considered the first
L2C scheme via backpropagation. IC3Net [29] introduces a gating
mechanism that takes the agent’s hidden state to output a binary
action to indicate whether the agent should initiate communica-
tion in this step. This mechanism has also been utilized in other
works such as ATOC [14] and GACML [22]. TMC [41] applies a
temporal smoothing technique to encourage agents to reduce the
transmission of temporally correlated messages and send out new
messages only when the current message contains relatively new in-
formation compared to the previously sent message. SchedNet [15]
addresses the issue of shared communication mediums by employ-
ing a weight-based scheduling mechanism to decide which agents
can use the communication medium to broadcast their messages
during a given time interval. TarMAC [7] adopts a targeted multi-
round communication architecture, and employs a signature-based
soft attention mechanism to achieve effective message aggregation.
I2C [8] learns one-to-one communication to reduce information
redundancy, where each agent learns prior knowledge via causal
inference to determine whom to communicate with.

2.2 Curriculum learning in MARL
Curriculum learning is a training strategy for machine learning
that trains from easier data (tasks) to harder data (tasks), imitating
human curricula [12, 34, 35]. This approach has been extensively
used in MARL to tackle challenges such as sparse rewards and
scalability. The essence of curriculum learning lies in the design
of a suitable curriculum scheduler that dynamically adjusts the

learning difficulty during the training process. To achieve this, a
common strategy is to adjust the environment settings. For instance,
EPC [20] and DyMA-CL [33] utilize entity progression technique
to incrementally increase the number of agents being trained si-
multaneously [20, 33], while VACL [3], CD-DDPG [11] and Genet
[37] employ task expansion that directly escalates the complexity
of the task. An alternative method, referred to as reward-shaped
curriculum learning, involves dynamically modifying the reward
signals to steer agents toward more efficient exploration and im-
proved strategy development [10]. This method operates under
the assumption that not all experiences carry equal importance
throughout the training process. Similar to human learning, when
an agent attempts to learn a new skill, they may not remember
every aspect of the learning process, but rather focus on the mo-
ments that offer critical insight allowing them to advance their
understanding of the skill [2, 23].

3 PRELIMINARIES
3.1 MARL with communication
In this paper, We consider the on-demand communication scenario,
where agents receive messages from other agents for decision-
making only when necessary. We model MARL with communica-
tion as a partially observable markov decision process [1, 13, 25],
defined as a tuple (𝑁, 𝑆,𝐴,𝑀,𝑂, 𝑃,Ω, 𝑅,𝛾), which includes the num-
ber of agents 𝑁 , the space of global states 𝑆 , the set of action spaces
𝐴 = {𝐴1, . . . , 𝐴𝑁 }, the set of message spaces 𝑀 = {𝑀1, . . . , 𝑀𝑁 }
and the set of observation spaces𝑂 = {𝑂1, . . . ,𝑂𝑁 }. At time step 𝑡 ,
an agent 𝑖 observes a partial view 𝑜𝑖𝑡 of the underlying global state
𝑠𝑡 following the observation function Ω : 𝑆 → 𝑂 , and generate a
message𝑚𝑖

𝑡 . When agent 𝑖 needs to communicate for cooperation, it
broadcasts a request to the entire network. All agents receiving this
request forward their message to agent 𝑖 . The agent then chooses
an action 𝑎𝑖𝑡 ∈ 𝐴𝑖 based on its own policy 𝜋𝜃𝑖 parameterized by
𝜃𝑖 . Given the joint actions of all 𝑁 agents 𝑎𝑡 = {𝑎1𝑡 , . . . , 𝑎𝑁𝑡 }, the
transition function 𝑃 : 𝑆 × 𝐴 → 𝑆 maps the current state 𝑠𝑡 and
the set of agent actions 𝑎𝑡 to a distribution over the next state 𝑠𝑡+1.
Finally, each agent receives an individual reward 𝑟 𝑖𝑡 ∈ 𝑅(𝑠𝑡 , 𝑎𝑡 )
where 𝑅 : 𝑆 × 𝐴 → R, and the joint rewards are represented as
𝑟𝑡 = {𝑟1𝑡 , . . . , 𝑟𝑁𝑡 }. In this paper, we consider a fully cooperative en-
vironment in which the objective is to maximize the total expected
return of all agents, expressed as:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝜋 :𝑆→𝐴×𝐶

E𝑠𝑡∼𝑃 (𝑠𝑡−1 ),𝑎𝑡 ,𝑚𝑡∼𝜋 [
∑︁
𝑖∈𝑁

∑︁
𝑡 ∈𝑇

𝛾𝑡𝑟 𝑖𝑡 ], (1)

where 𝑇 is the finite time horizon, 𝛾 is the discount factor, and
𝜋 = {𝜋𝜃 1 , . . . , 𝜋𝜃𝑁 } is the set of agent policy. Note that in MARL
with communication, agents’ policies are responsible not only for
action decisions but also for a series of communication-related
decisions.

