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ABSTRACT
Reinforcement learning via supervised learning (RvS) has been

known as a burgeoning paradigm for offline reinforcement learning

(RL). While return-conditioned RvS (RvS-R) predominates across

a wide range of datasets pertaining to the offline RL tasks, recent

findings suggest that goal-conditioned RvS (RvS-G) outperforms

in specific sub-optimal datasets where trajectory stitching is cru-

cial for achieving optimal performance. However, the underlying

reasons for this superiority remain insufficiently explored. In this

paper, employing didactic experiments and theoretical analysis,

we reveal that the proficiency of RvS-G in stitching trajectories

arises from its adeptness in generalizing to unknown goals during

evaluation. Building on this insight, we introduce a novel RvS-G

approach, Spatial Composition RvS (SC-RvS), to enhance its ability

to generalize to unknown goals. This, in turn, augments the trajec-

tory stitching performance on sub-optimal datasets. Specifically, by

harnessing the power of advantage weight and maximum-entropy

regularized weight, our approach adeptly balances the promotion

of optimistic goal sampling with the preservation of a nuanced

level of pessimism in action selection compared to existing RvS-

G methods. Extensive experimental results on D4RL benchmarks

show that our SC-RvS performed favorably against the baselines

in most cases, especially on the sub-optimal datasets that demand

trajectory stitching.
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1 INTRODUCTION
Offline reinforcement learning (RL) [26] is a methodology that aims

at learning the policy of an agent based on pre-collected static data,

bypassing the need for real-time interactions with the environment.

Recent studies have revealed that the incorporation of supervised

learning can significantly enhance the performance of offline RL,

which is achieved without relying on the temporal difference (TD)

learning [20, 22]. This approach, known as reinforcement learning

via supervised learning (RvS) [10], transforms the traditional RL

problem into a conditional imitation learning problem. In cases

where sequential models like Transformers are employed, it turns

into a conditional sequence generation problem [7, 18]. This re-

formulation can be extended to pre-training models [23, 24, 27],

designed to solve awide range of decision-making problems [25, 37],

wherein the underlying models are usually conditioned on rewards.

Nonetheless, those models, identified as reward-conditioned

methods (RvS-R), always fall short in one of the crucial capabil-

ities of the offline RL, i.e., learning optimal policies by stitching

sub-optimal trajectories from datasets [27], which hinders their ap-

plications into practice. Without TD learning, RvS-R cannot achieve

temporal compositionality through dynamic programming and em-

pirical findings [10] indicated that RvS-R is essentially an implict

reward-based trajectory filtering. Consequently, it motivates and

expedites an inclination to shift the focus towards goal-conditioned

RvS (RvS-G). Prior work [10] has highlighted that RvS-G exhibits

superior performance compared to RvS-R in certain tasks consist-

ing of sub-optimal trajectories. However, what accounts for this,

and what is the pivotal aspect of RvS-G that enables it to effectively

combine sub-optimal trajectories to attain optimal performance,

are rarely explored.

In addressing these questions, we first undertake a preliminary

experiment in a point-mass environment to evaluate the trajectory

stitching capability of RvS-G and other established offline RL algo-

rithms. We find that the capability of RvS-G in stitching trajectories
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can be regarded as its proficiency in generalizing to unknown goals.

This is because that trajectory stitching is crucial exclusively for

reaching unknown goals, while existing state-goal pairs only re-

quire straightforward behavioral cloning (BC) or optimization for a

shorter trajectory path using importance weights. Building on this,

we conduct a theoretical analysis to find the significant component

of RvS-G to perform well in evaluating unknown goals compared to

the expert policy, instead of solely relying on the neural network’s

generalization ability and latent space similarity.

Then motivated by theoretical insights, we propose a new RvS-G

method called Spatial Composition RvS (SC-RvS) to enhance the tra-

jectory stitching capability of RvS-G while remaining aligned and

pessimistic about the dataset. In addition to goal relabeling, which

expands the size of the state-goal dataset, our method leverages

the advantage weight and maximum-entropy weight to effectively

address the trajectory stitching problem at multiple levels. Remark-

ably, our SC-RvS achieves as a more generalized form that unifies

existing RvS-G methods, providing a theoretical basis for the strong

performance observed in vanilla RvS-G [10] or when simply in-

corporating goal relabeling [3]. Furthermore, we observe that the

trade-off between trajectory stitching and reducing extrapolation

errors can be somewhat mitigated in the context of RvS-G, allow-

ing us to manage pessimism and generalization simultaneously. In

essence, we can concurrently promote optimistic goal sampling

while maintaining a degree of pessimism in action selection.

We conduct comprehensive experimental evaluations on D4RL

benchmarks [12], where SC-RvS with efficient and effective trajec-

tory stitching capability, performs favorably across diverse datasets

against baselines.

2 RELATEDWORK
Offline Reinforcement Learning. Offline RL lacks in addressing

the distributional shift between behavior and action policies [26],

which may result in inaccurate predictions for value queries of

unseen actions. Potential solutions to address this issue include

imposing constraints on the learning policy [13, 33] or assigning

low estimated values to the unseen actions [20, 22]. Some alter-

natives are achieved through weighted imitation learning [5, 8],

where trajectories with high returns are filtered and reserved or

segments of trajectories with relative superiority are selected for

imitation. A different perspective tackles this issue by condition-

ing it on specific information, formalized within the framework of

reinforcement learning via supervised learning (RvS) [10]. Predom-

inantly, most of the widely used RvS methods are conditioned on

rewards (RvS-R) [21, 39], with recent advancement [7, 14] harness-

ing Transformermodels for reward-conditioned sequencemodeling.

However, RvS-R struggles with trajectory stitching, and several

works have proposed solutions to address this limitation, e.g., substi-

tuting return-to-go with expected values [44], adjusting the history

length maintained at test time [42], and relabeling the return-to-go

for each trajectory as the maximum total reward within a series of

trajectories [27]. In contrast, our approach falls within the realm of

goal-conditioned RvS (RvS-G), which excels in trajectory stitching,

and we also incorporates weighted imitation learning. Unlike RvS-

R, RvS-G has not garnered as much attention and is often discussed

within the context of goal-conditioned RL [9, 28]. The first common

RvS-G framework was introduced by [10], wherein goals are estab-

lished by randomly selecting the near-terminal states or searching

for the best ones through accessing the environment. However,

such access is untenable within offline RL settings. Besides, Policy-

guided Offline RL (POR) [43] focuses on next-state generalization

by stitching neighboring states along the trajectory, which can

be viewed as a special case of our SC-RvS approach. Furthermore,

another recent approach, proposed by [3], employs waypoints as

conditioned goals to better facilitate stitching, resembling a variant

of SC-RvS with goal relabeling alone.

