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ABSTRACT
Recent advances in Goal Recognition have yielded a new class of
approaches capable of solving goal recognition problems without
relying on predefined domain theories, defined as Model-Free Goal
Recognition. Most existing approaches rely on neural networks,
probabilistic theories or approximated domain theories to recog-
nize goals without relying on explicitly defined domain knowledge.
However, these approaches often neglect the causal relationships
contained in the data used for their process. This oversight over-
looks an opportunity to make their goal recognition process more
accurate, explainable and robust. We propose a novel Model-Free
Goal Recognition approach that integrates causality through Varia-
tional Inference, which, to the best of our knowledge, is an entirely
novel class of techniques for goal recognition. The method encom-
passes three key stages: Causal Discovery, Counterfactual Inference,
and decision-making grounded in Trajectory Likelihood. Our ap-
proach outperforms the existing state-of-the-art methods in all
tested domains. Moreover, its strong noise resilience ensures that
its performance in noisy environments is nearly indistinguishable
from standard conditions, fully showcasing its robustness.
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1 INTRODUCTION
In general, the interaction between an intelligent agent and the
world is goal-oriented, making Goal Recognition (GR) a crucial task
to infer the agent’s true intentions and goals based on a series
of observations.[9] However, usual GR approaches require hand-
crafted domain theories, explaining the inner workings of the ob-
served domain. This is not feasible for many domains, especially
when working in real-world scenarios. Recently, much research
has been focusing on alleviating the need for domain knowledge
for GR approaches.This yield a new class of GR approaches, called
Model-Free GR [4].

Although currentModel-Free GRmethods offer considerable flex-
ibility, they also face significant limitations. Firstly, the black-box
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nature of these approaches face substantial challenges in domains
where transparent decision-making is required, as they lack explain-
ability for their decisions, as highlighted by Maynard et al. [15].
These methods rely on complex machine learning models, making
it difficult for users to understand or trust the decision-making
process, especially in fields like healthcare or autonomous systems,
where interpretability is crucial [2, 11, 14, 26]. Secondly, there is a
high demand for data. Model-Free methods typically require large
volumes of observational data to infer goals accurately, but in real-
world scenarios, data can be scarce, costly to obtain, or noisy, which
limits their broader practical applicability[25].

In recent years, there has been some exploration of explainable
GR methods, with a primary focus on maximising the interpretabil-
ity of agent behaviour[12, 13]. The method based on the Weight of
Evidence (WOE) proposed by Alshehri et al. [1] effectively measures
the strength of evidence for a particular observation in supporting
one goal hypothesis while opposing another.

Applying causal inference to the GR problem is a highly promis-
ing endeavour due to its numerous advantages. Firstly, causal in-
ference clarifies relationships between variables, enhancing trans-
parency and interpretability, which is crucial for improving the
model’s trustworthiness. Secondly, unlike neural network-basedGR
methods, causal inference establishes deeper causal structures, en-
hancing generalisation and ensuring robust performance across di-
verse contexts. In contrast, traditional neural network-based meth-
ods primarily rely on pattern recognition. Lastly, in dynamic or
uncertain complex environments, causal inference can effectively
identify the causal relationships between goals and environmental
changes, filtering out irrelevant noise data. This allows systems
to adapt flexibly to changing environments while focusing on key
factors, highlighting the great potential of causal inference in GR.

To address these limitations, we propose a new class of Model-
Free GR algorithms that integrate causal theory. Building on the re-
inforcement learning framework by Amado et al.[3], this approach
uses variational inference (VI) to estimate counterfactual effects and
construct an approximate causal graph. The causal model and Q-
table together inform the trajectory likelihood algorithm, enabling
explainable decision-making. Our main contributions are fourfold:

• Causal Discovery: We have redefined the concept and con-
ditions for measuring causality within time series. Based on
this novel definition, we have designed the Causal Factor
Algorithm and the Causal Entropy Algorithm to construct
two types of causal models: Causal Graph and Causal Cube.
• Counterfactual Inference: We introduced a do-Calculus
method to implement interventions on the causal graph. By
employing a parameterised Sigmoid function as a bridge, we
utilised VI to approximate counterfactual effects, thereby
constructing an approximate causal graph.
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• Trajectory Likelihood: We developed a trajectory likeli-
hood algorithm rooted in interpretable reasoning, which
integrates a causal model with a Q-table to facilitate estimate
the most likely goal.
• Observation Recovery: In addressing observation that in-
clude State-Only and Action-Only, we designed two com-
pletely inverse, fair, and highly reliable observation recovery
algorithms to restore the complete state-action observation.

2 BACKGROUND
2.1 GR Problem and Model-Free GR
The essence of GR lies in inferring an agent’s underlying goals
through observing their behaviour in an environment. Traditional
Model-Based GR methods typically rely on explicitly predefined do-
main models, which details the inner workings of the environment.
Accordingly, the existing literature categorises such GR problems
under Definition 2.1[4]. However, constructing an accurate domain
model often requires a domain expert, capable of buidiling correct
domain knowledge, which can be both costly and time-consuming.

Definition 2.1 (Model-Based GR). A Model-Based GR problem
PMGR = ⟨M, sI,G,O⟩ is a tuple that comprises a modelM, represent-
ing the properties and actions of an environment, an initial state
sI, a set of possible goals G, including the intended goal G * ∈ G
unknown to the recognizer, and a sequence of observations O that
projects a sequence of interactions in an environment to achieve
G *.