3.2 Centralized Learning with Decentralized
Execution

Centralized learning with decentralized execution (CLDE) is a com-
monly used architecture in MARL [21], where a centralized critic is
responsible for updating the decentralized policies during training.
The role of the critic is to provide more accurate feedback to the
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individual actors with a limited observation range. The objective of
critic is to learn the action-value function𝑄𝜙 (𝑜𝑡 , 𝑎𝑡 ) by minimizing
the loss:

L(𝜙) = E𝑜𝑡 ,𝑎𝑡 [(𝑦 −𝑄𝜙 (𝑜𝑡 , 𝑎𝑡 ))2], (2)

where 𝑦 = 𝑟𝑡 + 𝛾𝑄𝜙 (𝑜𝑡+1, 𝑎′), 𝑎′ is given by actor with the sub-
sequent observation 𝑜𝑡+1, and 𝜙 is the parameter associated with
𝑄 . In this case, each agent’s policy 𝜋𝜃𝑖 can be updated using the
following equation:

∇𝜃𝑖 J (𝜋𝜃𝑖 ) = E𝑜𝑡 ,𝑎𝑡 [∇𝜃𝑖𝜋𝜃𝑖 (𝑜𝑖𝑡 )∇𝑎𝑖𝑡
𝑄𝜙 (𝑜𝑡 , 𝑎𝑡 ) |𝑎𝑖𝑡=𝜋𝜃𝑖 (𝑜𝑖𝑡 ) ] . (3)

3.3 L2C in MARL
L2C entails learning a series of sub-tasks, each corresponding the
optimization of a set of L2C components. In this paper, we primarily
focus on the following two key learning sub-tasks:
(1) Learning How to Communicate: This task focuses on how to
make messages effectively represent environmental information,
thereby better assisting agents in decision-making. This concept is
highly relevant in the real world; for instance, humans learn a com-
mon language to exchange information, and vehicles use specific
communication protocols to achieve coordination [18, 26]. Typi-
cally, this task is achieved through an encoder and an aggregator.
The encoder extracts the agent’s observations into messages, while
the aggregator combines multiple messages from other agents to
assist agents in decision-making. The objective of learning how to
communicate is to maximize the average reward by learning effec-
tive representations of environmental information, which aligns
with the optimization goal defined in Eq. (1).
(2) Learning When to Communicate: Learning when to commu-
nicate can reduce communication overhead and prevent redundant
information from interfering with agent decision-making, thereby
enhancing performance. This can be accomplished by pruning out
unnecessary messages, meaning agents initiate communication
only when necessary [22, 29]. The objective of learning when to
communicate is to minimize communication overhead while main-
taining system performance. To achieve this goal, a revised reward
function 𝑅𝑐 (𝑠𝑡 , 𝑎𝑡 , 𝑔𝑡 ) is introduced, denoted as:

𝑟 𝑖𝑐,𝑡 = 𝑟
𝑖
𝑡 (𝑠𝑡 , 𝑎𝑖𝑡 ) − 𝑐𝑔𝑖𝑡 , (4)

where 𝑟 𝑖𝑐,𝑡 ∈ 𝑅𝑐 (𝑠𝑡 , 𝑎𝑡 , 𝑔𝑡 ) is the revised individual reward for agent
𝑖 , 𝑐 represents the communication cost that is usually related to
the bandwidth consumption generated by communication, 𝑔𝑡 =

{𝑔1𝑡 , . . . , 𝑔𝑁𝑡 } is the joint actions of agents’ L2C components, and
𝑔𝑖𝑡 ∈ {0, 1} denotes whether agent 𝑖 initiates communication at time
step 𝑡 . Overall, 𝑐𝑔𝑖𝑡 is the penalty term. This penalty term only takes
effect when 𝑔𝑖𝑡 = 1, i.e., when the agent 𝑖 initiates communication.
The objective of learning when to communicate can be regarded as
the maximizing of the expected accumulative reward 𝑟𝑐,𝑡 , i.e.,

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝜋 :𝑆→𝐴×𝐶

E𝑠𝑡∼𝑃 (𝑠𝑡−1 ),𝑎𝑡 ,𝑚𝑡 ,𝑔𝑡∼𝜋 [
∑︁
𝑖∈𝑁

∑︁
𝑡 ∈𝑇

𝛾𝑡𝑟 𝑖𝑐,𝑡 ] . (5)

4 METHOD
We propose ReSCOM, a communication architecture with progres-
sive learning capabilities. ReSCOM is an extension of the MADDPG
architecture, which employs the centralized learning and decen-
tralized execution paradigm. Our design can be broken down into

two domains: the L2C component that learns how (encoder and
aggregator) and when to communicate (gate), as illustrated in Fig.
1, and the curriculum scheduler that guides agents to develop the
correct communication strategy step-by-step, which we will discuss
later. Since the optimization objectives for learning how to commu-
nicate and learning when to communicate are different, two critic
networks, denoted as Critic I and Critic II, are introduced to train
the L2C components related to these two sub-tasks, where Critic
I is responsible for updating agent’s encoder and aggregator, and
Critic II is responsible for updating agent’s gate. Additionally, Critic
I is also responsible for optimizing the primary task, i.e., updating
the agent’s actor.