Goal-conditioned Reinforcement Learning. Within the realm of

RL, goal-conditioned approaches are recognized for their ability to

guide agents in achieving specific objectives. Among these, Hind-

sight Experience Replay (HER) [2] stands out as a crucial technique

that adeptly addresses the challenge of sparse rewards. HER intro-

duces an effective strategy that involves relabeling rewards and

transitions based on unsuccessful trajectories. This approach can

also be regarded as an implicit curriculum [36, 38], widely applica-

ble in various goal-conditioned scenarios [9, 32, 40]. Particularly

noteworthy is the synergy between HER and goal-conditioned im-

itation learning techniques [9], which empowers agents to learn

from expert demonstrations. When human supervisor is absent, the

task shifts to goal-conditioned RL, focusing on maximizing the dis-

counted cumulative return. Some methods exclusively concentrate

on the reward at the final step [16]. In the realm of offline goal-

condition RL, current methods can also be categorized into policy

regularization [29, 46] and value underestimation [6]. Additionally,

hierarchical RL [32] offers hierarchical structures intertwined with

goal-conditioning for the enhanced efficiency and exploration. Our

proposed SC-RvS effectively aligns with these methodologies due to

their shared essence of goal-conditioning. The difference lies in the

broader applicability of SC-RvS. It extends beyond the confines of

goal-conditioned tasks, operating without the prerequisite of prior

task knowledge or expert demonstrations. Moreover, the central

objective of our approach hinges on achieving compositionality in

space through goal-conditioning for superior performance.

3 PRELIMINARIES
Markov Decision Process and Offline RL. The RL problem can

be cast as a Markov Decision Process (MDP), and defined as a

tuple (S,A,P, 𝑟 , 𝛾). In this definition, S and A denote the state

and action spaces; P : S × A → S is the transition probabil-

ity; 𝑟 : S × A → R is the reward function and 𝛾 ∈ (0, 1] is

the discount factor; 𝜋 : S × A → [0, 1] denotes the policy, and
the objective of RL is to learn an optimal policy 𝜋 (𝑎 |𝑠) that max-

imizes E𝑎𝑡∼𝜋 ( · |𝑠𝑡 ),𝑠𝑡+1∼P(· |𝑠𝑡 ,𝑎𝑡 ) [
∑∞
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )]. For offline RL,

during the training process the agent operates exclusively with

a fixed dataset D without interaction with the environment, i.e.

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) ∼ D.

RL via Supervised Learning. Traditional RL methods adopt tech-

niques like policy gradient and temporal difference (TD) learning

to train the policy. Whereas, reinforcement learning via supervised

learning (RvS) offers an alternative yet effective perspective to per-

form conditioned behavior cloning. The objective of RvS is to derive

an additional hindsight information conditioned policy 𝜋 from the
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dataset D by maximizing E(𝑎𝑡 ,𝑠𝑡 ,�̂� (𝑠𝑡 ) )∼D

[
log𝜋

(
𝑎𝑡 |𝑠𝑡 , 𝑅(𝑠𝑡 )

)]
or

E(𝑎𝑡 ,𝑠𝑡 ,𝐺 (𝑠𝑡 ) )∼D [log𝜋 (𝑎𝑡 |𝑠𝑡 ,𝐺 (𝑠𝑡 ))]. Here, 𝑅(𝑠𝑡 ) refers to return-

to-go and 𝐺 (𝑠𝑡 ) represents goal states, which are the two primary

variables utilized for conditioning.

4 TRAJECTORY STITCHING FOR RVS-G
In this section, we evaluate the trajectory stitching capabilities

of various offline RL algorithms in a straightforward point-mass

environment. Drawing insights from these practical observations,

we deduce that the trajectory stitching capability of RvS-G mainly

stems from its ability to generalize to unknown goals during evalua-

tion. We then introduce a theoretical analysis to further understand

this.

4.1 Didactic Example

(a) Stitch-easy (b) Stitch-hard

Figure 1: Results on two datasets that require stitching. The
red dots in the figure denote the goal, while the green and
blue dots represent two distinct starting points. Specifically,
the green dot represents the initial state during evaluation.
The gray lines indicate trajectories, and the black represents
obstructive walls.

Similar to previous work investigating the trajectory stitching ca-

pability of return-conditioned supervised learning [4], we construct

two datasets, i.e., stitch-easy and stitch-hard, in a basic point-mass

environment with sparse rewards, incorporating a constraining

wall to shape the trajectories towards the goal. Visualizations of

the datasets and corresponding results can be found in Figure 1.

In the stitch-easy dataset, we incorporate two types of trajec-

tories: some trajectories move to the right from the initial state

region but do not reach the goal, while others progress towards

the goal from the upper side of the environment. In contrast, the

stitch-hard dataset introduces a "hard" element with trajectories

starting from the initial state and moving upwards, presenting a

deliberate distraction for methods biased towards the behavior. The

dominant action from the initial state now favors moving upward

instead of towards the goal-reaching trajectories. To compare the

trajectory stitching capabilities of various offline RL methods, we

preliminarily examine six methods across three categories: behav-

ior cloning (BC) and 10%BC [7], the latter of which utilizes the top

10% highest return trajectories; TD3+BC [13] and IQL [20], two

representative TD-learning approaches; and vanilla RvS-R [10] and

vanilla RvS-G [10] employing two-layer feedforward MLP policies.

4.2 Empirical Observation
In the stitch-easy dataset, RvS-R exhibits a remarkable performance

although it is conditioned on an unknown return for the initial state

during evaluation, as there is no positive return values for the green

dot in Figure 1 (a). This suggests that RvS-R can align well with

the behavior policy that moves to the right when conditioned on

an unknown return, navigating the environment until it reaches a

state (represented as the crossroads in Figure 1 (a)) where the return

information serves as a crucial signal guiding the agent towards

the goal. Similar analysis also applies to the performance of RvS-G,

taking into account the unseen red dot for the green dot. However,

in the stitch-hard dataset, RvS-R encounters difficulties and is even

worse than 10%BC. This is because the return values of the two

different trajectories both tend to negative infinity, and RvS-R is no

longer capable of generalizing solely through the neural network’s

generalization ability. Consequently, the learned policy tends to

default to the behavior. Given that actions from the initial state

predominantly move upwards in Figure 1 (b), RvS-R follows this,

leading to a low success rate. On the other hand, a similar issue

appears to be mitigated with RvS-G. In this case, the two different

trajectories from the initial state have different final goals, and RvS-

G exhibits better generalization in the latent state space compared

to the numerical space of return values. More specifically, in the

stitch-easy task, we define a dataset 𝐷 = {(𝑠0, 𝑠2, 𝑠4), (𝑠1, 𝑠2, 𝑠3)},
where 𝑠0 is the green dot, 𝑠1 is the blue dot, 𝑠3 is the red dot, and

𝑠2 is the intersection. The learning objective is to move from 𝑠0

to 𝑠3 by stitching partial trajectories. Using RvS-R, the partial tra-

jectory (𝑠0, 𝑠2) can be combined with (𝑠2, 𝑠3) to form a complete

trajectory. In contrast, the stitch-hard task adds a new trajectory

(𝑠0, 𝑠5), making the decision process more complex. With multiple

actions from 𝑠0, RvS-R fails due to ambiguity in action selection.

However, RvS-G conditions on goals instead of returns, simplifying

decision-making by focusing on the goal, with goal relabeling and

a goal generator further easing the task.

