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ABSTRACT
The ability to model opponent behavior is essential for autonomous

decision-making in multi-agent games. Although stochastic be-

havior is universal in real-world situations, previous works have

struggled to model opponents with high stochasticity, such as hu-

mans. The issue arises because stochasticity in opponent behavior

introduces significant uncertainty into the opponent modeling pro-

cess, which existing methods have not adequately addressed. We

introduce a novelUncertainty-AwareOpponentModeling (UAOM)

method that addresses two key sources of uncertainty stemming

from the inherent randomness of the opponent’s actions. The first

pertains to the uncertainty in constructing the opponent model,

while the second concerns the uncertainty in applying the model

during decision-making. For the first uncertainty, UAOM uses a hy-

brid behavior modeling module to learn a more powerful opponent-

aware representation by ensembling the deterministic and proba-

bilistic models to address both aleatoric and epistemic uncertainties

in opponent modeling. For the second uncertainty, UAOM uses an

opponent-aware dynamic modeling module to learn a dynamic-

aware representation. We further provide a theoretical analysis

showing that jointly optimizing our two modules can enhance

downstream reinforcement learning performance while ensuring

system convergence. We evaluate UAOM in both simulated settings
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and human-agent interaction scenarios. Our experimental results

show that the proposedmethod significantly enhances performance

when facing opponents with varying degrees of stochastic behavior,

while efficiently managing the uncertainties introduced by such

opponents.
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1 INTRODUCTION
Opponent modeling refers to the task of understanding and predict-

ing the intentions and behaviors of other agents (collectively termed

as opponents, whether collaborators or competitors), which plays a

vital role in autonomous decision-making systems [1]. A substantial

body of research has focused on integrating opponent modeling

with deep reinforcement learning, providing important insights

into resolving issues such as partial observability [25], instability

[37], and other challenges in reinforcement learning [22].

Existing methods [12, 25, 35] attempt to learn each step of an

opponent’s behavior as accurately as possible and integrate this

precise model with reinforcement learning. However, building an

accurate opponent model without errors is challenging, particularly

when the opponent’s behavior exhibits randomness. In real-world
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scenarios, such randomness is prevalent [29], as humans often

exhibit high levels of stochasticity due to operational errors or

cognitive limitations, such as ’trembling hands’ or ’fuzzy minds’

[23]. The inherent randomness associated with such behaviors

poses substantial challenges for the accurate modeling of opponents

and consequently complicates reinforcement learning tasks that

depend on opponent models.

In this paper, we introduceUncertainty-AwareOpponentModeling

(UAOM), an effective method inspired by insights on uncertainty

reduction, designed to address the challenges posed by opponents

with highly stochastic behaviors. Such behaviors primarily intro-

duce uncertainties in two critical processes: the modeling of oppo-

nents and the application of opponent models for reinforcement

learning. UAOM tackles highly stochastic opponents by incorpo-

rating awareness of these two types of uncertainties.

The uncertainty during themodeling of opponents can be further

categorized into two aspects: aleatoric uncertainty, stemming from

the intrinsic randomness of opponent behavior, and epistemic un-

certainty, arising from the cognitive difficulty of inferring opponent

behavioral patterns. In contrast to existing works that typically em-

ploy a single deterministic network for opponent modeling [12, 25],

lacking mechanisms to address uncertainty, UAOM employs a hy-

brid behavior modeling module that combines deterministic and

probabilistic networks within an ensemble framework. The prob-

abilistic network effectively handles the aleatoric uncertainty by

capturing the inherent randomness in the opponent’s actions, while

the ensemble mechanism enhances the model’s epistemic capacity

to learn complicated opponent behaviors. The uncertainty during

the application of the opponent model in downstream reinforce-

ment learning tasks arises because the randomness of opponents’

actions complicates the Markov dynamics faced by the controlled

agent and intensifies the challenges of the reinforcement learn-

ing process. Existing opponent modeling approaches have largely

overlooked the presence of this uncertainty [1, 35], thereby de-

grading the performance of downstream reinforcement learning

tasks when faced with highly stochastic opponents. UAOM incor-

porates an opponent-aware dynamic modeling approach, which

learns the environmental dynamics in the presence of opponents,

effectively mitigating the uncertainty in employing the opponent

model for reinforcement learning. We further provide theoretical

analysis demonstrating that optimizing both proposed modules has

the potential to enhance the performance of downstream reinforce-

ment learning tasks while ensuring system convergence during the

learning process.

To demonstrate the effectiveness of our method, we evaluate it

in both simulated settings and human-agent interaction tasks [6].