Aggregator
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Figure 1: Overview of ReSCOM

4.1 Structure of Agent
As shown in Fig. 1, each agent comprises the following four parts:

(1)Message Encoder: Extracts agent 𝑖’s local observation into
a message that encodes both local observation and action intention
[14, 26], denoted as𝑚𝑖

𝑡 = 𝜇
𝑖
𝑒𝑛𝑐 (𝑜𝑖𝑡 ;𝜃𝑖𝑒𝑛𝑐 ), where 𝜇𝑖𝑒𝑛𝑐 is the encoding

function parameterized by 𝜃𝑖𝑒𝑛𝑐 .
(2) Aggregator: Aggregates multiple messages into a consol-

idated message �̃�𝑖
𝑡 , denoted as �̃�𝑖

𝑡 = 𝜇𝑖𝑔 (𝑚𝑖−
𝑡 ;𝜃𝑖𝑔), where 𝑚𝑖−

𝑡 =

{𝑚1
𝑡 , . . . ,𝑚

𝑖−1
𝑡 ,𝑚𝑖+1

𝑡 , . . .𝑚𝑁
𝑡 } represents the set of messages from

all 𝑛 − 1 agents expect agent 𝑖 , and 𝜇𝑖𝑔 is the aggregation function
parameterized by 𝜃𝑖𝑔 .

(3)Actor: Makes action decisions based on local message𝑚𝑖
𝑡 and

aggregated message �̃�𝑖
𝑡 , denoted as 𝑎𝑖𝑡 = 𝜇𝑖𝑎𝑠 (𝑚𝑖

𝑡 , �̃�
𝑖
𝑡 ;𝜃

𝑖
𝑎𝑠 ), where

𝜇𝑖𝑎𝑠 is the message-action function parameterized by 𝜃𝑖𝑎𝑠 .
(4) Gate: Determines the necessity of communication in the cur-

rent time step based on the agent’s local observation, represented as
𝑤𝑖
𝑡 = 𝜇

𝑖
𝑤𝑔 (𝑜𝑖𝑡 ;𝜃𝑖𝑤𝑔), where 𝜇𝑖𝑤𝑔 is the observation-weight function

parameterized by 𝜃𝑖𝑤𝑔 .
The workflow of these four modules is as follows: At every time

step 𝑡 , based on local observations 𝑜𝑖𝑡 , agent 𝑖 utilizes the message
encoder and the gate to get a local message𝑚𝑖

𝑡 and a weight 𝑤𝑖
𝑡 ,

respectively. Then, based on𝑤𝑖
𝑡 , agent 𝑖 determines the necessity

of communication, represented as:

𝑔𝑖𝑡 = I(𝑤𝑖
𝑡 > 𝑇𝑡ℎ), (6)

where I is the indicator function, and 𝑇𝑡ℎ represents the commu-
nication threshold. If 𝑤𝑖

𝑡 > 𝑇𝑡ℎ , then 𝑔𝑖𝑡 = 1, and agent 𝑖 decides
to communicate and broadcasts a request to the entire network.
All agents receiving this request will response their local messages
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Figure 2: Curriculum scheduler in ReSCOM

to agent 𝑖 , which will then use the aggregator to generate the
aggregated message �̃�𝑖

𝑡 . Conversely, if agent 𝑖 decides that com-
munication is not necessary, the aggregated message �̃�𝑖

𝑡 will be
set to a zero vector. Utilizing the above information, the actor is
responsible for making action decisions.

4.2 Curriculum Scheduler
The four components mentioned above exhibit strong dependence.
For example, when the policy of the gate changes, the distribution of
incoming messages is altered, directly affecting the actor and aggre-
gator. Consequently, the actor must adjust to these changes, which
subsequently influences the encoder. Furthermore, the updates of
the encoder and actor trigger the update of the gate again. As a
result, simultaneous training of these components is particularly
challenging and leads to reduced training efficiency.

Inspired by curriculum learning [34], our insight is to decompose
the simultaneous training of multiple components to reduce learn-
ing complexity by dividing the training process into multiple stages,
where the agent focuses on optimizing different components at each
stage. We split the L2C components in ReSCOM into two parts: the
first part includes the encoder, and aggregator, which learn how to
communicate; the second part includes the gate, which learns when
to communicate, as depicted in Fig. 1. We believe that learning how
to communicate should precede learning when to communicate.
This is because an agent can only evaluate the benefits of commu-
nication to decide whether to communicate after mastering the
representation of meaningful environment information.

A reward-shaped curriculum scheduler is introduced to achieve
the above goal, as shown in Fig. 2. This component receives the
global reward 𝑟𝑡 as input and generates the revised reward 𝑟𝑐,𝑡 as the
feedback signal for Critic II. By continuously adjusting the revised
reward 𝑟𝑐,𝑡 throughout the training process, ReSCOM dynamically
refines the tasks the agent focuses on, facilitating a transition from
learning how to communicate to learning when to communicate.
This is achieved by modifying the definition of 𝑟 𝑖𝑐,𝑡 via setting 𝜆,
which can be expressed as follows:

𝑟 𝑖𝑐,𝑡 = 𝑟
𝑖
𝑡 (𝑠𝑡 , 𝑎𝑖𝑡 ) − 𝜆(𝑡)𝑐𝑔𝑖𝑡 , (7)

where 𝜆(𝑡) is the scheduling function defined to map the training
step number 𝑡 to a scalar 𝜆 ∈ (0, 1], representing the difficulty
of learning at step 𝑡 . Specifically, 𝜆(𝑡) should be monotonic and
non-decreasing, starting at 𝜆(0) ≥ 0 and ending at 𝜆(𝜏) = 1, where
𝜏 denotes the step at which the function first reaches 1. Any func-
tion meeting these criteria can serve as 𝜆(𝑡) function. The intuitive

interpretation of Eq. (7) is as follows: During the initial stages of
training, the communication penalty term is relatively small. Con-
sequently, agents tend to adopt a full communication strategy to
rapidly optimize their encoders and aggregators, achieving learning
how to communicate. As the training period extends, the communi-
cation penalty term incrementally increases, prompting the agents
to learn when to communicate to reduce unnecessary communica-
tion overhead, thus optimizing the gate.