4.3 Theoretical Analysis
However, we cannot solely depend on the generalization ability

of the neural network itself and the similarity of the states in la-

tent space. Therefore, we strive to identify the key factors that

contribute to the strong performance of RvS-G during evaluation

through theoretical analysis and attempt to make enhancements

over vanilla RvS-G. It is noteworthy that our primary focus here

lies in the performance of RvS-G at the evaluation stage, rather

than emphasizing the state-goals already present in the offline train-

ing dataset. We posit the formulation that the state-goal pairs in

the offline training dataset are denoted as (𝑠𝑡 , 𝑔) ∼ 𝑃D
. During

evaluation, initial states and desired goals are sampled from dis-

tribution 𝑃T
, and 𝑃T ≠ 𝑃D

, which indicates the goals sampled

during evaluation are unknown. The objective here is to minimize
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the discrepancy between policy 𝜋 and the expert policy 𝜋𝐸 , denoted

as 𝑉 𝜋𝐸 −𝑉 𝜋
, across the evaluation dataset 𝑃T

.

Lemma 4.1 (Performance Difference Lemma [19]). For any 𝜋
and 𝜋 ′, it holds that

𝑉 𝜋 −𝑉 𝜋 ′
=

1

1 − 𝛾
E𝑠∼𝑃E𝑎∼𝜋 ( · |𝑠 ) [𝐴𝜋 ′

(𝑠, 𝑎)] .

By Lemma 4.1, we have

𝑉 𝜋𝐸 −𝑉 𝜋 = − 1

1 − 𝛾
E(𝑠,𝑔)∼𝑃TE𝑎∼𝜋 ( · |𝑠,𝑔) [𝐴𝜋𝐸 (𝑠, 𝑔, 𝑎)]

≤ 𝑅max

(1 − 𝛾)2
E(𝑠,𝑔)∼𝑃T

[√︃
2TV

(
𝜋 (· | 𝑠, 𝑔), 𝜋𝐸 (· | 𝑠, 𝑔)

) ]
,

(1)

The detailed proof can be found in supplement material.

For simplicity, in the subsequent analysis, we denote

E(𝑠,𝑔)∼𝑃T
[√︃

TV

(
𝜋 (· | 𝑠, 𝑔), 𝜋𝐸 (· | 𝑠, 𝑔)

) ]
as 𝐷T

TV
(𝜋, 𝜋𝐸 ). 𝐷TV is

the Total Variation Distance. The upper bound of 𝐷T
TV

(𝜋𝐸 , 𝜋) is:

𝐷T
TV

(𝜋𝐸 , 𝜋) = 𝐷T
TV

(𝜋𝐸 , 𝜋) + 𝐷D
TV

(𝜋𝐸 , 𝜋) − 𝐷D
TV

(𝜋𝐸 , 𝜋)

≤ 𝐷D
TV

(𝜋𝐸 , 𝜋) + |𝐷T
TV

(𝜋𝐸 , 𝜋) − 𝐷D
TV

(𝜋𝐸 , 𝜋) |

≤ 𝐷D
TV

(𝜋𝐸 , 𝜋) +
∑︁
(𝑠,𝑔)

|𝑃T (𝑠, 𝑔) − 𝑃D (𝑠, 𝑔) |.
(2)

Lemma 4.2 (Generalization Bound for Finite ERM [30]). Let
F be a finite hypothesis space, and the loss function be bounded
within [𝑎, 𝑏]. If we utilize finite samples to minimize the empirical
imitation loss �̂�(𝑓 ) = 1

𝑚

∑𝑚
𝑖 L(𝑓 (𝑥𝑖 ), 𝑦𝑖 ) instead of the expected

one 𝐿(𝑓 ) = E(𝑥,𝑦)L(𝑓 (𝑥), 𝑦), with probability at least 1 − 𝛿 , the
imitation error can be bounded as:

𝐿(𝑓 ) ≤ �̂�(𝑓 ) +

√︄
(𝑏 − 𝑎)2 (log 2|F | + log

1

𝛿
)

2𝑚
.

Typically, the true expert policy 𝜋𝐸 is inaccessible, so we resort to

imitating a surrogate policy 𝜋𝐸 . In this offline scenario, we rely on

finite samples to estimate 𝐷D
TV

(𝜋𝐸 , 𝜋) and the imitation error can

be bounded using Lemma 4.2. Note that the 𝐷TV can be bounded in

[0, 1]. Hence, we can draw the conclusion that with a probability

of at least 1 − 𝛿 , the following inequality holds:

𝐷D
TV

(𝜋𝐸 , 𝜋) ≤ 𝐷D
TV

(𝜋𝐸 , 𝜋) + 𝐷D
TV

(𝜋𝐸 , 𝜋𝐸 )

≤ �̂�D
TV

(𝜋𝐸 , 𝜋) +

√︄
log 2|Π | + log

1

𝛿

2𝑚
+ 𝐷D

TV
(𝜋𝐸 , 𝜋𝐸 ),

(3)

where𝑚 is the size of the training dataset and Π denotes a finite

hypothesis space.

Combining (1), (2) and (3), we derive the final optimization ob-

jective:

𝑉 𝜋𝐸 −𝑉 𝜋 ≤
√

2𝑅𝑚𝑎𝑥

(1 − 𝛾)2

[
�̂�D

TV
(𝜋𝐸 , 𝜋) +

√︄
log 2|Π | + log

1

𝛿

2𝑚

+ 𝐷D
TV

(𝜋𝐸 , 𝜋𝐸 ) +
∑︁
(𝑠,𝑔)

|𝑃T (𝑠, 𝑔) − 𝑃D (𝑠, 𝑔) |
]
.

(4)

Algorithm 1 SC-RvS for Offline RL

1: //Training
2: Input: offline dataset D
3: Initialize the goal generator 𝜃ℎ ,𝜃𝑉ℎ , the policy 𝜃𝑙 ,𝜃𝑉 𝑙

4: for epoch = 1 to N do
5: Sample transitions (𝑠, 𝑎, 𝑠′, 𝑟 ) ∼ D
6: Make goal sampling with probability 𝑃DWHER (Eq. (5))

7: Update transitions (𝑠, 𝑎, 𝑠′, 𝑟 , 𝑔, 𝑑) in D
8: Update the value functions 𝜃𝑉ℎ and 𝜃𝑉 𝑙 using TD-loss

9: Update the goal generator 𝜃ℎ by maximizing Eq. (9)

10: Update the policy 𝜃𝑙 by maximizing Eq. (7) or Eq. (8)

11: end for
//Evaluation

12: Input: initial state 𝑠 , 𝑑𝑜𝑛𝑒=False
13: while not 𝑑𝑜𝑛𝑒 do
14: Get goal 𝑔 from the goal generator: 𝑔 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑔𝜋

ℎ (𝑔|𝑠)
15: Get action 𝑎 from the policy: 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝜋

𝑙 (𝑎 |𝑠, 𝑔)
16: Exec 𝑎 and get (𝑠′, 𝑟 , 𝑑𝑜𝑛𝑒) from the env

17: Set 𝑠 = 𝑠′

18: end while

5 METHODOLOGY: SPATIAL COMPOSITION
RVS

Motivated by Eq. (4) , we present the Spatial Composition RvS (SC-

RvS). Our design choice is guided by theoretical insights, aiming to

minimize the upper bound of Eq. (4), thus minimizing the discrep-

ancy with the expert policy for reaching unknown goals during

evaluation. SC-RvS can be seen as a generalized framework that

unifies existing RvS-G methods and introduces targeted improve-

ments to each component. This framework points out the most

significant aspects of RvS-G for its trajectory stitching capabilities,

while also taking into account other components that contribute to

enhanced trajectory stitching capability.