To address the need for pre-defined domain knowledge, Model-
Free GR (as defined by Amado et. al. in [4]) methods have increas-
ingly become a focal point of research in recent years. They de-
fine two different types of Model-Free approaches: Model Agnostic,
where these approaches recognize goals without any sort of do-
main knowledge, and Model Approximate ,where these approaches
approximate domain knowledge from data. The method we pro-
pose belongs to the Model-Approximate class of Model-Free GR al-
gorithms, as defined in Definition 2.2. The fundamental idea be-
hind this class of algorithms is to approximate domain models
through data (or sampling), thereby computing a substitute for
the pre-defined domain knowledge. Compared to Model-Agnostic
approaches, Model-Approximate algorithms are often better at ex-
plaining their decisions, as Model Agnostic approaches are often
machine learning models where the decisions are concealed in the
inference process.

Definition 2.2 (Model-Approximate GR). Let P��MGR be a Model-
Free GR problem. A GR process is Model-Approximate if it first
approximates the underlying modelM as M̃. Denoted as PM̃GR =

⟨M̃, sI,G,O⟩

2.2 Causality
In recent years, much research has increasingly emphasized the
study of causality as a means to address the limitations inherent in
correlation-based machine learning[16, 17], with research efforts
primarily categorized into Causal Discovery and Causal Inference.

2.2.1 CausalDiscovery. Causal discovery seeks to uncover causal
relationships between variables using observed data, with minimal

or no interventions, and to infer how changes in cause variables
affect outcome variables under unobserved conditions. These re-
lationships are typically represented by a Directed Acyclic Graph
(DAG), as shown in Figure 1, encompassing three fundamental
causal structures[27] : (1) Fork - 𝑋 ← 𝑈𝑋𝑌 → 𝑍 , (2) Chain -
𝑋 → 𝑌 → 𝑍 and (3) Collider - 𝑈𝑍 → 𝑍 ← 𝑌 . Here, node U rep-
resents the latent variables, while nodes X, Y, and Z are observed
variables. The directed edges indicate that the causal variable influ-
ences the outcome variable.

X Y Z

UXY UZ

ColliderFork

Chain

Figure 1: Example of a causal graph.

The interaction between the agent and the environment can be
viewed as a time series of actions from a starter state to another
state. For GR problems, uncovering the causal relationship between
the agent’s actions and the goals necessitates redefining a specific
form of causality to assess the strength of causal links between
events within the time series. As delineated in Definition 2.3, we
derived this causality by extrapolating from the reflex arc model in
biology.

Definition 2.3 (Conditions Of Strong Causality In A Time
series). For a time series, a strong causal relationship between
event X and event Y requires the following conditions to be met:
• Necessary Condition 1: Event X should specifically trigger
event Y, with minimal occurrence of unrelated events Z.
• Sufficient Condition 2: Given Condition 1, causal event X
should trigger a specific number of resultant events Y shortly
after. The longer it takes for event Y to occur, the weaker the
inferred causality.
• Sufficient Condition 3: If Condition 1 is satisfied, the fre-
quency of causal event X should closely match that of resul-
tant event Y.
• Sufficient Condition 4: If Conditions 1 and 2 are met, an
increase in the occurrences of event X should strengthen the
causal relationship with event Y.
• Sufficient Condition 5: If Conditions 1 and 2 are met, any
unilateral change in the occurrences of𝐴 or 𝐵 without a pro-
portional change in the other will increase Relative Noise and
weaken causality. The established causality is maintained
only if both 𝐴 and 𝐵 change simultaneously.

2.2.2 Causal Inference. Causal inference aims to address the
question, "How will variable Y change if variable X changes?" [19]
Pearl et al. argue that causal inference goes beyond analysing prob-
abilities under static conditions, extending to the study of dynamic
changes in events under varying conditions.[18] Key methods in-
clude intervention analysis and counterfactual inference. The inter-
vention involves observing the effect on the outcome variable by
externally manipulating the cause variable, a process known as the
do-Calculus, typically achieved by setting the cause variable to a
fixed value rather than relying on its natural occurrence.
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Counterfactual inference provides a deeper understanding of
causal relationships by constructing and analysing hypothetical
causal scenarios. In our approach, counterfactual inference relies on
Variational Inference (VI). VI is an optimisation technique used to
approximate complex probability distributions by substituting them
with a simpler, more tractable distribution, thereby transforming
the inference problem into an optimisation task.[10] The specific
form of VI we use will be detailed in the next section.

3 PROPOSED METHOD
In this section, we present in detail our proposed approach - Goal
Recognition via Variational Causality (GRVC). Figure 2 illustrates
the algorithmic flow of GRVC.

3.1 Causal Discovery
We employed the same Q-Learning method as Amado et al. to sam-
ple for each goal G[3]. This algorithm explores the environment
with the objective of achieving the candidate goal, terminating
upon successful completion of the goal. As a reinforcement learn-
ing algorithm, it seeks to discover an optimized trajectory toward
the goal, minimizing the number of steps required to reach the
desired outcome. The aim is not on optimising the performance of
reinforcement learning, but to gather enough sampling towards a
goal to construct a causal model. We plan to construct two causal
models from the sampled sequences: Causal Cube and the Causal
Graph. Each sequence for a given G encompasses 𝑁 paths leading
to that G.

3.1.1 Casual Cube. The causal cube (S, A, S') is constructed for
each G to evaluate the causal strength of the transition from state
𝑠 ∈ S to 𝑠′ ∈ S' after the agent’s action 𝑎 ∈ A, denoted as (S,A) → S'.
Before constructing the causal cube for a G, all relevant sampling
sequences are concatenated into a chronological series. The causal
intensity is quantified using aCausal FactorAlgorithm, as defined
in Definition 2.3. The overall formula for the Causal Factor 𝜔 is
derived from the three core components in Definition 2.3.