We consider the following two methods to set 𝜆:
(1) Discrete Scheduler: The training process is divided into

two distinct phases. During the first phase, an easier curriculum
is applied, where agents adopt a full communication strategy to
learn how to communicate. After a fixed number of training steps 𝜏 ,
the second phase begins, during which agents start learning when
to communicate. Following the definition of 𝜆(𝑡) above, discrete
scheduling can be expressed as:

𝜆𝑑 (𝑡) =
{
0, if 𝑡 < 𝜏,
1, if 𝑡 ≥ 𝜏 .

Essentially, the design of the discrete scheduler can be viewed as
"delayed learning of when to communicate". Hence, in the subse-
quent text, we use ReSCOM (delay) to refer to ReSCOM with the
discrete curriculum scheduler.

(2) Continuous Scheduler: In contrast to the discrete scheduler
that separates the training phase into several distinct parts, the
continuous scheduler employs a continuous scheduling function to
progressively amplify the communication penalty, shifting the focus
of optimization from learning how to communicate to learning
when to communicate gradually. We give two examples as follows:

- Linear function, denoted as 𝜆𝑙 (𝑡) = min(1, 𝜆0 + 1−𝜆0
𝜏 ∗ 𝑡).

- Root-p function, denoted as 𝜆𝑟 (𝑡) = min(1, ( 1−𝜆
𝑝

0
𝜏 ∗𝑡+𝜆𝑝0 )

1/𝑝 ).
Here, 𝜆0 ∈ [0, 1) is the initial difficulty of learning task at 𝑡 = 0,

and 𝑝 is a hyperparameter. We refer to the ReSCOM using the two
aforementioned functions as ReSCOM (linear) and ReSCOM (root-
p), respectively. Specifically, in this paper, we set 𝑝 to 2. The impact
of various 𝜆(𝑡) function settings on learning will be explored in
future work.

The above scheduling functions are illustrated in Fig. 3 with
𝜏 = 100 and 𝜆0 = 0 as an example. Note that training without the
curriculum scheduler (denoted as "baseline") is also regarded as a
special case, whose 𝜆(𝑡) value is always 1.

0 20 40 60 80 100 120 140
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

(t)

baseline
discrete
root-2
linear

Figure 3: Visualization of different scheduling functions.

4.3 Training
For training ReSCOM, an experience reply buffer is required. The
experience reply bufferR contains tuples < 𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑟𝑐,𝑡 , 𝑜𝑡+1,𝑤𝑡 >
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recording the experiences of all agents. Leveraging two critic net-
works, i.e., Critic I and Critic II, ReSCOM learns two action-value
functions 𝑄𝜙𝐼 (𝑜𝑡 , 𝑎𝑡 ) = E𝑜𝑡 ,𝑎𝑡 [𝑅(𝑜𝑡 , 𝑎𝑡 )] and 𝑄𝜙𝐼 𝐼 (𝑜𝑡 , 𝑎𝑡 ,𝑤𝑡 ) =

E𝑜𝑡 ,𝑎𝑡 ,𝑤𝑡
[𝑅𝑐 (𝑜𝑡 , 𝑎𝑡 , 𝑔𝑡 ) |𝑔𝑡=I(𝑤𝑡>𝑇𝑡ℎ )] for updating L2C components

as well as the actors.
Update 𝜙𝐼 and 𝜙𝐼 𝐼 : Leverage Eq. (2), the weights 𝜙𝐼 and 𝜙𝐼 𝐼 are
updated by minimizing L(𝜙𝐼 ) and L(𝜙𝐼 𝐼 ), respectively:
L(𝜙𝐼 ) = E𝑜𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑜𝑜+1∼R [𝑟𝑡 + 𝛾𝑄

𝜙𝐼 (𝑜𝑡+1, 𝑎′) −𝑄𝜙𝐼 (𝑜𝑡 , 𝑎𝑡 )]2, (8)

L(𝜙𝐼 𝐼 ) = E𝑜𝑡 ,𝑎𝑡 ,𝑟𝑐,𝑡 ,𝑤𝑡 ,𝑜𝑜+1∼R [𝑟𝑐,𝑡 + 𝛾𝑄
𝜙𝐼 𝐼 (𝑜𝑡+1, 𝑎′,𝑤 ′)

−𝑄𝜙𝐼 𝐼 (𝑜𝑡 , 𝑎𝑡 ,𝑤𝑡 )]2, (9)

where 𝑎′ and𝑤 ′ are given by actors and gates with the subsequent
observations 𝑜𝑡+1, respectively.
Update 𝜃𝑖𝑎𝑠 : The parameters of agent 𝑖’s action selector 𝜃𝑖𝑎𝑠 are
updated using the deterministic policy gradient, expressed as:

∇𝜃𝑖𝑎𝑠 J (𝜃𝑖𝑎𝑠 ) = E𝑜𝑡 ,𝑎𝑡∼R [∇𝜃𝑖𝑎𝑠 𝜇
𝑖
𝑎𝑠 (𝑚𝑖

𝑡 , �̃�
𝑖
𝑡 )

∇𝑎𝑖𝑡
𝑄𝜙𝐼 (𝑜𝑡 , 𝑎𝑡 ) |𝑎𝑖𝑡=𝜇𝑖𝑎𝑠 (𝑚𝑖

𝑡 ,�̃�
𝑖
𝑡 ) ] . (10)

Update 𝜃𝑖𝑒𝑛𝑐 and 𝜃𝑖𝑔 : By applying the chain rule, the aggregator and
encoder can be optimized jointly using back-propagation, expressed
as:

∇𝜃𝑖𝑔J (𝜃𝑖𝑔) = E𝑜𝑡 ,𝑎𝑡∼R [∇𝜃𝑖𝑔 𝜇
𝑖
𝑔 (𝑚𝑖−

𝑡 )

∇�̃�𝑖
𝑡
𝜇𝑖𝑎𝑠 (𝑚𝑖

𝑡 , �̃�
𝑖
𝑡 ) |�̃� (𝑖 )

𝑡 =𝜇𝑖𝑔 (𝑚𝑖−
𝑡 )

∇𝑎𝑖𝑡
𝑄𝜙𝐼 (𝑜𝑡 , 𝑎𝑡 ) |𝑎𝑖𝑡=𝜇𝑖𝑎𝑠 (𝑚𝑖

𝑡 ,�̃�
𝑖
𝑡 ) ], (11)

∇𝜃𝑖𝑒𝑛𝑐 J (𝜃𝑖𝑒𝑛𝑐 ) = E𝑜𝑡 ,𝑎𝑡∼R [∇𝜃𝑖𝑒𝑛𝑐 𝜇
𝑖
𝑒𝑛𝑐 (𝑜𝑖𝑡 )

∇𝑚𝑖
𝑡
𝜇𝑖𝑎𝑠 (𝑚𝑖

𝑡 , �̃�
𝑖
𝑡 ) |𝑚𝑖

𝑡=𝜇
𝑖
𝑒𝑛𝑐 (𝑜𝑖𝑡 )

∇𝑎𝑖𝑡
𝑄𝜙𝐼 (𝑜𝑡 , 𝑎𝑡 ) |𝑎𝑖𝑡=𝜇𝑖𝑎𝑠 (𝑚𝑖

𝑡 ,�̃�
𝑖
𝑡 ) ] . (12)

Update 𝜃𝑖𝑤𝑔 : The gradient for updating the parameters of 𝜃𝑖𝑤𝑔 can
be written as:

∇𝜃𝑖𝑤𝑔
J (𝜃𝑖𝑤𝑔) = E𝑜𝑡 ,𝑎𝑡 ,𝑤𝑡∼R [∇𝜃𝑖𝑤𝑔

𝜇𝑖𝑤𝑔 (𝑜𝑖𝑡 )

∇𝑤𝑖
𝑡
𝑄𝜙𝐼 𝐼 (𝑜𝑡 , 𝑎𝑡 ,𝑤𝑡 ) |𝑤𝑖

𝑡=𝜇
𝑖
𝑤𝑔 (𝑜𝑖𝑡 ) ] . (13)

5 EVALUATION
In this section, we first compare ReSCOMwith existing L2C schemes
across multiple collaborative tasks. Subsequently, we deep dive into
the reason why ReSCOM is effective. Finally, we conduct the abla-
tion study.

5.1 Environments
We evaluate ReSCOM in the following environments:
Drone coverage 1: In this task, several drones work together to nav-
igate towards stationary landmarks while avoiding collisions. Each
drone operates as an agent with limited observation that contains
the relative position of 𝑘 nearest landmarks and other agents. The
agents exhibit heterogeneity in their observation abilities, repre-
sented by the vector 𝐾 = {𝑘𝑖 }𝑛𝑖=1, where 𝑘𝑖 denotes the observation
range of the 𝑖-th agent. Agents are rewarded based on their proxim-
ity to the landmarks, penalized for collisions, and receive bonuses
1https://github.com/openai/multiagent-particle-envs.

for covering landmarks. The performance of ReSCOM is evaluated
in scenarios with four agents and ten agents. In the four-agent sce-
nario, the observation ranges are set to [0, 0, 2, 4]. In the ten-agent
scenario, the observation ranges are set to [0, 0, 0, 0, 1, 1, 2, 2, 4, 4].
Highway 2: In this task, multiple vehicles try to quickly traverse an
intersection to reach their respective destinations while avoiding
collisions. We simulate four vehicles entering the intersection from
different directions, with a random initial position on the road. Sim-
ilar to the previous scenario, the agents obtain different observation
abilities, represented as 𝐾 = [1, 1, 1, 4], where 𝑘𝑖 = 𝑛, 𝑘𝑖 ∈ 𝐾 means
that agent 𝑖 can observe the position and speed of other 𝑛 nearest
vehicles. The agents receive a punishment if a collision occurs and
a bonus if successfully reach the destination in time.