Firstly, we emphasize that the most crucial aspect of RvS-G,

which makes it particularly effective for the challenging Antmaze

task requiring trajectory stitching, is the incorporation of goal

relabeling.

Goal relabeling. It is important to note that the second term in

the Eq. (4) is inversely proportional to the dataset size𝑚. Hence,

enlarging the state-goal dataset size through goal relabeling can

lead to a more constrained upper bound, thereby minimizing the

suboptimality of the policy during evaluation. While the Antmaze

dataset contains many suboptimal trajectories, i.e., the state-goal

pairs during evaluation are not included in the training set, the

goal relabeling mitigates this issue by enabling agents to train on a

more diverse set of state-goal pairs. Existing RvS-G methods [3, 10]

mostly adopt Hindsight Experience Replay (HER) [2] to sample

the future states along the same trajectory. Specifically, given a

trajectory (𝑠0, 𝑎0, 𝑟0, ..., 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , ..., 𝑠𝑡+𝑑 , 𝑎𝑡+𝑑 , 𝑟𝑡+𝑑 , ...), we sample a

future state 𝑠𝑡+𝑑 which is 𝑑 steps after the current state 𝑠𝑡 , and

designate it as the goal-state for 𝑠𝑡 , denoted as 𝑔𝑡 = 𝑠𝑡+𝑑 . Here, 𝑑 is

constrained within the range 1 ≤ 𝑑 ≤ 𝑇 − 𝑡 , where 𝑇 signifies the

horizon of the trajectory. This suggests that any future states along

this trajectory following 𝑠𝑡 can be relabeled as goals.
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However, in the original HER method, goals are selected from

states achieved further along the trajectory, utilizing random cur-

riculum heuristics. Due to the lack of a systematic strategy, this

method struggled to manage the balance between near-reach and

far-reach states, causing undesirable performance fluctuation across

various tasks. The rationale behind this phenomenon can be inter-

preted as follows: training with nearby states improve the stability

of the learning process and enhances adaptation to similar scenar-

ios, while incorporating distant states improves sampling efficiency

and promotes extrapolation. Nevertheless, excessive focus on either

of them can result in sub-optimal learning, as indicated by the re-

sults of our experiments. We present a new goal sampling strategy

that is different from vanilla HER, namely Distance-Weighted HER

(DWHER). DWHER introduces a refined strategy to HER by incor-

porating the distance between the current state 𝑠𝑡 and a future state

𝑠𝑡+𝑑 , represented as 𝐷 (𝑠𝑡 , 𝑠𝑡+𝑑 ) = 𝑑 . This strategy places empha-

sis on closer states, resulting in a cohesive training approach that

effectively integrates both nearby and distal states. For simplicity,

in practice, DWHER is mainly regulated using two hyperparam-

eters, i.e., 𝜆 and 𝜏 . In specific, 𝜆 is used to control the proportion

of non-neighbor states in the goal states set, and 𝜏 is used to de-

termine the length of horizon for experience replay. Consequently,

the calculation of 𝑃DWHER is updated as

𝑃DWHER (𝑠𝑡 , 𝑠𝑡+𝑑 ) =
{

min(1[𝑑≤𝜏 ],𝜆)
𝑇−𝑡 , if 𝑑 > 1

1 − 𝜆, otherwise.
(5)

Besides of this term, we derive other contributing components of

our framework.

Weighted Imitation Learning. For the first term in Eq. (4), where

the policy 𝜋 is optimized to approximate the surrogate policy

𝜋𝐸 , we utilize a weighted behavior policy as the surrogate pol-

icy: 𝜋𝐸 (𝑎 |𝑠, 𝑔) ∝ 𝑤 (𝑠, 𝑎, 𝑔)𝜋𝛽 (𝑎 |𝑠, 𝑔). This choice is motivated by

our reliance on vanilla RvS-G, which can be regarded as a variant

of weighted imitation learning. The optimal policy 𝜋𝐸𝑔 for a specific

goal conditioning function 𝑔(𝑠) can be expressed using Bayesian

rules as:

𝜋𝐸𝑔 (𝑎 |𝑠) = 𝑃𝛽 (𝑎 |𝑠, 𝑔(𝑠)) =
𝑃𝛽 (𝑎 |𝑠)𝑃𝛽 (𝑔(𝑠) |𝑠, 𝑎)

𝑃𝛽 (𝑔(𝑠) |𝑠)

= 𝜋𝛽 (𝑎 |𝑠)
𝑃𝛽 (𝑔(𝑠) |𝑠, 𝑎)
𝑃𝛽 (𝑔(𝑠) |𝑠)

.

Here, 𝜋𝛽 represents the behavior policy that generates the dataset.

The weight 𝑤 (𝑠, 𝑎, 𝑔) denotes the probability density of reaching

the conditioned goal 𝑔(𝑠). Essentially, the RvS-G policy re-weights

the behavior according to the distribution of future goal attainment.

Then following [33, 41], we conduct weighted imitation learning

on the offline data to minimize �̂�D
TV

(𝜋𝐸 , 𝜋).

Maximum Entropy-Regularized Weight. The last term involving

distribution shift,

∑
(𝑠,𝑔) |𝑃T (𝑠, 𝑔) − 𝑃D (𝑠, 𝑔) |, poses challenges for

minimizationwhen there’s no prior knowledge of the target goal dis-

tribution 𝑃T
. Taking a Bayesian perspective [31], the agent should

learn uniformly from achieved goals. Hence, we can re-weight the

offline training dataset D to a uniform distribution, thereby re-

ducing the upper-bound distribution shift. Achieving this involves

multiplying the reciprocal of density, yet estimating density can be

challenging. In our approach, we employ uncertainty as a proxy for

density, as bootstrapped uncertainty is inversely related to density

[47]. Specifically, we adopt tricks from recent work [34] and employ

Random Network Distillation (RND) to calculate the uncertainty of

the state-goal samples in D as 𝑢 (𝑠, 𝑔).
RND consists of two neural networks: a fixed and randomly

initialized prior network
¯𝑓 ¯𝜓 , and a predictor network 𝑓𝜓 which

learns to predict the prior outputs on the training data:

𝑢 (𝑠, 𝑔) = ∥ 𝑓𝜓 (𝑠, 𝑔) − ¯𝑓 ¯𝜓 (𝑠, 𝑔)∥
2

2
, (6)

where 𝑓𝜓 learns to align embeddings with data points similar to

those in the training dataset, while failing to predict on new data

points. Thus, Eq. (6) provides a means to estimate the uncertainty

associated with various state-goal pairs in the dataset. We can lever-

age this uncertainty measure as the maximum-entropy regularized

weight to mitigate the disparity between the training and testing

datasets, thereby enhancing the generalization to unknown goals.

Generally, RvS methods do not incorporate advantages obtained

through TD learning. However, to completely reach the upper

bound of the optimization objective, we can integrate advantage-

weighted regression. This component is optional if we wish to

strictly adhere to the principles of RvS.