We test the approach with simulated opponents showing varying

levels of randomness [19] in three types of games: pure cooperation,

pure competition, and mixed motives [7]. Results consistently show

that our method outperforms the baseline, especially under high

randomness conditions. Further validation through human-agent

interaction tasks confirms its effectiveness in scenarios involving

human opponents. Additionally, we conduct visualization exper-

iments and ablation studies to demonstrate the effectiveness of

managing uncertainty.

In summary, we contribute the following: (i)We introduce UAOM,

which uses hybrid behavior modeling and opponent-aware dy-

namic modeling to address uncertainties in both opponent model

construction and utilization. (ii) We present a theoretical analysis

that illustrates the joint optimization of both proposed modules can

improve the performance of downstream reinforcement learning

tasks, while ensuring the convergence of the system. (iii) We show

empirically that UAOM outperforms baselines in handling oppo-

nents with varying stochasticity in both simulated environments

and human-agent interactions. We further analyze the effectiveness

of UAOM in handling uncertainty.

2 RELATEDWORK
2.0.1 Modeling Fixed-strategy Opponents. While deep reinforce-

ment learning has yielded many effective methods[33, 34], op-

ponent modeling nevertheless remains one of the most crucial

ones[1, 36]. Many works have applied opponent modeling to cope

with fixed-strategy agents. For example, He et al. [11] made a pio-

neering contribution by introducing agent modeling within deep

reinforcement learning, reconstructing the opponent’s actions us-

ing Deep Q-networks [21], which enabled the agent to predict

actions during reinforcement learning. Raileanu et al. [27] inferred

the opponent’s intention by assuming the consistency of the op-

ponent’s policy and the controlled agent’s policy. Hernandez-Leal

et al. [12] leveraged agent modeling as an auxiliary task in rein-

forcement learning, and improved the performance when facing

fixed-strategy opponents. Recurrent VAEs [24, 38] encoded a com-

pact variational embedding of previous interactions with the agent,

which conditioned the main agent policy. Papoudakis et al. [25]

proposed an autoencoder architecture to model rational agents in

partially observable environments. Yuan et al. [36] proposed em-

ploying in-context learning to model opponents within the offline

reinforcement learning framework. These studies assume that the

opponent follows a fixed strategy and do not address the poten-

tial stochasticity in the opponent’s behavior. Compared to these

works, our research primarily addresses the challenge of modeling

opponents whose behaviors exhibit significant stochasticity.

2.0.2 Modeling Adaptive Opponents. Agent modeling in repeated

games has attracted some researchers, who have focused on the

update of agent policies. Rabinowitz et al. [26] proposed TomNet, a

meta-learning approach to study agents with fixed and learnable

policies in trajectory prediction environments. Lu et al. [18] devel-

oped a model-free method that used meta-learning to tackle the

problem of opponent policy updates. Foerster et al. [9] derived a

model of opponent parameter update in reinforcement learning and

improved the cooperation with opponents who updated their strate-

gies. Khan et al. [15] extended the above model to more complex

games and demonstrated its effectiveness. These studies primarily

focus on agents with updating models, rather than addressing the

inherent stochasticity in opponents’ strategies. Some researchers

have adopted hierarchical cognitivemodels [5] tomodel agents with

reasoning ability. PR2 [32] was the first to introduce probabilistic

recursive reasoning in DRL with a variational Bayes method. GR2

[31] modeled bounded rational agents using a recursive reasoning

framework based on probabilistic graphical models. MBOM [35]

developed an agent modeling algorithm that performed recursive
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reasoning in the environment model and was able to cope with rea-

soning opponents. These studies model bounded rationality using

recursive reasoning models but do not account for bounded ratio-

nal behavior patterns with inherent randomness, such as quantal

response [19]. In contrast to these works, which focus on opponent

behavior models with self-updating capabilities or reasoning abili-

ties, our research investigates opponents with a different behavioral

pattern, akin to the quantal response model. Specifically, we focus

on the high stochasticity that may exist in the opponent’s behav-

ior pattern, which is more commonly encountered in real-world

applications.