(a) Drone coverage (b) Highway

Figure 4: Multi-agent environment.

5.2 Baselines
We compare ReSCOM with the following methods:

• GACML [22]: GACML employs a gate component similar to
the one used in this paper to filter out redundant information.
The benefits of communication are estimated using the Q-
network, and GACML prunes the messages that contribute
smaller Q-values than the threshold 𝑇𝐺 . In our experiments,
we set 𝑇𝐺 as 0.2.

• SchedNet [15]: SchedNet is designed for scenarios involving
shared communication mediums. In each time step, a fixed
number of agents (l) can broadcast messages, while the other
agents can receive these messages to aid in decision-making.
In our experiments, we set 𝑙 = 1

2𝑁 , meaning that in each
time step, half of the agents can broadcast messages.

• TarMAC [7]: TarMAC focus on learning how to commu-
nicate. Its original version employs a full communication
strategy. We consider a variant, TarMAC+IC3Net, where
IC3Net [29] uses the gate mechanism to determine when to
communicate. This gate is a simple network containing a
softmax layer for two actions, i.e., communicate or not.

Note that our approach focuses on learning how to communicate
and when to communicate. Therefore, approaches that consider
learning whom to communicate with, such as ATOC [14] and SOG
[28], are not considered for comparison.

5.3 Hyperparameters setting
We implement ReSCOM as an extension of MADDPG [21]. All
agents share the same parameters. We use an Adam optimizer with
a learning rate of 0.005. The discount factor for reward, 𝛾 , is 0.95.
For the soft update of target networks, we set 𝜉 = 0.01. We use a
2https://github.com/eleurent/highway-env.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2157



0 0.5 1.0 1.5
Episode (×104)

80

60

40

20

0

20

Re
wa

rd

performance jitter

ReSCOM (root-2)
ReSCOM (linear)
ReSCOM (delay)
TARMAC
GACML
SchedNet0.7 0.8 0.9

10

0

10

(a) 4 Agents

0 0.5 1.0 1.5
Episode (×104)

120

100

80

60

40

20

0

Re
wa

rd

performance jitter

ReSCOM (root2)
ReSCOM (linear)
ReSCOM (delay)
GACML
TarMAC
SchedNet

(b) 10 Agents

Figure 5: ReSCOM vs. baselines.
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Figure 6: Performance breakdown.
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Figure 7: Communication overhead

three-layer multilayer perceptron (MLP) with 64 units to implement
the actor, the critic, and the gate. All the above neural networks
use ReLU as activation functions. The aggregator is implemented
with an attention-based unit, with the number of heads set to 8 and
a dropout rate of 0. The capacity of the replay buffer is 105, and we
take a minibatch of 1024 to update the network parameters. The
cost of communication 𝑐 is set to 0.2, the communication threshold
𝑇𝑡ℎ is set to 0.5, and the dimensions of messages, outputted by
the encoder and the aggregator, are 12 floating-point values. For
the three different types of ReSCOM, we set 𝜏 to 8000 and 𝜆0 to
0. The choice of the 𝜏 value will be discussed later. We initialize
the parameters of neural networks with random initialization, and
train our models on an AMD Ryzen 7 7840H CPU. All experiments
are repeated for 5 times.

5.4 Results
We compare ReSCOM with the baseline across multiple coopera-
tive tasks, demonstrating both their performance and communi-
cation overhead. Note that our concern is on the performance of
the primary task. Therefore, the y-axis ’rewards’ in all experiments
represent the optimization objective defined in Eq. (1).

5.4.1 Drone Coverage. Fig. 5(a) and Fig. 5(b) present the learning
curve over 150,000 episodes in terms of reward in the drone cov-
erage environment with four agents and ten agents, respectively.
Firstly, in the scenario with four agents, three types of ReSCOM
surpass baselines and achieve comparable performance upon con-
vergence. A notable performance jitter is observed in ReSCOM
(delay) during curriculum transitions, while the learning process
of ReSCOM with the continuous curriculum scheduler remains
more stable. This jitter occurs because the gate employs an almost

random exploration strategy when the second learning phase starts.
Consequently, some valuable messages are overlooked, leading
to a temporary decline in performance. However, after a period
of adaptation, the gate rapidly learns a feasible communication
strategy, and ReSCOM (delay) resumes an upward reward trend,
ultimately attaining satisfactory performance. Secondly, in the sce-
nario with ten agents, ReSCOM (delay) achieves the best perfor-
mance. ReSCOM (root-2) and ReSCOM (linear) struggle to handle
this task successfully since it still requires simultaneous learning of
how and when to communicate during the early stage of training,
which impedes learning efficiency. In contrast, the design of the dis-
crete curriculum scheduler enables ReSCOM (delay) to thoroughly
decompose the L2C process, where it solely learns how to com-
municate in the first curriculum. This suggests that decomposing
the task of L2C into multiple sub-tasks and progressively learning
them is effective, particularly in more complex environments.