𝜔 = Distance_Factor × Relative_Noise × Consistency (1)

• Distance Factor: The distance can be seen as the response time
of the resultant event (sk, a_) to the causal event (si, aj), where
a_ means the action after state sk is irrelevant. As shown in
Figure 3, we divide the sampled sequence into smaller intervals
based on (si, aj) to calculate distance values within each interval.
There are three possible cases based on the sequential distance
between (si, aj) and (sk, a_), temporarily referred to as X and Y,
respectively.
– Situation 1: After X occurs, Y is triggered between X and the
next X.

Distance = 𝑖𝑛𝑑𝑒𝑥 (nearest_Y) − 𝑖𝑛𝑑𝑒𝑥 (X) (2)

– Situation 2: If Y was triggered before the current X but not
before the next X, we apply a penalty and select the furthest Y
from the current X.

Distance = 𝑖𝑛𝑑𝑒𝑥 (X) − 𝑖𝑛𝑑𝑒𝑥 (furthest_previous X _ Y) (3)

– Situation 3:After X, if Y is not triggered before the next or
previous X, we impose a severe penalty by selecting the earliest
Y, which is the furthest from the current X.

Distance = 𝑖𝑛𝑑𝑒𝑥 (X) − 𝑖𝑛𝑑𝑒𝑥 (furthest_previous_ Y) (4)

Distance_Factor =
1

𝑚𝑒𝑎𝑛 (Distances) (5)

Where Distances is the set of Distance.
• Relative Noise: The Relative Noise is the ratio of the number of
𝑌 triggered by 𝑋 . Here’s how it’s calculated:

Relative_Noise =
count_ Y _between_X

count_X
(6)

Here, count_ Y _between_X is the number of Y occurrences be-
tween adjacent Xs, and count_X is the total number of Xs.
• Consistency: This measures the causal consistency between 𝑋

and 𝑌 . Causality holds if 𝑋 and 𝑌 change proportionally in the
same direction; otherwise, it diminishes.

Consistency = log
(
1 + count_X × count_ Y _between_X

Total_Count × count_ Y

)
(7)

Where 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 is the total number of steps and 𝑐𝑜𝑢𝑛𝑡_𝑌 is
the number of 𝑌 occurrences in the sampling.
Given the substantial memory demands of constructing such a

cube, we have devised an optimised data structure to represent it
efficiently.

𝐶G = { [𝑆,𝐴, 𝑐𝑜𝑢𝑛𝑡 ( (𝑆,𝐴) ) ] : [𝜔𝑆 ′ ] } G ∈ G (8)

where 𝜔S' is a certain causal factor of (S,A) → S'. We use median-
based pruning to remove (S,A) pairs with counts below the median,
reducing computational complexity.

3.1.2 Causal Graph. The causal graph measures the causal in-
tensity between A and G. Figure 4 illustrates the process of trans-
forming causal cubes into a causal graph. Initially, given a causal
cube (S,A, S') for a particular G, it is compressed into a causal plane
(A, S') via Average Method, where this plane represents the av-
erage causal intensity between an action taken in any S and the
resulting S'. Subsequently, following Definition 2.3 and Necessary
Condition 1, a Causal Entropy(CE) algorithm is employed to com-
press the plane further, producing the causal graph that links A
and G. This algorithm leverages entropy to reflect the specificity of
an A triggering a particular S, while accounting for causal factors.
In other words, if a particular A can specifically trigger a S, then
within the distribution of the average causal intensity between A
and all S, this distribution tends to increase in entropy; conversely,
it decreases. The algorithm ensures that the compression process
rationally conveys causal information, thereby making the causal
graph a trustworthy representation.

CE(𝐺𝑟𝑎𝑝ℎ) =𝑚𝑒𝑎𝑛 (𝐺𝑟𝑎𝑝ℎ) × (1 + 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐺𝑟𝑎𝑝ℎ) ) (9)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐺𝑟𝑎𝑝ℎ) = −
∑︁
(𝑝𝑟𝑜𝑏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 × log(𝑝𝑟𝑜𝑏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ) )

(10)

𝑝𝑟𝑜𝑏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝐺𝑟𝑎𝑝ℎ

𝑟𝑜𝑤_𝑛𝑢𝑚 (𝐺𝑟𝑎𝑝ℎ) (11)

A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ =
[
CE(A𝑖 _G𝑗 )

]G𝑗 ∈G
A𝑖 ∈A (12)

After computing the causal graph for each G, the individual
graphs are concatenated to form the overall A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ
for the set of goals G.

3.2 Counterfactual Inference
Counterfactual inference aims to approximate the causal graph
given the set of observations, answering the question: "How would
the A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ change given certain observed events?"
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Figure 2: Algorithm workflow of GRVC.

Cause X: ( si , aj )

Result Y: ( sk , a_ )

Distance for situation 1

Distance for situation 2Distance for situation 3

Figure 3: Three situations for calculating Distance.

3.2.1 Observational Interventions. The primary step in coun-
terfactual inference is intervention. We introduce a do-Calculus,
applying the A from the set of observations O as interventions
on A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ, resulting in an intervened causal graph
A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′. The principle behind this intervention in-
volves identifying theA in theO throughA_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ and,
when the CE of these A exceeds a specified intervention threshold,
we set them to the maximum value of their respective columns. We
set intervention threshold to 0.5 because CE ranges between 0 and
1; a value exceeding 0.5 indicates that intervention is necessary.
Lower thresholds leads to more aggressive intervention strategies.