Advantage Weight. Minimizing the third term 𝐷D
TV

(𝜋𝐸 , 𝜋𝐸 ) can
be reinterpreted as maximizing the expected value of the surrogate

policy 𝜋𝐸 , since we know 𝜋𝐸 has the highest expected value. Follow-

ing [35, 41], advantage re-weighting 𝜋𝐸 (𝑎 |𝑠, 𝑔) ∝ exp(𝐴(𝑠, 𝑎, 𝑔)) ·
𝜋𝛽 (𝑎 |𝑠, 𝑔) leads to an improved expected value over 𝜋𝛽 . Therefore,

we can employ Exponential Advantage Weighting (EAW) to mini-

mize the divergence from 𝜋𝐸 to 𝜋𝐸 . Here, the advantage 𝐴(𝑠, 𝑎, 𝑔)
is computed using asymmetric loss following recent work [20].

In summary, the overall policy of SC-RvS is expressed as follows:

𝐽 (𝜃𝑙 ) = E(𝑠,𝑎,𝑔)∼D
[
𝑢 (𝑠, 𝑔) · exp(𝐴(𝑠, 𝑎, 𝑔)) · log𝜋𝑙

𝜃𝑙
(𝑎 |𝑠, 𝑔)

]
. (7)

And if not incorporating advantage weight, the optimization

objective becomes

𝐽 (𝜃𝑙 ) = E(𝑠,𝑎,𝑔)∼D
[
𝑢 (𝑠, 𝑔) · log𝜋𝑙

𝜃𝑙
(𝑎 |𝑠, 𝑔)

]
. (8)

Here, the notation 𝜋𝑙
𝜃𝑙

is introduced to distinguish the policy

optimized to take actions. Besides, in order to make SC-RvS more

applicable to non-goal-conditioned environments, we train an au-

tomated goal generator 𝑔(𝑠) = 𝜋ℎ
𝜃ℎ

separately to alleviate the need

for manual selection of the appropriate conditioned goal during

evaluation. The goal generator 𝜋ℎ
𝜃ℎ

provides the policy 𝜋𝑙
𝜃𝑙

with a

conditioned goal for each evaluation moment.

𝐽 (𝜃ℎ) = E(𝑠𝑡 ,𝑔𝑡 ,𝑑 )∼D
[
𝛾𝑑 · exp(

𝑡+𝑑−1∑︁
𝑖=𝑡

𝑟𝑖 + 𝛾𝑉ℎ (𝑔𝑡 ) −𝑉ℎ (𝑠𝑡 ))·

log𝜋ℎ
𝜃ℎ

(𝑔𝑡 |𝑠𝑡 )
]
.

(9)

6 EXPERIMENTS
In this section, we design the experiments to answer the following

research queries (RQ):

(RQ-1) How does the proposed SC-RvS compare against other ex-

isting offline RL algorithms?

(RQ-2) How do the different components of SC-RvS contribute to
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Table 1: SC-RvS evaluation results compared with TD-learning methods on the Gym Locomotion domain with average
performance and standard deviation over 5 trials with different seeds.

Ensemble-free Ensemble-based

Dataset TD3+BC IQL CQL SAC-N EDAC RORL SC-RvS

halfcheetah-medium-v2 48.3 ± 0.3 47.4 ± 0.2 46.9 ± 0.4 67.5 ± 1.2 65.9 ± 0.6 66.8 ± 0.7 51.4 ± 0.7

halfcheetah-medium-replay-v2 44.6 ± 0.5 44.2 ± 1.2 45.3 ± 0.3 63.9 ± 0.8 61.3 ± 1.9 61.9 ± 1.5 44.3 ± 1.5

halfcheetah-medium-expert-v2 90.7 ± 4.3 86.7 ± 5.3 95.0 ± 1.4 107.1 ± 2.0 106.3 ± 1.9 107.8 ± 1.1 93.1 ± 0.5

hopper-medium-v2 59.3 ± 4.2 66.2 ± 5.7 61.9 ± 6.4 100.3 ± 0.3 101.6 ± 0.6 104.8 ± 0.1 77.2 ± 5.2

hopper-medium-replay-v2 60.9 ± 18.8 94.7 ± 8.6 86.3 ± 7.3 101.8 ± 0.5 101.0 ± 0.5 102.8 ± 0.5 96.9 ± 7.3

hopper-medium-expert-v2 98.0 ± 9.4 91.5 ± 14.3 96.9 ± 15.1 110.1 ± 0.3 110.7 ± 0.1 112.7 ± 0.2 99.0 ± 3.3

walker2d-medium-v2 83.7 ± 2.1 78.3 ± 8.7 79.5 ± 3.2 87.9 ± 0.2 92.5 ± 0.8 102.4 ± 1.4 86.1 ± 2.3

walker2d-medium-replay-v2 81.8 ± 5.5 73.8 ± 7.1 76.8 ± 10.0 78.7 ± 0.7 87.1 ± 2.4 90.4 ± 0.5 70.2 ± 4.4

walker2d-medium-expert-v2 110.1 ± 0.5 109.6 ± 1.0 109.1 ± 0.2 116.7 ± 0.4 114.7 ± 0.9 121.2 ± 1.5 107.6 ± 4.5

Average 67.5 68.9 73.6 84.4 85.2 85.7 80.8

Table 2: SC-RvS evaluation results compared with TD-
learning methods on the Antmaze domain with average per-
formance and standard deviation over 5 trials with different
seeds.

Ensemble-free Ensemble-based

Dataset TD3+BC IQL CQL RORL MSG SC-RvS

antmaze-umaze-v2 78.6 87.5 74.0 97.7 ± 1.9 97.8 ± 1.2 92.4 ± 4.8

antmaze-umaze-diverse-v2 71.4 62.2 84.0 90.7 ± 2.9 81.8 ± 3.0 68.4 ± 3.8

antmaze-medium-play-v2 10.6 71.2 61.2 76.3 ± 2.5 89.6 ± 2.2 93.4 ± 3.7

antmaze-medium-diverse-v2 3.0 70.0 53.7 69.3 ± 3.3 88.6 ± 2.6 92.6 ± 6.6

antmaze-large-play-v2 0.2 39.6 15.8 16.3 ± 11.1 72.6 ± 7.0 77.3 ± 5.3

antmaze-large-diverse-v2 0.0 47.5 14.9 41.0 ± 10.7 71.4 ± 12.2 72.1 ± 7.5

Average 27.3 63.0 50.6 65.2 83.6 82.7

the overall performance of the algorithm?

(RQ-3) Can the proposed method exhibit compositionality in space

for enhanced extrapolation, especially in sub-optimal datasets that

can assess the trajectory stitching capability of the model?

6.1 Environmental Settings
We evaluate and analyze our proposed SC-RvS on the D4RL bench-

mark [12]. For our experiments, we select two tasks: AntMaze and

Gym Locomotion.

AntMaze. This task contains a few optimal trajectories and re-

quires stitching parts of the sub-optimal trajectories to get an opti-

mal policy. The maze configurations consist of three sizes: umaze,

medium, and large, and there are two modes to choose from: play

and diverse. The "play" mode emphasizes training in stable envi-

ronments, while the "diverse" mode prioritizes diversity to enhance

exploration.