3 PRELIMINARIES
Formally, a Partially Observable Stochastic Game (POSG) [10, 28] is

a tuple ⟨I,S,A,O,T ,Ω,R⟩, where I = {1, 2, . . . , 𝑛} is the set of 𝑛
agents; S is the set of states; A = A1 ×A2 × · · · × A𝑛 is the set of

joint actions;O is the set of states;O = O1×O2×· · ·×O𝑛 is the set of
joint observations; T : S×A×S → [0, 1] is the transition function
that determines how the state evolves. For each agent 𝑖 ∈ I a reward

function is R𝑖 : S × A × S → R, and access to its observation

𝑜𝑖 ∈ O𝑖 the observation function Ω𝑖 : S × A × O𝑖 → [0, 1] defines
a probability distribution over the possible next observations of

agent 𝑖 given the previous state and the joint action of all agents.

The goal of the agent 𝑖 we controlled is to maximize its expected

cumulative discount rewards interacting with other agents −𝑖

E(𝑠𝑡
𝑖
,𝑎𝑡

𝑖
,𝑎𝑡𝑎−𝑖 )∼T,𝜋𝑖 ,𝜋−𝑖

[ ∞∑︁
𝑡=0

𝛾𝑡R𝑖 (𝑠𝑡 , 𝑎𝑡𝑖 , 𝑎
𝑡
−𝑖 )

]
(1)

where 𝛾 ∈ (0, 1) is a discount factor.

4 METHOD
We propose a novel approach called Uncertainty-Aware Opponent
Modeling (UAOM), which addresses uncertainty both in the op-

ponent modeling process and in the application of the opponent

model. The Hybrid Behavior Modeling Module employs an ensem-

ble of deterministic and probabilistic networks to address aleatoric

and epistemic uncertainties during the modeling of opponents. This

ensemble approach effectively captures the opponent’s intrinsic

randomness through the probabilistic network, while the ensem-

ble of the deterministic network enhances the model’s ability to

infer diverse and complex behavioral patterns. Moreover, UAOM

employs opponent-aware dynamic modeling to capture the tran-

sition dynamics influenced by the opponent’s actions, providing

consistent features that enhance the reinforcement learning pro-

cess and mitigate uncertainty when utilizing the opponent model.

The proposed approach also includes a theoretical foundation to

ensure that the joint optimization of these components not only

enhances policy performance but also guarantees convergence in

reinforcement learning.

4.1 Hybrid Behaviour Modeling
To effectively address the uncertainty inherent in opponent mod-

eling, we propose the Hybrid Behaviour Modeling Module as a

component of the UAOM framework. This module is designed with

awareness of two types of uncertainty: aleatoric uncertainty, caused

by the inherent randomness in opponent behavior, and epistemic

uncertainty, arising from the cognitive challenge of understanding

the opponent’s highly stochastic behavior. Unlike previous works

that primarily focus on accurately predicting opponent actions,

we draw inspiration from prior research [4, 17] on addressing ran-

domness in modeling objectives. Rather than predicting a single

deterministic output, we employ a network that models the oppo-

nent’s behavior as a distribution. While this probabilistic network

effectively mitigates aleatoric uncertainty, it does not inherently

improve, and may even degrade, the model’s cognitive capacity

for capturing complex behaviors. To overcome this limitation, we

introduce a novel ensemble framework that combines determinis-

tic and probabilistic networks. This ensemble approach enhances

the model’s ability to cognitively represent opponent strategies,

thereby alleviating the effects of epistemic uncertainty.

We assume the opponent’s behavioral embedding 𝑧𝐵𝑡 leverages

the history trajectory of controlled agent ℎ𝑡
𝑖
= (𝑎0:𝑡−1

𝑖
, 𝑜1:𝑡
𝑖

) and the
history trajectory of the modeled agent ℎ𝑡−𝑖 = (𝑎0:𝑡−1

−𝑖 , 𝑜1:𝑡
−𝑖 ) to infer

the policy of modelled agent. 𝑧𝐵𝑡 can be obtained by simultaneously

learning encoder 𝑧𝐵𝑡 = 𝑓𝜙𝑒 (ℎ𝑡
𝑖
) and decoder ℎ𝑡−𝑖 = 𝑓𝜙𝑑 (𝑧

𝐵
𝑡 ).

Specifically, the model is composed of a deterministic network

and a probabilistic network. To enable adaptive representation fu-

sion, they share the same recurrent encoder 𝑓𝜙𝑒 to learn 𝑧𝐵𝑡 . The

decoder consists of both a deterministic decoder and a probabilistic

decoder, where 𝑓𝜙𝑑 = {𝑓 𝑑𝑒
𝜙𝑑
𝑑𝑒

, 𝑓
𝑝𝑟

𝜙𝑑𝑝𝑟
}. The deterministic decoder pre-

dicts the exact trajectory, while the probabilistic decoder predicts a

formalized distribution of the trajectory. In particular, with respect

to the probabilistic decoder, we employ a Gaussian distribution

N(𝑧𝑄 ; 𝜇𝑜 , 𝜎) to model the observation and a Gumbel distribution

F (𝑧𝑄 ; 𝜇𝑎, 𝐼 ) to model the action. Furthermore, we obtain a repa-

rameterized sampling [13, 16] process to sample observation and

action respectively from the Gaussian distribution and Gumbel

distribution, which makes the process trainable.