A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′ =


CE(A0 _G0 ) · · · CE(A0 _G𝑛 )
· · · · · · · · ·

CE(AO𝑖 _G0 ) · · · CE(AO𝑖 _G𝑛 )
· · · · · · · · ·

CE(A𝑛 _G0 ) · · · CE(A𝑛 _G𝑛 )


(13)

do-Calculus:

CE(AO𝑖 _G𝑗 ) =
{

𝑚𝑎𝑥 ( [CE(A𝑘 _G𝑗 ) ] ) if CE(AO𝑖 _G𝑗 ) > 0.5
CE(AO𝑖 _G𝑗 ) else

(14)

3.2.2 Parameterised Sigmoid. Causal theory typically requires
obtaining counterfactual effects through specific methods after
intervening in a causal graph. We employ Variational Inference
(VI) to achieve this. Directly determining the true posterior post-
intervention is a challenging task, however, we know that the
A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ is derived from the sampling process, which
is biased towards achieving a specific G *. We assume that we are
observing a rational agent, thus the set of observations O is part of
an optimal plan to achieve G *. Hence, A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′ rein-
forces the inclination towardsG *. while suppressing inclinations to-
wards otherG. Thus,A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ andA_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′

are similar, allowing us to approximate the A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ
by aligning it with A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′ via VI.

We devised a parameterised Sigmoid function with 𝜑 (𝛼, 𝛽),
which transforms causal graphs from the causal domain into the
probabilistic domain, offering an inference mechanism for VI. The
𝛼 modulates the gradient, while the 𝛽 adjusts the horizontal dis-
placement. Upon mapping both the original and intervened causal
graph into the probabilistic space, VI approximates and optimises
the optimal parameters, 𝜑 ′, to represent the approximate causal
graph A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ𝜑 ′ .

As illustrated in Figure 5, the Sigmoid exhibits a rapid, mono-
tonically increasing behaviour within the dashed region, referred
to as the Mutant Interval, while outside this region, the function
approaches 0 or 1. The boundary points of the transition region are
known as inflection points (represented by red or blue dots). We
define the two inflection points of the Standard Sigmoid as the
boundaries of the transition region: the Upper Inflection Point
(UIP) is (3, Sigmoid(3)) which covers 95.2% of the distribution, cor-
responding to the statistical significance level of 𝑝 = 0.05, while
the Lower Inflection Point (LIP) is (−3, Sigmoid(−3)), which is
symmetric to the Upper Inflection Point.

• Traverse - 𝛽 : A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ and A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′
select the average CE for each G as 𝛽 because the data in the
causal graph is biased. The objective is to ensure that the majority
of the data is mapped to the Mutant Interval, rather than being
concentrated near 0 or 1. Mapping all data close to 0 or 1 is
problematic as it leads to polarization of causal relationships and
the disappearance of the causal distribution curve.

𝛽 = {mean(CE(A _G) ) | G ∈ G} (15)

• Slope - 𝛼 :
– 𝛼 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 : The Min 𝛼 is the lower bound, where the Mu-
tation Interval of the Sigmoid function is the smoothest. As
shown in Figure 5, the 𝛼 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 (left red dot) is the value
of 𝛼 when the LIP is at the minimum CE (left yellow dot).

– 𝛼 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 : The Max 𝛼 is the upper bound, where the
Mutation Interval of the Sigmoid function is the steepest. The
𝛼 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 (left blue dot) is the value of 𝛼 when the LIP is
at the CE value closest to the mean(left green dot).
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Figure 4: Workflow of transforming causal cubes into a causal graph.

Given a LIP and a 𝛽 , the upper and lower bounds of 𝛼 are deter-
mined by:

𝛼 = −
log

(
1

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (−3) − 1
)

LIP −𝛽 (16)

Figure 5: Parameterised Sigmoid and the viational internal
of VI.

3.2.3 Variational Approximation. By applying a Sigmoid map-
ping to both the original and intervention causal graphs, we use VI
to find the optimal parameters𝜑 ′ that maximise the Evidence Lower
Bound (ELBO) thereby obtaining the A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ𝜑 ′ . For
the A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′, we divide the range of 𝛼 into 𝑁 inter-
vals, where 𝑁 is the number of VI iterations, typically 𝑁 = 1000.

max
𝜑 ′

𝐸𝐿𝐵𝑂 =

𝑛∑︁
𝑖=0

max
𝜑 ′

EG𝑖∼𝑞 (G𝑖 | O,𝑆𝜑′ )
[
log

(
𝑝 (O | G𝑖 , 𝑆𝜑 )

) ]
− KL

(
𝑞 (G𝑖 | G, 𝑆𝜑 ′ ) ∥𝑝 (G𝑖 , 𝑆𝜑 )

) (17)

A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ𝜑 ′ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′, 𝜑 ′ ) (18)

Where:

𝑆𝜑 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ,𝜑 (𝑚𝑒𝑎𝑛 (𝛼 ), 𝛽 ) ) (19)

𝑆𝜑 ′ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (A_G _𝐶𝑎𝑢𝑠𝑎𝑙_𝐺𝑟𝑎𝑝ℎ′, 𝜑 (𝑟𝑎𝑛𝑔𝑒 (𝛼, 𝑁 ), 𝛽 ) ) (20)

3.3 Trajectory Likelihood
Finally, measuring Trajectory Likelihood is the final step in our
GR process. As shown in Figure 2, this step infers the G * from
the O using the gathered information. The idea is to calculate two
probabilities: the probability of each observed A at each step (called
the Behaviour Policy 𝜋 ) and the likelihood of transitioning to the

next observed S after the A (known as the Transition Probability
𝑝). Here, we introduce the basic formula for trajectory likelihood.