Gym Locomotion. This task involves many high-return trajec-

tories that are near expert. It includes HalfCheetah, Hopper, and

Walker datasets, each featuring different dataset settings. Here, we

employ the medium, medium-replay, and medium-expert datasets,

differentiated by the levels of policy optimality.

6.2 Baselines
We choose several popular state-of-the-art offline RL methods as

baselines, and they can be categorized as follows:

• TD-learningApproach: this approach utilizes dynamic pro-

gramming to realize temporal compositionality and achieve

remarkable performance in offline RL. We choose the widely

adopted CQL [22] ,TD3+BC [13], and IQL [20], which are

ensemble-free and have demonstrated effectiveness on D4RL.

In addition, some recent ensemble-basedmethods have yielded

state-of-the-art scores on D4RL, especially on the Gym do-

main. We choose SAC-N & EDAC [1] and RORL [45] to

compare in the Gym locomotion tasks. For Antmaze tasks,

we opted for MSG [15] and RORL [45]. SAC-N and EDAC

are not included due to the absence of public results in this

domain, and their evaluation scores are zero according to

our experiment.

• Reward-conditioned Approach: we also consider a com-

parison with Decision Transformer (DT) [7] and vanilla RvS-

R [10] to showcase the benefits of goal-conditioning in the

context of sub-optimal trajectory stitching capability. Sev-

eral recent works have proposed solutions to address the

limitations of DT in terms of its trajectory stiching capability

and we also include them for a comparison here: Q-learning

Decision Transformer (QDT) [44], Waypoint Transformer

(WT) [3], Agentic Transformer (AT) [27] and Elastic Decision

Transformer (EDT) [42].

• Goal-conditioned Approach: to substantiate the spatial

composition capability of our approach, we additionally com-

pare SC-RvS with other goal-conditioned methods, including

vanilla RvS-G [10], POR [43] and WDT [3].

• Goal-conditioned Reinforcement Learning Approach:
Wealso compare SC-RvSwith several recent goal-conditioned

reinforcement learning (GCRL) methods, including GCSL

[16],WGCSL [46], GoFar [29], Goal-conditioned IQL (GCIQL),

DWSL [17], CODA [11] and GCPC [48]. Strictly speaking,

GCRLmethods fall outside the scope of offline RL algorithms,

as they use different datasets and baselines compared to those

used in offline RL. However, to provide a fair and comprehen-

sive comparison, we include results for Antmaze, since these

methods do not apply to Gym-Locomotion tasks, which are

not goal-conditioned.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2295



Table 3: Results compared against reward-conditioned and goal-conditioned methods for D4RL datasets, showcasing average
performance and standard deviation over 5 trials with different seeds. "-" indicates that the algorithm has no publicly available
results for that dataset.

Dataset 10% BC RvS POR DT QDT WT AT EDT SC-RvS

halfcheetah-medium-v2 42.5 41.6 47.1 ± 0.3 42.6 ± 0.1 42.3 ± 0.4 43.0 ± 0.2 45.12 ± 0.34 42.5 ± 0.9 51.4 ± 0.7

hopper-medium-v2 56.9 60.2 75.4 ± 8.9 67.6 ± 1.0 66.5 ± 6.3 63.1 ± 1.4 70.45 ± 0.45 63.5 ± 5.8 77.2 ± 5.2

walker2d-medium-v2 75.0 71.7 82.8 ± 1.0 74.0 ± 1.4 67.1 ± 3.2 74.8 ± 1.0 88.71 ± 0.55 72.8 ± 6.2 86.1 ± 2.3

halfcheetah-medium-replay-v2 40.6 38.0 43.2 ± 0.2 36.6 ± 0.8 35.6 ± 0.5 39.7 ± 0.3 46.86 ± 0.33 37.8 ± 1.5 44.3 ± 1.5

hopper-medium-replay-v2 75.9 73.5 95.2 ± 10.4 82.7 ± 7.0 52.1 ± 20.1 88.9 ± 2.4 96.85 ± 0.41 89.0 ± 8.3 96.9 ± 7.3

walker2d-medium-replay-v2 62.5 60.6 63.1 ± 4.7 66.6 ± 3.0 58.2 ± 5.1 67.9 ± 3.4 92.32 ± 1.21 74.8 ± 4.9 70.2 ± 4.4

halfcheetah-medium-expert-v2 92.9 92.2 90.7 ± 1.8 86.8 ± 1.3 - 93.2 ± 0.5 95.81 ± 0.25 - 93.1 ± 0.5

hopper-medium-expert-v2 110.9 101.7 96.0 ± 3.0 107.6 ± 1.8 - 110.9 ± 0.6 115.92 ± 1.26 - 99.0 ± 3.3

walker2d-medium-expert-v2 109.0 106.0 101.2 ± 2.9 108.1 ± 0.2 - 109.6 ± 1.0 114.87 ± 0.56 - 107.6 ± 4.5

gym-avg-v2 74.0 71.7 77.2 ± 3.7 74.7 ± 1.8 - 76.8 ± 1.2 85.21 63.4 80.8 ± 3.3

antmaze-umaze-v2 62.8 65.4 86.5 ± 0.9 65.6 - 64.9 ± 6.1 - - 92.4 ± 4.8

antmaze-umaze-diverse-v2 50.2 60.9 67.3 ± 4.1 51.2 - 71.5 ± 7.6 - - 68.4 ± 3.8

antmaze-medium-play-v2 5.4 58.1 86.0 ± 3.4 1.0 - 62.8 ± 5.8 - - 93.4 ± 3.7

antmaze-medium-diverse-v2 9.8 67.3 76.3 ± 2.9 0.6 - 66.7 ± 3.9 - - 92.6 ± 6.6

antmaze-large-play-v2 0.0 32.4 57.5 ± 2.6 0.0 - 72.5 ± 2.8 - - 77.3 ± 5.3

antmaze-large-diverse-v2 6.0 36.9 58.4 ± 4.8 0.2 - 72.0 ± 3.4 - - 72.1 ± 7.5

antmaze-avg-v2 22.5 53.5 72 ± 3.1 19.8 - 68.4 ± 4.9 - - 82.7 ± 5.3

(a) Effect of 𝜆-induced goal set composition (b) Impact of experience replay horizon length 𝜏

Figure 2: Ablation Study of the proposed Distance-Weighted HER.

Table 4: Evaluation results of SC-RvS compared with GCRL
methods on the Antmaze domain, with average performance
and standard deviation calculated over 5 trials using different
seeds.