Both the observation output of the deterministic network and

probabilistic network can be estimated by mean square error.

L𝐵𝑜 =
1

𝑇

𝑇∑︁
𝑡=1

(𝑓 𝑜
𝜙𝑑

(𝑧𝐵𝑡 ) − 𝑜𝑡−𝑖 )
2

(2)

Both the action output of the deterministic decoder and proba-

bilistic decoder can be estimated by negative log error. This form

is particularly suitable because the action is represented as a dis-

tribution rather than a single-point estimate. By minimizing the

negative log-likelihood, the model aligns its predicted distribution

with the true action distribution.

L𝐵𝑎 =
1

𝑇

𝑇∑︁
𝑡=1

(− log 𝑓 𝑎
𝜙𝑑

(𝑎𝑡−𝑖 |𝑧
𝐵
𝑡 )) (3)

4.2 Opponent-aware Dynamic Modeling
In downstream reinforcement learning, the agent operates within

a partially observable Markov decision process. The behavior of

opponents exerts substantial influence on the Markov dynamics

encountered by the controlled agent, thereby complicating the pol-

icy learning process. This complexity introduces uncertainty into

the process of leveraging the opponent model for more informed
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Figure 1: The Framework of UAOM. Unlike existing methods that rely solely on deterministic encoders, our innovative hybrid
behavior modeling module combines deterministic and probabilistic networks to jointly model opponent behavior. Additionally,
our original opponent-aware dynamic modeling module captures the transition dynamics influenced by the opponent.

decision-making. Specifically, this uncertainty is the subjective un-

certainty about the dynamics function, due to a lack of sufficient

information to uniquely determine the underlying system exactly.

Unlike existing work that has not addressed this issue, we propose

an opponent-aware dynamic modeling module to capture the in-

formation from dynamic transitions, thereby alleviating the impact

of uncertainty in downstream reinforcement learning.

In partially observable environments, we model the subsequent

feedback from the environment arises from the controlled agent’s

action, which implicitly provides information about the transi-

tion dynamics affected by opponents. Therefore, we define the

opponent-aware dynamic function as F𝑜 ′ = {𝑓 : O ×A ×O → R}.
We use an encoder-decoder structure, where encoder is 𝑧T𝑡 =

𝑓𝜑𝑒 ({𝑜𝑡−1

𝑖
, 𝑎𝑡−1

𝑖
}) and decoder is {𝑜𝑡

𝑖
, 𝑟𝑡−1

𝑖
} = 𝑓𝜑𝑑 (𝑧T𝑡 ). Specifically,

we adopt a recurrent encoder to maintain historical information,

and a linear neural network to decode. Both state and reward can

be estimated by mean square error.

LT =
1

𝑇

𝑇∑︁
𝑡=1

[
(𝑓 𝑜
𝜑𝑑 (𝑧T𝑡 ) − 𝑜𝑡𝑖 )

2 + (𝑓 𝑟
𝜑𝑑 (𝑧T𝑡 ) − 𝑟𝑡−1

𝑖 )2

]
(4)

4.3 Overall Training and Execution
During training, we assume access to the global historical infor-

mation and update the behavioral model and the transition model

accordingly. During execution, we only leverage the available par-

tial observation, self-action history, and the learned encoder to infer

the current belief 𝑧𝑡 , where 𝑧𝑡 = 𝑧
𝐵
𝑡 ⊕ 𝑧T𝑡 ( ⊕ means concatenation

in latent space). To ensure the stability of the latent embedding

transferred to the downstream task avoiding the instability of the

downstream reinforcement learning training, we devise a regular-

ization loss to stabilize the belief optimizing process

L𝐷 = 𝛽
1

𝑇

𝑇∑︁
𝑡=1

[𝐷𝐾𝐿 (𝑝 (𝑧𝑡−1) | |𝑝 (𝑧𝑡 ))] (5)

where 𝑝 (𝑧𝑡 ) is the distribution of embedding at step 𝑡 , 𝛽 is a hyper-

parameter to restrict the regularization loss, 𝐷𝐾𝐿 (·| |·) is the KL

divergence operator. In our experiments, we adopted A2C [20]

as the downstream reinforcement learning method, and defined

the loss from reinforcement learning as L𝑟 (𝜃𝑟 ). Then, all the pa-
rameters 𝜃 = (𝜙𝑒 , 𝜙𝑑 , 𝜑𝑑 , 𝜑𝑒 , 𝜃𝑟 ) can be optimized by the overall

optimization objective:

L(𝜃 ) = L𝐵 + LT + L𝐷 + L𝑟 (6)

4.4 Theoretical Analysis
The proposed UAOM framework introduces a novel integration of

the opponent behavior model with the dynamic model, jointly opti-

mized alongside the reinforcement learning process. In this section,

we undertake a theoretical analysis to explore the properties of the

overall system resulting from this integration. Specifically, our goal

is to address two fundamental questions: (1) Does the integration

of the opponent behavior model and the dynamic model have the

potential to enhance the performance of downstream reinforce-

ment learning tasks? (2) Does coupling the proposed framework

with reinforcement learning theoretically ensure convergence to

an optimal solution?

In POSG mentioned in Section 3, we define the belief regions of

the controlled agent as a finite set Z𝑖 , where Z𝑖 : O𝑖 × A𝑖 × S →
[0, 1]. Thus, any belief 𝑧𝑖 ∈ Z𝑖 is defined as the probability distribu-
tion of the state 𝑠 given the history of actions and observations of the

controlled agent. With belief defined, we can formulate the decision
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problem of controlled agent 𝑖 to a tuple < A𝑖 ,O𝑖 ,Z𝑖 ,W𝑖 , 𝜇𝑖 , 𝜋𝑖 >,

where W𝑖 are belief transition function with W𝑖 (𝑧𝑖 , 𝑎𝑖 , 𝑜′𝑖 , 𝑧
′
𝑖
) de-

noting the probability of transiting from 𝑧𝑖 to 𝑧
′
𝑖
when taking action

𝑎𝑖 in belief 𝑧𝑖 results in observing 𝑜′
𝑖
, 𝜇𝑖 is the initial distribution

of decision states with 𝜇𝑖 (𝑧𝑖 ) denoting the probability of initially

being in belief 𝑧𝑖 , 𝜋𝑖 are state-dependent stochastic policies with

𝜋𝑖 (𝑧𝑖 , 𝑎𝑖 ) denoting the probability of taking action 𝑎𝑖 in belief 𝑧𝑖 .

Let 𝜃𝑖 = {𝜋𝑖 , 𝜇𝑖 ,W𝑖 } denote the parameters of the controlled agent

𝑖 . Specially in the setting we studied,W𝑖 is related to the transition

T and policy of other agent 𝜋−𝑖 (𝑎−𝑖 |𝑜−𝑖 ). Since the decision is

based on agent 𝑖 , for simplicity, we omit the subscript 𝑖 in the fol-

lowing expressions of this subsection. Under our setting, it is easy

to observe a fact that the fact shows the feasibility that a Markov

decision problem can be represented by the historical information

and belief-based policy characterized by the parameter 𝜃 in our

settings. This fact is formalized and proven in Appendix A.

Theorem 4.1. LetD (𝐾 ) be a set of episodes obtained𝐾 trajectories
by controlled agent 𝑖 interacting with the environment by arbitrary
stochastic soft policy 𝜋 parameterized by 𝜃 , the expected sum of
discounted rewards equals to lim𝐾→∞𝑉 (D (𝐾 )

;𝜃 ), where

𝑉 (D (𝐾 )
;𝜃 ) = 1

𝐾

𝐾∑︁
𝑘=1

𝑇𝑘∑︁
𝑡=0

𝛾𝑡𝑟𝑘𝑡∏𝑡
𝜏=0

𝑝𝜋 (𝑎𝜏𝑘 |ℎ𝑘𝜏 )

𝑡∏
𝜏=0

𝑝 (𝑎𝑘𝜏 |ℎ𝑘𝜏 , 𝜃 ) (7)

Theorem 4.1 is proven in Appendix B. Theorem 4.1 confirms that

the expected sum of discounted rewards can be parameterized and

optimized by 𝜃 , where 𝜃 = {𝜋, 𝜇,W}. Revisiting the formulation,

W encapsulates both the dynamic model and the opponent behav-

ior model, demonstrating that both models directly influence the

reward maximization process. This underscores that integrating

the behavior model with the dynamic model improves the agent’s

policy during reinforcement learning. Hence, Theorem 4.1 substan-

tiates the potential for performance improvement in downstream

reinforcement learning tasks, addressing Question (1) affirmatively.