In Fig. 6, we decompose the performance of ReSCOM into two
metrics, coverage rate and collision rate, to analyze the advantages
of ReSCOM over other baselines. Firstly, in the scenario with four
agents, take ReSCOM (linear) for example, it significantly improves
coverage rate by 22.73%, 48.66%, and 36.81% compared to SchedNet,
TarMAC, and GACML; besides, ReSCOM (linear) has lower collision
rate than the baseline by 69.12% and 34.83% compared to SchedNet
and TarMAC. Compared with GACML, ReSCOM (linear) compro-
mises a slight performance drop in collision rate (approximately
5.83%), but it improves a much obvious coverage rate and exhibits
a greater gain in reward. Secondly, in the scenario with ten agents,
ReSCOM (root-2) and ReSCOM (linear) outperform the baselines
in both coverage rate and collision rate, while ReSCOM (delay)
compromises a little in collision rate but gets a large improvement
(1.32 ∼ 1.39×) in coverage rate.
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Table 1: Performance comparison on highway environment. The best results are highlighted in bold.

ReSCOM (root-2) ReSCOM (linear) ReSCOM (delay) SchedNet TarMAC GACML
Mean reward 7.33±0.56 7.21±0.49 7.05±0.54 5.88±0.53 6.39±0.48 6.07±0.61

Collision rate (%) 10.92±2.07 10.67±2.41 11.35±1.19 12.25±2.24 10.95±1.34 13.41±2.59
Arrive rate (%) 52.04±2.23 51.02±2.56 51.62±3.26 35.39±1.87 36.54±1.49 38.27±2.54

Bandwidth overhead (%) 72.56±3.31 69.54±3.24 82.91±2.52 50.00±0.00 75.89±2.77 79.15±2.94

Fig. 7 shows the communication overhead during the training
process. We follow the definition in [41], where the communication

overhead during period 𝑇 is expressed as
∑𝑇

𝑡=1
∑𝑛

𝑖=1 𝑔
𝑖
𝑡

𝑛𝑇
, which is the

average number of agents that conduct communication within a
single time step. We show the results in Fig. 7. Since SchedNet
permits half of the agents to broadcast messages at each time step,
its communication overhead remains constant at 0.5. In the sce-
nario with four agents, all three ReSCOM variants exhibit higher
communication overhead than the baseline, with ReSCOM (delay)
incurring the highest communication overhead since it applies the
full communication strategy in the initial stage. However, in the
scenario with ten agents, ReSCOM (linear) demonstrates the lowest
communication overhead. Remember that its performance consis-
tently surpasses the baselines as mentioned above. This indicates
that the effectiveness of ReSCOM is not derived frommore frequent
communication, but rather from its ability to learn a more efficient
communication strategy.

5.4.2 Highway. We show the evaluation results on highway envi-
ronment in Table 1, with the optimal values for each metric high-
lighted in bold. We see that the three ReSCOM variants significantly
outperform the baselines overall. For instance, ReSCOM (root-2)
improves mean rewards by 24.66%, 14.71%, and 20.76% compared
to SchedNet, TarMAC, and GACML, respectively. When we further
decompose the performance of ReSCOM (root-2) into collision rate
and arrival rate, we find that it significantly increases the arrival
rate (1.36 ∼ 1.47×) while maintaining an acceptable collision rate,
leading to a substantial improvement in overall performance. In
terms of communication overhead, SchedNet incurs the least over-
head, while ReSCOM (delay) incurs the most. Besides, compared to
TarMAC and GACML, ReSCOM utilizing a continuous curriculum
scheduler demonstrates a reduction in communication overhead.

5.5 Why ReSCOM is effective?
To demonstrate the impact of the curriculum scheduler on the L2C
process, we visualized the communication patterns of agents during
training. In this experiment, we use the drone coverage environ-
ment with four agents as an example, with the observation ranges
set as [0, 0, 2, 4]. We record the communication frequency of the
agents in each episode during training. Note that due to the zero
observation range of agents 1 and 2, they must communicate with
other agents to perceive their surroundings and make decisions.
Thus, upon convergence, these two agents are expected to initi-
ate communication with nearly 100% probability at each time step.
As illustrated in Fig. 8, when applying the curriculum scheduler,
both agent 1 and agent 2 converge to the anticipated state. Besides,
agent 4 communicates minimally due to its ability to observe the
states of all landmarks and other agents in the environment, thus

communication will not bring any gain in reward but introduce un-
necessary overhead. Agent 3 communicates at a certain frequency,
predominantly at the beginning of each episode. This is because,
at the start of each episode, agents need to determine destination
landmarks and avoid conflicts, requiring more communication to
reach a consensus. In contrast, ReSCOM without the curriculum
scheduler fails to reach the desired state, as shown in 8(d). Partic-
ularly, agent 2’s communication frequency rapidly plummets to
nearly 0% early in the training, indicating that it does not learn the
correct communication strategy.