Dataset GCSL WGCSL GoFar GCIQL DWSL CODA GCPC SC-RvS

antmaze-umaze-v2 64±2 90.8±2.8 91±1 91.6±4.0 71.2±4.2 94.8±1.3 71.2±1.3 92.4±4.8
antmaze-umaze-diverse-v2 59±1 55.6±15.7 86±3 88.8±2.2 74.6±2.8 72.8±7.7 71.2±6.6 68.4±3.8
antmaze-medium-play-v2 56±6 63.2±13.7 70±1 82.6±5.4 77.6±3.0 75.8±1.9 70.8±3.4 93.4±3.7
antmaze-medium-diverse-v2 60±3 46.0±12.6 63±4 76.2±6.3 74.8±9.3 84.5±5.2 72.2±3.4 92.6±6.6
antmaze-large-play-v2 17±5 0.6±1.3 40±7 40.0±16.2 15.2±7.7 60.0±7.6 78.2±3.2 77.3±5.3
antmaze-large-diverse-v2 12±3 2.4±4.3 45±8 29.8±6.8 19.0±2.8 36.8±6.9 80.6±3.9 72.1±7.5

Average 44.67 43.1 65.83 68 55.4 70.78 74.03 82.7

Note that the RvS score indicates vanilla RvS-G performance in

Antmaze while it is based on vanilla RvS-R in Gym. The results

of POR are obtained by executing 5 trials with different seeds for

the code open-sourced by the author. For the rest of the meth-

ods, results are taken from their original papers. Our algorithm is

trained through 1M gradient updates, during which we periodi-

cally evaluate the learned policy’s performance every 5k steps for

Gym Locomotion and every 10k steps for AntMaze. Besides, we

conduct 50 evaluations for AntMaze and 10 evaluations for Gym

Locomotion to derive the average scores.

Figure 3: Ablation study for the different learning weights.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2296



6.3 D4RL Results
The results compared to TD-learning approach are shown in Table 1

and Table 2. We observe that for the Gym Locomotion tasks, SC-RvS

distinguishes itself among the ensemble-free methods, significantly

surpassing them and attaining an average score comparable to that

of ensemble-based methods. In the case of AntMaze tasks designed

to evaluate stitching capability [12], SC-RvS is on par with the per-

formance of the state-of-the-art ensemble-based method MSG and

significantly outperforms all other baselines by a great margin ex-

cept for umaze-diverse. We conjecture that this may stem from the

excessive exploration in this dataset, causing substantial variations

in the sampled goal space that hinder the convergence. When com-

pared to other RvS-G and RvS-R variants, from Table 3, we can see

that for the Gym Locomotion tasks, SC-RvS demonstrates competi-

tive performance in a majority of the datasets. Overall we obtain

the highest average score among all the RvS baselines. Notably, for

the more sub-optimal Antmaze task, RvS-G shows remarkable su-

periority over RvS-R, and our SC-RvS, in turn, exhibits substantial

improvement over existing RvS-G methods. And as shown in Table

4, even when compared to the GCRL methods, SC-RvS still achieves

the best performance. This responds to (RQ-1), where the proposed

SC-RvS performs better on the benchmark dataset in most cases.

6.4 Ablation of the Learning Weights
To answer (RQ-2) and assess the significance of each component of

SC-RvS, we conduct ablation studies by systematically removing

the different weights from the policy on the two medium datasets

of Antmaze. Subsequently, we compare the results of these variants

with the original model, as illustrated in Figure 3. We can see that

H-EAW emerges as pivotal, as the model’s viability significantly

diminishes without it. Furthermore, MERW plays a crucial role in

enhancing the algorithm’s performance. Lastly, L-EAW contributes

positively to model’s performance, particularly in diverse tasks.

Figure 4: Experimental results regarding the impact of ex-
cluding the top n trajectories on different methods.

6.5 Ablation of the Goal Sampling Strategy
We conduct the ablation study on the two medium datasets of

Antmaze. Figure 2 illustrates the effects of using different hyper-

parameters 𝜆 and 𝜏 . 𝜆 limits the proportion of far-reach states in

the goal states set. From Figure 2(a), we can observe that the model

struggles to undergo proper training when 𝜆 is set to 1 and 0.8.

This result can also validate the effectiveness of our goal sampling

stategy as when 𝜆=1, it is similar to using vanilla HER for goal

sampling. It can be explained that conditioning the agent solely on

distant and challenging goals can hinder short-term transitions and

impede training convergence. Consequently, picking a 𝜆 value of 0.4

or 0.1 becomes essential here to strike an optimal balance between

goals at varying distances. Additionally, the performance becomes

worse once 𝜆 is reduced to 0. This regression can be attributed to

the overemphasis on near-reach states, which, in turn, curtails the

model’s extrapolation ability. The horizon length parameter 𝜏 also

plays a crucial role in goal sampling. We find in Figure 2(b) that

in environments with high diversity encouraging exploration (e.g.,

diverse mode), a larger 𝜏 value is needed. But for environments

with fixed behavioral patterns (e.g., play mode), a smaller horizon

of 100 proves sufficient during replay. The selection of 𝜆 and 𝜏 also

holds relevance. Generally, a smaller 𝜆 is essential for larger 𝜏 , while

larger 𝜆 values are more appropriate for shorter replay horizons.

6.6 Sub-optimal Trajectory Stitching Capability
While the performance on Antmaze effectively showcases our

model’s capability to stitch sub-optimal trajectories, we also con-

duct an additional experiment to provide further insight into this

capability to address (RQ-3). Specifically, we select the Halfcheetah-

medium-expert dataset here and progressively delete the top n

trajectories with the highest returns to create sub-optimal datasets.

As shown in Figure 4, both SC-RvS and CQL outperform the best

trajectory in datasets across varying levels of optimality. Notably,

when the top 30% of trajectories are gradually deleted, SC-RvS

exhibited consistent performance, whereas POR and DT experi-

ence reduces significantly. This underscores our SC-RvS capability

to stitch sub-optimal trajectories, which is comparable to the TD-

learning approach CQL, albeit through different methodologies.

7 CONCLUSION
In this paper, we propose a novel Spatial Composition RvS (SC-RvS)

that is designed to enhance the capability of sub-optimal trajectory

stitching using the RvS-G framework. Through the introduction

of Spatial RvS, we address the intricate balance between trajectory

stitching and reducing extrapolation errors, showcasing promising

results in experimental evaluations. This work contributes to ad-

vancing the understanding and effectiveness of RvS-G, particularly

in scenarios where efficient and effective trajectory stitching is

paramount. The proposed Spatial RvS algorithm holds promise for

real-world applications, offering a valuable tool for policy learning

from pre-collected data. In the future, we will further explore the

impact of goal-conditioned methods in offline RL settings, inte-

grating them with sequence modeling for pretraining, and seeking

inspiration from approaches like inverse RL to further improve goal

sampling.

ACKNOWLEDGMENTS
This research is supported by the National Research Foundation,

Singapore under its Industry Alignment Fund – Pre-positioning

(IAF-PP) Funding Initiative. Any opinions, findings and conclu-

sions or recommendations expressed in this material are those of

the author(s) and do not reflect the views of National Research

Foundation, Singapore.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2297



REFERENCES
[1] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. 2021.

Uncertainty-based offline reinforcement learning with diversified q-ensemble.

Advances in neural information processing systems 34 (2021), 7436–7447.
[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech

Zaremba. 2017. Hindsight experience replay. Advances in neural information
processing systems 30 (2017).

[3] Anirudhan Badrinath, Yannis Flet-Berliac, Allen Nie, and Emma Brunskill. 2023.

Waypoint Transformer: Reinforcement Learning via Supervised Learning with

Intermediate Targets. arXiv preprint arXiv:2306.14069 (2023).
[4] David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan

Bruna. 2022. When does return-conditioned supervised learning work for offline

reinforcement learning? Advances in Neural Information Processing Systems 35
(2022), 1542–1553.