Theorem 4.2. Let {𝜃 (1)𝜃 (2) . . . 𝜃 (𝑛) } be a sequence yielded by
iteratively applying rules formalized in Appendix B. Then

lim

𝐾→∞
𝑉 (D𝐾 , 𝜃 ) (8)

exists and the limit is a maxima of 𝑉 (D𝐾 , 𝜃 ).

The formal statement and proof of Theorem 4.2 are provided in

Appendix C. Theorem 4.2 demonstrates that the iterative optimiza-

tion process defined by the parameter 𝜃 converges to the maximum

of the expected cumulative discounted reward𝑉 ∗
as the number of

episodes 𝐾 → ∞. This addresses Question (2), confirming that our

framework ensures the convergence to an optimal solution of the

reinforcement learning process.

These two questions together establish the sufficiency of our

framework. By integrating the behavior model and the dynamic

model while systematically reducing their uncertainties, our ap-

proach ensures both improved performance and convergence in

downstream reinforcement learning tasks. Specifically, Theorem

4.1 demonstrates that jointly optimizing these models leads to en-

hancements in policy performance, while Theorem 4.2 provides

a guarantee that the reinforcement learning process converges as

the accuracy of these models improves. Central to our framework

is the systematic reduction of uncertainties in the behavior and

dynamic models, which directly enhances their predictive accuracy

and, by extension, the performance of the reinforcement learning

system. This joint optimization strategy represents a departure

from conventional approaches that focus solely on the behavior

model [11, 12, 25], offering a comprehensive solution that explicitly

addresses the interplay between these two models. Therefore, our

theoretical analysis directly demonstrates that the UAOM frame-

work is sufficient to improve performance and ensure convergence

in reinforcement learning tasks. By demonstrating the critical role

of uncertainty reduction in both models, our analysis validates the

framework’s design and highlights its effectiveness in achieving

stable learning outcomes.

5 EXPERIMENTS
We conducted experiments in both simulated settings and with

human-agent interactions. We assessed the method using oppo-

nents with varying levels of randomness across different game

types, including pure cooperation, pure competition, and mixed

motives. Our findings indicate that the method consistently out-

performs the baseline, particularly in high-randomness scenarios.

Validation with human opponents further supported its effective-

ness. Additionally, we performed visualization and ablation studies

to illustrate the effectiveness of managing the uncertainty.

5.1 Evaluation with Simulated Agents
5.1.1 Environmental Setup. We evaluated our method on three

types of partially observable games: cooperative (double speaker-

listener), mixed-motive (level-based foraging), and competitive

(predator-prey). Double speaker-listener requires color-based coop-

eration, while level-based foraging involves food collection with

competitive/cooperative elements. Predator-prey is a pursuit-evasion

competing game. We categorized tasks for each game type based

on different settings (e.g., hard/easy for double speaker-listener,

large/scarcity for foraging, complicated/simple for predator-prey).

Detailed settings are in Appendix D.

5.1.2 Opponent Setup. To simulate human opponents with differ-

ent degrees of stochastic behavior, we use the widely recognized

human behavior model, Quantal Response. This model features a

hyperparameter 𝜆, which can be adjusted continuously between 0

and ∞. When 𝜆 = 0, the opponent’s behavior is entirely random,

whereas when 𝜆 = ∞, the behavior becomes deterministic. To be

more specific, when 𝜆 = 1, opponents have an average probability

of 60.4% to "tremble" and select an unexpected action. At 𝜆 = 2,

this probability drops to 35.1%, and by 𝜆 = 7, it further decreases

to 0.43%. In each scenario, we have configured 10 distinct types of

opponents that follow this behavioral model, and each opponent’s

hyperparameter 𝜆 can be adjusted to demonstrate varying levels

of stochasticity. More detailed opponents’ settings are provided in

Appendix E.

5.1.3 Baselines. We compare our method against four baselines:

No Agent Modelling (NAM) is a reinforcement learning algorithm

that does not employ any agent modeling techniques and relies

on local observations and historical latent information, resembling

RL2 [8]. Local Information Agent Modelling (LIAM) [25] adopts a
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Figure 2: Performance with High-Stochasticity Opponents. Episodic evaluation rewards and 95% confidence intervals for the
five evaluated methods. The results demonstrate that UAOM outperforms other baselines when dealing with highly stochastic
opponents, as represented by the setting 𝜆 = 1.