To further understand this phenomenon, we analyze the re-
ward gain from communication. Reward gain from communication
is defined as 𝑟 (𝑠𝑡 , 𝑎𝑐,𝑡 |𝑔𝑡=I(𝑤𝑡>𝑇𝑡ℎ ) ) − 𝑟 (𝑠𝑡 , 𝑎𝑛,𝑡 |𝑔𝑡={0}𝑛𝑗=1 ) , where
𝑎𝑐,𝑡 and 𝑎𝑛,𝑡 are the actions taken with and without communi-
cation, respectively. Here, we take ReSCOM (linear) as an exam-
ple. As depicted in Fig. 9(a), the reward gain from communica-
tion increases as training proceeds during the early stages. This
suggests that agents progressively learn to better utilize the ad-
ditional environmental information provided by communication
for decision-making. Besides, the cost of communication increases
gradually over time (see the orange line in Fig. 9(a)). Initially, the
benefits of communication outweigh its costs, encouraging agents
to engage in communication more frequently and facilitating rapid
learning of how to communicate. As communication costs rise,
agents become more selective to minimize unnecessary commu-
nication overhead, shifting their focus to learning when to com-
municate. This also explains why, in Fig. 8(b), the average com-
munication frequency of agents initially increases and then de-
creases during the training process. The same logic also applies to
ReSCOM (root-2) and ReSCOM (delay). In contrast, without the cur-
riculum scheduler, as shown in Fig. 9(b), the cost of communication
greatly outweighs its benefits in the early stage of training, namely
E𝑠𝑡 ,𝑎𝑐,𝑡 ,𝑎𝑛,𝑡 [𝑟 (𝑠𝑡 , 𝑎𝑐,𝑡 |𝑔𝑡=I(𝑤𝑡>𝑇𝑡ℎ ) ) − 𝑟 (𝑠𝑡 , 𝑎𝑛,𝑡 |𝑔𝑡={0}𝑛𝑗=1 ) ] < 𝑐 , lead-
ing agents to be reluctant to communicate. This phenomenon can
be observed in Fig. 8(d). In the early stages of training, the average
communication frequency of the agents rapidly declines to less
than 20%. Since agents are reluctant to communicate, they can not
effectively perceive the environment to optimize their policy and
the L2C components that learn how to communicate. Consequently,
the reward gain from communication remains low, which in turn
discouraging the agents from engaging in communication, and
ultimately leading to low learning efficiency.

5.6 Ablation study
Firstly, we investigate the impact of the curriculum scheduler on
ReSCOM’s overall performance. Table 2 presents the performance
of ReSCOMwith and without the curriculum scheduler across three
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Figure 8: Visualizing the impact of the curriculum scheduler in the communication patterns of agents.

0.0 0.5 1.0 1.5 2.0
Episodes (×104)

0.00

0.05

0.10

0.15

0.20

0.25

com. gain
com. cost

(a) ReSCOM (linear)

0.0 0.5 1.0 1.5 2.0
Episodes (×104)

0.00

0.05

0.10

0.15

0.20

0.25

com. gain
com. cost

(b) ReSCOM w/o. curriculum scheduler

Figure 9: Illustration of communication gain

Table 2: Ablation study results on various environment.

Method Drone
(4 agents)

Drone
(10 agents) Highway

ReSCOM 14.68±2.07 −13.03±4.01 7.33±0.56
Baseline −6.92±2.58 −32.65±5.88 6.01±0.58

experimental scenarios. Here, we select the best-performing ones
from three different curriculum schedulers for comparison, and
the ReSCOM without curriculum scheduler serves as the baseline.
The experimental results demonstrate that the introduction of the
curriculum scheduler substantially enhances the performance, un-
derscoring the effectiveness of the proposed approach.

Secondly, we examine the performance of ReSCOM across differ-
ent values of the hyper-parameter 𝜏 using the drone environment
with four agents as an example (see Fig. 10). Similar results are ob-
served in other scenarios. As shown in Fig. 10(a), as 𝜏 increases, the
mean reward first increases and then decreases, reaching its peak
at 𝜏 = 8000. This is reasonable because a larger 𝜏 implies a slower
escalation of communication penalties, encouraging agents to com-
municate more frequently in the early stages of training, thereby
allowing them more time to focus on learning how to communicate.
However, an excessively large 𝜏 can lead to slower convergence,
negatively impacting performance. Additionally, Fig. 10(b) shows
that the communication overhead increases with 𝜏 . Essentially, 𝜏
regulates the pace at which curriculum difficulty intensifies. An
optimal 𝜏 is expected to achieve high final performance with a rapid
learning rate, while also reducing communication overhead during
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Figure 10: Ablation study results for different values of hyper-
parameter 𝜏 on drone coverage with four agents

training. Based on the above observations, we set 𝜏 = 8000 in our
experiments.

6 CONCLUSION AND DISCUSSION
In this paper, we introduce ReSCOM, an efficient joint learning
framework that integrates L2C with MARL. ReSCOM progressively
adjusts the learning emphasis through reward-shaped curriculums,
allowing agents to shift their focus from primary tasks and ba-
sic communication tasks (e.g., how to encode) to advanced com-
munication strategies (e.g., determining when it is worthwhile to
communicate). We design effective reward-shaped curriculums for
L2C, including one discrete and two continuous curricula. Exper-
imental results demonstrate that ReSCOM outperforms existing
methods across multiple cooperative tasks, showing a performance
improvement by 16.3%-21.9%.
Discussion Note that the effectiveness of ReSCOM relies on the
setting of the curriculum scheduling functions, particularly the hy-
perparameter 𝜏 . The optimal 𝜏 setting often varies across different
environments and usually requires expert knowledge about the
task environment and its complexity. Achieving adaptive curricu-
lum scheduling in curriculum learning remains a key challenge in
this field. We present this as an open issue and look forward to
addressing it in future work.
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