𝑝 (O | G𝑖 , 𝑆𝜑 ′ ) =
𝑖∑︁

𝑡=0
(log𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 , 𝑆𝜑 ′ ) × log𝜋 (𝑎𝑡 | 𝑠𝑡 ,𝑄G𝑖 , 𝑆𝜑 ′ ) )

(21)
𝑄G𝑗

∈ {𝑄G0 ,𝑄G1 , . . . ,𝑄G𝑛 | G𝑗 ∈ G} (22)

Where Q denotes the Q-table learnt for each G sampling in 𝑅𝐿.
• Behaviour Policy - 𝜋 The purpose of the 𝜋 is to calculate the
likelihood of an occurrence of a time step (𝑠𝑡 , 𝑎𝑡 ) within O. Un-
like the pseudo-policy based on KL-Divergence used by Amado
et al.[3], we have integrated the concept of causal graph and
Temperature-Softmax to propose a new policy function named
the Causal-Temperature Softmax Policy. For simplicity we
𝜋𝑄G𝑖 ,𝑆𝜑′

to refer to 𝜋 (𝑎𝑡 | 𝑠𝑡 , 𝑄G𝑖
, 𝑆𝜑 ′ ):

𝜋𝑄G𝑖 ,𝑆𝜑′
=

exp
(
𝑄G𝑖 (𝑠𝑡 ,𝑎𝑡 )−max(𝑄G𝑖 (𝑠𝑡 ,A) )

𝜏

)
· 𝑝 (𝑎𝑡 | G𝑖 , 𝑆𝜑 ′ )∑

𝑎′∈A exp
(
𝑄G𝑖 (𝑠𝑡 ,𝑎

′ )−max(𝑄G𝑖 (𝑠𝑡 ,A) )
𝜏

)
· 𝑝 (𝑎′ | G𝑖 , 𝑆𝜑 ′ )

(23)
𝜏 = len(𝑄G𝑖 (𝑠𝑡 , 𝑎

′ ) ) (24)

The Causal-Temperature Softmax Policy guides the next A using
both the Q-table and causal graphs. In this policy, the numerator
represents a specific (𝑠𝑡 , 𝑎𝑡 ) from the O, while the denominator
is the sum of Q-values for all A in that S as per Q-table. Given
the Q-table is often sparse, we introduce the Softmax strategy
to accommodate this sparsity. We apply the natural exponential
function to the Softmax outputs, leveraging its monotonicity and
non-negativity over the real number range to handle Q-values.
The temperature coefficient 𝜏 is used to adjust the strategy’s
dependence on the Q-table: a smaller 𝜏 increases dependence on
the Q-table. Here, 𝜏 is set to the number of Q-values for a given
state in the Q-table which helps to flexibly adapt the temperature
values required for different problems.
In computing 𝜋 , querying the Q-value for the A based on the
S from the O is essential. However, noise in the O or unvisited
states during sampling can lead to observedQ-valueswithout any
computed value in the Q-table. To address this, we introduced a
penalty measure for 𝜋 , calculated as follows:

penalty𝜋 =

(
mean(𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑄G𝑖 ) )
𝜋_skip_n + total_step_n

) ( 𝜋_skip_n+total_step_n+p_skip_n
exponential_weighted_mean(𝑆𝜑′ _G𝑖 )

)
(25)

For the design of 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝜋 , our core idea is as follows:
– Severe Priority: We set the penalty for 𝜋 to be significantly
harsher than that for 𝑝 because 𝜋 underpins the trajectory. If
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Algorithm 1: Exponentially Weighted Mean
Function INPUT(array, intervention_threshold):

weights← exp(𝑎𝑟𝑟𝑎𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ) ;
weighted_sum← ∑𝑛

𝑖=1 𝑎𝑟𝑟𝑎𝑦𝑖 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 ;
total_weight← ∑𝑛

𝑖=1 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖 ;
if total_weight ≠ 0 then

weighted_average← weighted_sum
total_weight ;

else
weighted_average← 0;

return min(max(weighted_average, 0), 1) ;

𝜋 fails or is 0, it means the 𝑝 is also unachieved. Therefore, we
use an exponential function with a base between 0 and 1 to
ensure a severe penalty.

– Convergence Priority: We design the penalty to increase
progressively with 𝜋 ’s failures by incorporating 𝜋_skip_n +
p_skip_n + total_step_n in the exponent of the exponential
function. The term 𝜋_skip_n + p_skip_n ensures 𝜋 diminishes
more rapidly than 𝑝 in a monotonically decreasing function.
Including total_step_n provides varying initial penalty values
based on length of O, with longer sequences yielding smaller
initial values.

– Numerical Magnitude: To further diminish the inherently
low magnitude of 𝜋 , we impose a penalty by calculating the
ratio of Exponential Weighted Mean(as shown in Algorithm
1) to the exponential function. This division of an integer by a
fraction less than one significantly accelerates the monotonic
reduction of the exponential function.

– Causality: G with higher 𝑆𝜑 ′ receives lighter penalties com-
pared to others with the same penalty step.

• Transition Probability - 𝑝 The formula for calculating the 𝑝 is
as follows. Its meaning is quite evident, as it attempts to compute
the causal transition probability from (𝑠𝑡 , 𝑎𝑡 ) → 𝑠𝑡+1. For 𝑝 (𝑎𝑡 |
G𝑖 ), we can obtain it by querying the 𝑆𝜑 ′ . However, for 𝑝 (𝑠𝑡+1 |
𝑠𝑡 , 𝑎𝑡 ), the causal graph does not include state information, and
the Q-table cannot directly provide information on transition
probabilities. Therefore, we consider using the causal cube 𝐶G𝑖

.

𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 , 𝑆𝜑 ′ ) = 𝐶G𝑖 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) · 𝑝 (𝑎𝑡 | G𝑖 ) (26)

Similarly, due to the necessity of locating states within the causal
cube, the calculation of 𝑝 might still be infeasible due to query
failures. Consequently, we have designed a penalty measure akin
to 𝜋 to replace the standard calculation when it fails or equals 0.
Additionally, a failure in the calculation of 𝜋 will also trigger a
penalty for 𝑝 . The formula is as follows:

penalty𝑝 =

(
mean(Sigmoid(𝑄G𝑖 ) )
𝑝_skip_n + total_step_n

) ( total_step_n+𝑝_skip_n
exponential_weighted_mean(𝑆𝜑′ _G𝑖 )

)
(27)

Ultimately, we obtain the optimal goal G * by maximising the Tra-
jectory Likelihood.

G * = arg max
G𝑖 ∈G

𝑝 (O | G𝑖 , 𝑆𝜑 ′ ) (28)

3.4 Observation Recovery
Currently, the approach we have described only works when hav-
ing observations as a pair of states and actions (state-action pair).

Given that traditional GR approaches typically rely solely on ac-
tions (or states), we aim to minimise structural adjustments to
GRVC by focusing on reconstructing the observation set O. To this
end, we propose two fully complementary Observation Recovery
Algorithms.

As illustrated in Figure 6, the first step involves obtaining a Fused
Q-table and a Fused Causal Graph. The Fused Q-table is derived
by consolidating the Q-tables from G. The Fused Causal Graph
is obtained by merging the sampling sequences from G into a
single unified sequence and then applying a Causal Discovery
Algorithm. It is important to note that the resulting Fused Q-table
and Fused Causal Graph do not favour any specificG but incorporate
noise from other G. Nonetheless, this approach is sufficient for
reconstructing a complete O that approximates the original. During
the action recovery process, given a state 𝑠𝑛 , we query the Fused
Q-table to obtain the Q-values for all A at 𝑠𝑛 and map these values
to probabilities using a Standard Sigmoid function, reflecting the
expected values of (S,A). Concurrently, we query the Fused Causal
Graph to retrieve the causal factor 𝜔 for all A given state 𝑠𝑛+1 and
map these factors to probabilities using a Sandard Sigmoid function.
In the case of a query failure, we proceed directly to a penalty
process, which is independent of the O.

Then, We calculate the product of the probability matrices for
(S,A) and (A, S), selecting the A with the highest product as the
optimal choice. We consider action selection from both directions
because the O forms a chain, and focusing solely on one direction
may lead to an incomplete or unreachable observation sequence.

The process of recovering states is the inverse of the action
recovery process. This symmetry is crucial in ensuring that both
algorithms remain fair during the restoration process, preventing
bias that might arise if one algorithm produces superior restoration
outcomes compared to the other as far as possible.

sn+1a?sn Fusion Q-Table
(S-A): search

 all actions for sn

Fusion Causal 
Graph (A-S): search
 all actions for sn+1

an+1s?an

Fusion Causal
Graph (A-S):search

all states for an

Fusion Q-Table
(S-A): search

all states for an+1

Action Recovery

State Recovery

Totally
Counterprocess

Sigmoid Sigmoid

Sigmoid Sigmoid

Figure 6: Observation Recovery Algorithm.

4 EXPERIMENTAL EVALUATION
4.1 Domains & Hyperparameters
In this section, we detail a thorough evaluation of the performance
of GRVC across various domains, offering a comparison with other
methods. Given the similar nature of our approach, we use the same
three GR evaluation domains—Blocks, Hanoi, and SKGrid—used by
Amado et al[3]. For each domain, we provide five noise-free variants
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Obs.(%) Domain Accuracy Precision Recall F-Score

VC MU KL VC MU KL VC MU KL VC MU KL

10
Blocks 0.85 0.80 0.75 0.90 0.56 0.50 0.90 0.90 0.80 0.90 0.69 0.62
Hanoi 0.90 0.95 0.95 0.82 0.90 0.90 0.90 0.90 0.90 0.86 0.90 0.90
SKGrid 0.97 0.80 0.93 1.00 0.60 0.86 1.00 0.60 0.86 1.00 0.60 0.86

30
Blocks 0.90 0.85 0.85 1.00 0.62 0.62 1.00 1.00 1.00 1.00 0.77 0.77
Hanoi 1.00 0.95 0.95 1.00 0.90 0.90 1.00 0.90 0.90 1.00 0.90 0.90
SKGrid 1.00 0.85 0.90 1.00 0.70 0.80 1.00 0.70 0.80 1.00 0.70 0.80

50
Blocks 0.95 0.85 0.85 1.00 0.62 0.62 1.00 1.00 1.00 1.00 0.77 0.77
Hanoi 0.95 1.00 0.90 1.00 1.00 0.80 1.00 1.00 0.80 1.00 1.00 0.80
SKGrid 0.88 0.85 0.95 0.90 0.60 0.90 0.90 0.60 0.90 0.90 0.60 0.90

70
Blocks 0.93 0.85 0.85 1.00 0.62 0.62 1.00 1.00 1.00 1.00 0.77 0.77
Hanoi 0.97 0.95 0.90 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80
SKGrid 0.90 0.85 0.90 0.90 0.70 0.80 0.90 0.70 0.80 0.90 0.70 0.80