Figure 3: Performance with Lower-Stochasticity Opponents. Episodic evaluation rewards and 95% confidence intervals for the
five evaluated methods. The results demonstrate that UAOM outperforms other baselines when dealing with lower stochastic
opponents, as represented by the setting 𝜆 = 2.

representation learning approach to characterize the trajectories of

agents with fixed strategies in partially observable environments

without considering bounded rationality. It is a state-of-the-art

method in agent modeling and has consistently served as a base-

line for opponent modeling. Classification-Based Agent Modelling

(CBAM) is derived from the context learning process of the algo-

rithm [14]. It is an agent modeling algorithm that classifies policy

identity by using the observations and actions of the modeled agent

as inputs. During the training process, the algorithm optimizes

by maximizing the log-likelihood of the policy identity, ultimately

yielding the corresponding policy identity as output. Generalized
Recursive Reasoning (GR2) [31] is a reinforcement learning al-

gorithm for modeling bounded rational agents. It assumes that

agents possess varying degrees of reasoning rationality and utilizes

k-order recursive reasoning to model the hierarchy of agents’ ratio-

nality. This baseline enables higher-level agents to more effectively

respond to agents with different levels of rationality.

5.1.4 Results in Opponents with High Stochasticity. We conducted

an evaluation of our method by comparing it with baseline ap-

proaches at a hyperparameter setting of 𝜆 = 1. The training curves

are included in Figure 2. Our method consistently surpassed all

baseline methods across various scenarios. In the Double Speaker

Listener (Hard) task, the randomness in the opponents’ information

output posed significant challenges for baseline methods, which

failed to develop effective cooperative strategies. Notably, the NAM

method struggled with convergence. In contrast, our approach ef-

fectively managed the behavioral uncertainty introduced by oppo-

nents, demonstrating not only superior rewards but also enhanced

efficiency and reduced performance variance. Similarly, in the Level

Based Foraging (Scarcity) task, baseline methods encountered dif-

ficulties in distinguishing between cooperative and competitive

opponent behavior, often converging to suboptimal strategies. Our

method successfully addressed this subjective uncertainty, leading

to stable and substantial improvements in reward acquisition.
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Figure 4: Performance Improvement Heatmap Across Vary-
ing Stochasticities. This heatmap shows the performance
improvement of our method compared to LIAM in terms
of reward when facing two opponents with varying levels
of stochasticity. Our method effectively handles opponents
with mixed stochasticity, demonstrating increasing effective-
ness as the stochasticity rises.

5.1.5 Results in Opponents with Varying Stochasticity. To assess

the adaptability and effectiveness of our approach, we evaluated

its performance against opponents exhibiting different levels of

stochasticity. The training curves in Figure 3 illustrate the results

for scenarios with a hyperparameter setting of 𝜆 = 2, where our

method consistently outperforms baseline approaches across all

tasks. By comparing the outcomes in Figures 2 and 3, we observe

that as opponent stochasticity increases, the performance gap be-

tween our method and the baseline widens. To delve deeper into

how our method adapts to varying levels of opponent random-

ness, we created a speaker-listener environment with two oppo-

nents, each characterized by different levels of stochasticity. Figure

4 presents the results, showing that our method is capable of manag-

ing multiple opponents with diverse stochastic behaviors. Notably,

our method delivers performance improvements in both low and

high stochasticity settings, with more significant gains observed as

the level of opponent randomness increases.

5.2 Evaluation in Human-agent Interaction
5.2.1 Experimental Setup. Overcooked is a cooperative gamewhere

two players, each controlling a chef, work together to cook and

deliver dishes within a time limit. It is a widely recognized bench-

mark for human-agent collaboration [6], used to assess agents’

interaction with human players. We evaluated three challenging

sub-environments—Cramped Room, Asymmetric Advantages, and

Coordination Ring—using 10 distinct human proxies generated

from real gameplay data for each. Details are in Appendix F. We

used the same baselines as in Section 5.1, but the GR2 method failed

to converge in the high-dimensional Overcooked environment and

was excluded from comparisons. Our method also outperforms

Figure 5: Performance Against Human Proxies. This figure
shows the performance of our method compared to the base-
line in human-AI interaction settings. Our method consis-
tently achieves better results than the baseline.

zero-shot coordination approaches, which lack opponent modeling.

Additional results are in Appendix G.

5.2.2 Performance. The comparison between our method and the

baseline in the Overcooked environment is presented in Figure 5.