100
Blocks 0.93 0.85 0.85 1.00 0.62 0.62 1.00 1.00 1.00 1.00 0.77 0.77
Hanoi 0.97 1.00 0.95 1.00 1.00 0.90 1.00 1.00 0.90 1.00 1.00 0.90
SKGrid 0.95 0.95 0.85 1.00 0.90 0.70 1.00 0.90 0.70 1.00 0.90 0.70

Avg
Blocks 0.91 0.84 0.83 0.98 0.61 0.60 0.98 0.98 0.96 0.98 0.75 0.74
Hanoi 0.96 0.97 0.93 0.96 0.94 0.86 0.98 0.94 0.86 0.97 0.94 0.86
SKGrid 0.94 0.85 0.89 0.96 0.70 0.78 0.96 0.70 0.78 0.96 0.70 0.78

Table 1: General performance comparison (Action-State)

Obs.(%) Domain Accuracy Precision Recall F-Score

VC MU KL VC MU KL VC MU KL VC MU KL

50-Noisy
Blocks 0.88 0.85 0.70 0.90 0.62 0.44 0.90 1.00 0.70 0.90 0.77 0.54
Hanoi 0.93 0.95 0.80 0.90 0.90 0.60 0.90 0.90 0.60 0.90 0.90 0.60
SKGrid 0.97 0.80 0.75 1.00 0.60 0.50 1.00 0.60 0.50 1.00 0.60 0.50

100-Noisy
Blocks 0.95 0.85 0.85 1.00 0.62 0.62 1.00 1.00 1.00 1.00 0.77 0.77
Hanoi 0.97 1.00 0.95 1.00 1.00 0.90 1.00 1.00 0.90 1.00 1.00 0.90
SKGrid 0.97 0.85 0.85 1.00 0.70 0.70 1.00 0.70 0.70 1.00 0.70 0.70

Avg
Blocks 0.91 0.85 0.78 0.95 0.62 0.53 0.95 1.00 0.85 0.95 0.77 0.65
Hanoi 0.95 0.97 0.88 0.95 0.95 0.75 0.95 0.95 0.75 0.95 0.95 0.75
SKGrid 0.97 0.82 0.80 1.00 0.65 0.60 1.00 0.65 0.60 1.00 0.65 0.60

Table 2: Anti-noise performance comparison (Action-State)

with different levels of observability, covering 10%, 30%, 50%, 70%,
and 100%. Additionally, we introduce two noisy variants with 50%
and 100% observability. Each variant in each domain includes 10 GR
problems, each with 4 candidate goals, resulting in 210 problems.

We selected four state-of-art GR algorithms for comparison with
GRVC. The first two algorithms are reinforcement learning-based
methods proposed by Amado et al.[3], evaluated using MaxUtil and
KL-divergence, referred to as MU and KL respectively. The sec-
ond is a Landmark-based approach developed by Ramon et al.[20],
known as LM . The final method, GR, is a heuristic estimator-based
approach introduced by Ramírez and Geffner[23].

Next, we outline the hyperparameters used in this evaluation. To
ensure fairness, both GRVC and MU utilised the same Q-Learning
algorithm and hyperparameters (Sutton 1988). In this work, we im-
proved the sampling algorithm compared to Amado et al.[3]’s work
by prioritising sampling states and actions in the set of observations.
So, to compare our approach with the their work, we re-run their
approach with this new sampling technique, following the same
rule that the training stops if the agent is able to achieve the goal
1,000 times. For GRVC, goals without sufficient samples within this
limit are discarded. GRVC also has an additional hyperparameter:
the number of ELBO iterations. We tested 100, 500, 800, and 1,000
iterations, finding performance fluctuations under 5%, with optimal
results at 1,000 iterations. Further iterations were deemed unneces-
sary due to the narrow variational range.Consequently, results are
based on 1,000 ELBO iterations.

We conducted performance evaluations under three observation
input modes: having both action and state as observations (Action-
State), only the states (State-Only), and only the actions (Action-
Only). For each mode, we tested performance across varying levels

of observability as well as in noisy environments, using standard
machine learning metrics for evaluation. Notably, the State-Only
and Action-Only modes, particularly in noisy conditions, present
significant challenges for existing methods.

4.2 General Evaluation
As shown in Table 1, we evaluated the performance of each method
under the Action-State observation mode. GRVC demonstrated
near-perfect performance, achieving almost 100% accuracy across
all observability conditions. Notably, in the SKGrid environment,
MU ’s performance was 4% to 8% lower than KL, whereas in the
Blocks and Hanoi environments, MU outperformed KL. This dis-
crepancy may be attributed to the characteristics of SKGrid’s grid-
based navigation, where multiple optimal paths can lead to the goal,
making it difficult for MU to consistently maximise the utility of a
single trajectory. GRVC, on the other hand, is less affected by this
due to its integration of multiple optimal paths into its causal cube.
When constructing the causal cube for each candidate G, the more
paths leading to the goal, the stronger the corresponding 𝜔 , which
in turn increases the CE of that goal. As long as the observation
sequence contains steps from any optimal plan for the candidate
goal, this chain effect is amplified during Variational Inference (VI).