The experimental results demonstrate the consistently high per-

formance of our approach in human-AI interaction tasks. Methods

that do not account for uncertainty, such as LIAM, struggle with

complex opponent behaviors in more challenging tasks like Asym-

metric Advantages, resulting in significant performance variance.

In contrast, our method exhibits greater stability across all tasks

and continues to improve steadily throughout the training process.

Figure 6: t-SNE Visualization of Opponent Embeddings Over
Time. This figure shows the evolution of opponent embed-
dings learned by our method over time. The embeddings
stabilize and converge closely to the true values by the end of
the training. This visualization reflects both the convergence
and accuracy of our opponent features, indicating that our
method effectively handles aleatoric uncertainty.
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Figure 7: Comparison of Opponent Embeddings via t-SNE.
This figure compares t-SNE mappings of opponent embed-
dings. Compared to methods that do not account for un-
certainty (e.g., LIAM), our approach demonstrates superior
discriminability of opponents, indicating that our model bet-
ter addresses epistemic uncertainty.

Figure 8: Ablation Study of UAOM. This figure highlights
that both the probabilistic and deterministic networks are
essential, with each playing a crucial role. The transition
network further improves performance, and KL divergence
helps maintain stability across the modules.

5.3 Analysis and Ablations
To evaluate the effectiveness of our method in handling uncertainty

in opponent modeling, we examined three key aspects: discrim-

inability, convergence, and accuracy. High discriminability indicates

that the model effectively addresses epistemic uncertainty stem-

ming from its own cognitive limitations [30]. Stable convergence

demonstrates that the model successfully mitigates aleatoric uncer-

tainty arising from data randomness [3]. Finally, accuracy reflects

the model’s ability to handle uncertainty from multiple sources [2].

Our experimental results show that our method performs well in

all three aspects.

We first assessed the discriminability of our opponent modeling

approach. We visualized the opponent embeddings in the Level

Based Foraging (Large) environment with a regularization param-

eter 𝜆 = 2. We employed t-SNE to reduce the high-dimensional

feature space into two dimensions, allowing for a more intuitive

understanding of the clustering behavior. As shown in Figure 6, the

embeddings for different opponent strategies are displayed in two

plots. In the right plot, which corresponds to the LIAM method,

the embeddings are visibly overlapping, indicating poor separation

between the distinct opponent strategies. In contrast, the left plot,

representing our proposedmethod, showswell-separated clusters of

embeddings. This clear distinction between the clusters highlights

that our approach is more effective in capturing and differentiating

the unique behavioral traits of opponent behaviors. The separation

of the embeddings demonstrates a significant enhancement in deal-

ing with epistemic uncertainty as compared to LIAM, which does

not account for such uncertainty.

We evaluated the convergence and accuracy of our opponent

modeling method by analyzing the temporal evolution of opponent

embeddings, as shown in Figure 7. We first characterized a deter-

ministic opponent (𝜆 = ∞) as ground truth and then examined a

stochastic opponent (𝜆 = 2) using our approach. Over time, the

embeddings for the stochastic opponent converged to stable values

close to the ground truth, indicating ourmethod effectively captures

the underlying structure of opponent behavior despite randomness.

Furthermore, the learning process of embeddings strongly corre-

lated with improved performance in the reinforcement learning

task, highlighting our method’s ability to capture behavioral nu-

ances for better decision-making. The analysis of both convergence

and accuracy for high-randomness opponents further confirms

that our method effectively mitigates the impact of uncertainty.

For a more detailed numerical analysis of accuracy, please refer to

Appendix H.

Additionally, we conducted ablation studies to assess the contri-

bution of each module in our method. As shown in Figure 8, the

ablation results confirm that all components of our approach are

effective. Both the probabilistic and deterministic networks play

crucial roles, with neither being dispensable. The transition net-

work further enhances performance, while the KL divergence term

helps maintain the stability of the model across different modules.

6 CONCLUSION
We propose the UAOM method, which effectively addresses uncer-

tainty in opponent modeling through its hybrid behavior modeling

and opponent-aware dynamic modeling components. Experimental

results demonstrate the consistent effectiveness of our approach in

both simulation settings and human-agent interactions. Ourmethod

tackles the prevalent uncertainty issues in opponent modeling and

provides insights for handling human opponents in practical ap-

plications. In future research, we plan to expand our approach to

multi-agent reinforcement learning, focusing on how opponent

modeling can be effectively adapted to scenarios with high un-

certainty, where multiple agents learn and interact concurrently.

This extension could provide deeper insights into the dynamics of

complex environments with numerous interacting entities.
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