4.3 Anti-Noise Evaluation
In the anti-noise evaluation, we compared the performance of each
method in noisy observation environments. As shown in Table 2,
GRVC’s average performance in both 50% and 100% observability
was nearly equivalent to that in noise-free settings. While there
was a 10% decline in performance at 50% observability, all metrics
remained above 90% even in the worst-case scenario. Although
MU also performed similarly to its noise-free results, GRVC consis-
tently outperformed MU, particularly in the SKGrid domain, where
GRVC’s accuracy surpassed MU by 15%, with other metrics lead-
ing by 35%. In contrast, KL’s Precision, recall, and f-score were
approximately 10% lower than in noise-free conditions. Overall, the
noise-resilience tests demonstrated GRVC’s exceptional robustness
in noisy environments.

4.4 Unilateral Evaluation
In the unilateral evaluation, the algorithms are compared based
on their performance under two types of observational inputs:
State-Only and Action-Only. It is important to note that RG does
not support State-Only inputs and KL does not support unilateral
observations, thus the State-Only evaluation includes onlyMU and
LM, while the Action-Only evaluation involves MU, LM, and RG.

GRVC does not inherently support unilateral observations. To
address this, we developed a fair observation recovery algorithm
that reconstructs unilateral observations into complete ones, effec-
tively converting the problem into one of noise robustness. Figure
7 shows the average accuracy of the approaches when dealing with
only state or only action as observation, as well as the inclusion
of noise. The results demonstrate that the recovery algorithm per-
forms exceptionally well in both modes, with recovery accuracy
often exceeding 60% and reaching up to 97% on maximum.

As demonstrated in Figure 7, GRVC based on State-Only obser-
vations maintained over 95% performance across most domains
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Figure 7: Average accuracy of unilateral observations.

in noise-free environments, with the exception of Blocks, where
the accuracy was slightly lower at 85%, though still superior to
other methods. In the Action-Only evaluation, LM showed lower
precision and F-Score compared to other methods, with minimum
values of 33% (Blocks) and 45% (SKGrid). RG also performed poorly,
with Precision reaching only 40% in both Blocks and Hanoi. In con-
trast, GRVC consistently maintained over 94% in all metrics across
different domains. GRVC successfully maintained performance in
the State-Only anti-noise tests at levels comparable to the general
evaluation. In contrast, MU and LM exhibited considerable perfor-
mance degradation, with MU achieving 55% in precision, recall,
and F-Score on SKGrid, and LM experiencing even more severe
declines, with an average accuracy of just 31% and pecision of 17%.
In the Action-Only tests, GRVC achieved 100% across most metrics,
further validating the effectiveness of the recovery algorithm and
the robust noise resilience of GRVC.

4.5 Decision Explainability
Finally, we showcase the explainability capabilities of our approach.
The decision-making process of GRVC for each goal is determined
by Equation 21, which allows for effective decision interpretation.
Equation 21 describes the cumulative likelihood at each observation
step when pursuing the current goal. Using Problem 1 in the Blocks
domain with 100% observability as an example, Figure 8 illustrates
the cumulative likelihood of observations. The likelihood at each
observation step 𝑡 is the sum of the likelihoods from step 0 to step 𝑡 .
From this, while achieving goal 1, there is a sharp drop in cumulative
likelihood at step 8. Similarly, for goals 2 and 3, significant drops
occur at steps 4, 7, and 11. Since the observation sequence is part of
the optimal plan for achieving the correct goal, we infer that steps
4, 7, 8, and 11 are likely critical for the correct goal (Goal 0).

5 RELATEDWORK
Regarding the origins of Model-Approximate GR, Bauer’s seminal
paper laid the foundational groundwork, detailing how to create
plan libraries from logged actions.[7] Complementing this, Bisson
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Figure 8: Stepwise cumulative likelihood plot for Problem 1
with 100% observation of Blocks.

et al. innovatively integrated neural networks with plan libraries,
employing RNNs to delve into the decision-making processes of
agents, with the aim of predicting actions based on learned be-
havioural patterns.[8] Amado et al.[5] extended Asai and Fuku-
naga’s architecture[6], allowing for planning and plan recognition
tasks over latent vectors. In this work, PDDL domain models are
generated from latent vectors and used for𝐺𝑅. Recent studies have
utilised Process Mining for Model-Approximate GR. These tech-
niques extract information from event logs and traces to uncover
models for GR. Process Mining facilitates the understanding of how
real processes are executed, identifying bottlenecks, deviations, and
opportunities for enhancing efficiency. Polyvyanyy et al. developed
a probabilistic recognition method that depends on Process Mining
techniques to discover models from plan traces or event logs.[22] Su
et al. expanded and enhanced Polyvyanyy’s approach, performing
comprehensive and detailed empirical evaluations against the latest
GR methods using various benchmarks.[24]

6 DISCUSSION & CONCLUSION
This work introduces a novelModel-Approximate GRmethod,GRVC,
which combines causal reasoning with Variational Inference (VI)
to achieve goal recognition. GRVC performs causal modelling on
sampled sequences and applies VI for counterfactual reasoning,
integrating trajectory likelihood to infer the correct goal. Evalua-
tions demonstrate that GRVC excels in terms of both accuracy and
stability, outperforming the existing state-of-the-art. Furthermore,
GRVC retains great precision when tackling problems with noise,
showing to be more robust than the other approaches.

As a short-coming, the current implementation of GRVC takes a
lot of time to construct causal models, particularly in unilateral ob-
servation evaluations, where it requires more time and memory to
compute the missing actions (or states), posing certain limitations
for real-time applications. We believe incorporating causal reason-
ing intoGRmethods shows great potential, and our work represents
a first step toward a new class of GR approaches. Future work will
focus on two areas: testing our approach in complex stochastic
domains and exploring the use of landmarks [21] in approximated
domains (e.g., causal graphs) to enhance both performance and
explainability.
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