[5] David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. 2021.

Offline rl without off-policy evaluation. Advances in neural information processing
systems 34 (2021), 4933–4946.

[6] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake

Varley, Alex Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. 2021.

Actionable models: Unsupervised offline reinforcement learning of robotic skills.

arXiv preprint arXiv:2104.07749 (2021).
[7] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael

Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021. Decision

transformer: Reinforcement learning via sequence modeling. In Thirty-Fifth
Conference on Neural Information Processing Systems. https://openreview.net/

forum?id=a7APmM4B9d

[8] Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross.

2020. Bail: Best-action imitation learning for batch deep reinforcement learning.

Advances in Neural Information Processing Systems 33 (2020), 18353–18363.
[9] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. 2019. Goal-

Conditioned Imitation Learning. In Advances in Neural Information Processing
Systems. 15324–15335.

[10] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. 2021.

Rvs: What is essential for offline rl via supervised learning? arXiv preprint
arXiv:2112.10751 (2021).

[11] Ying Fan, Jingling Li, Adith Swaminathan, Aditya Modi, and Ching-An Cheng.

2024. How to Solve Contextual Goal-Oriented Problems with Offline Datasets?

arXiv preprint arXiv:2408.07753 (2024).
[12] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. 2020.

D4rl: Datasets for deep data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219 (2020).

[13] Scott Fujimoto and Shixiang Shane Gu. 2021. A minimalist approach to offline

reinforcement learning. Advances in neural information processing systems 34
(2021), 20132–20145.

[14] Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. 2021. Generalized de-

cision transformer for offline hindsight information matching. arXiv preprint
arXiv:2111.10364 (2021).

[15] Seyed Kamyar Seyed Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. 2022.

Why So Pessimistic? Estimating Uncertainties for Offline RL through Ensembles,

and Why Their Independence Matters. arXiv preprint arXiv:2205.13703 (2022).
[16] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin,

Benjamin Eysenbach, and Sergey Levine. 2021. Learning to Reach Goals via Iter-

ated Supervised Learning. In International Conference on Learning Representations.
https://openreview.net/forum?id=rALA0Xo6yNJ

[17] Joey Hejna, Jensen Gao, and Dorsa Sadigh. 2023. Distance weighted supervised

learning for offline interaction data. In International Conference on Machine
Learning. PMLR, 12882–12906.

[18] Michael Janner, Qiyang Li, and Sergey Levine. 2021. Offline reinforcement

learning as one big sequence modeling problem. Advances in neural information
processing systems 34 (2021), 1273–1286.

[19] Sham Kakade and John Langford. 2002. Approximately optimal approximate

reinforcement learning. In Proceedings of the Nineteenth International Conference
on Machine Learning. 267–274.

[20] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2021. Offline reinforcement

learning with implicit q-learning. arXiv preprint arXiv:2110.06169 (2021).
[21] Aviral Kumar, Xue Bin Peng, and Sergey Levine. 2019. Reward-Conditioned

Policies. arXiv preprint arXiv:1912.13465 (2019).
[22] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Con-

servative Q-learning for offline reinforcement learning. In Advances in Neural
Information Processing Systems, Hugo Larochelle, Marc’Aurelio Ranzato, Raia

Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).

[23] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer,

Richie Steigerwald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks,

et al. 2022. In-context reinforcement learning with algorithm distillation. arXiv
preprint arXiv:2210.14215 (2022).

[24] Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir

Nachum, and Emma Brunskill. 2023. Supervised Pretraining Can Learn In-

Context Reinforcement Learning. arXiv preprint arXiv:2306.14892 (2023).
[25] Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman,

Sergio Guadarrama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski,

et al. 2022. Multi-game decision transformers. Advances in Neural Information
Processing Systems 35 (2022), 27921–27936.

[26] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline rein-

forcement learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643 (2020).

[27] Hao Liu and Pieter Abbeel. 2023. Emergent agentic transformer from chain of

hindsight experience. arXiv preprint arXiv:2305.16554 (2023).
[28] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey

Levine, and Pierre Sermanet. 2020. Learning Latent Plans from Play. In Conference
on Robot Learning. PMLR, 1113–1132.

[29] Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. 2022. How

Far I’ll Go: Offline Goal-Conditioned Reinforcement Learning via 𝑓 -Advantage

Regression. arXiv preprint arXiv:2206.03023 (2022).
[30] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations

of machine learning. MIT press.

[31] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.

[32] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. 2018. Data-

efficient hierarchical reinforcement learning. Advances in neural information
processing systems 31 (2018).

[33] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. 2020. Awac:

Accelerating online reinforcement learning with offline datasets. arXiv preprint
arXiv:2006.09359 (2020).

[34] Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov.

2023. Anti-exploration by random network distillation. arXiv preprint
arXiv:2301.13616 (2023).

[35] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. 2019. Advantage-

weighted regression: Simple and scalable off-policy reinforcement learning. arXiv
preprint arXiv:1910.00177 (2019).

[36] Sebastien Racaniere, Andrew K Lampinen, Adam Santoro, David P Reichert, Vlad

Firoiu, and Timothy P Lillicrap. 2019. Automated curricula through setter-solver

interactions. arXiv preprint arXiv:1909.12892 (2019).
[37] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexan-

der Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost To-

bias Springenberg, et al. 2022. A generalist agent. arXiv preprint arXiv:2205.06175
(2022).

[38] Zhizhou Ren, KefanDong, Yuan Zhou, Qiang Liu, and Jian Peng. 2019. Exploration

via hindsight goal generation. Advances in Neural Information Processing Systems
32 (2019).

[39] Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Wojciech Jaśkowski, and

Jürgen Schmidhuber. 2019. Training Agents Using Upside-Down Reinforcement

Learning. arXiv preprint arXiv:1912.02877 (2019).

[40] Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, and Dahua Lin. 2019. Policy

continuation with hindsight inverse dynamics. Advances in Neural Information
Processing Systems 32 (2019).

[41] Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. 2018. Exponen-

tially weighted imitation learning for batched historical data. Advances in Neural
Information Processing Systems 31 (2018).

[42] Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. 2023. Elastic decision

transformer. arXiv preprint arXiv:2307.02484 (2023).
[43] Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. 2022. A policy-guided

imitation approach for offline reinforcement learning. Advances in Neural Infor-
mation Processing Systems 35 (2022), 4085–4098.

[44] Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. 2023. Q-learning

decision transformer: Leveraging dynamic programming for conditional sequence

modelling in offline rl. In International Conference on Machine Learning. PMLR,

38989–39007.

[45] Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei

Han. 2022. RORL: Robust Offline Reinforcement Learning via Conservative

Smoothing. arXiv preprint arXiv:2206.02829 (2022).
[46] Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han,

and Chongjie Zhang. 2022. Rethinking goal-conditioned supervised learning and

its connection to offline rl. arXiv preprint arXiv:2202.04478 (2022).
[47] Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang.

2023. What is essential for unseen goal generalization of offline goal-conditioned

RL?. In International Conference on Machine Learning. PMLR, 39543–39571.

[48] Zilai Zeng, Ce Zhang, Shijie Wang, and Chen Sun. 2024. Goal-conditioned pre-

dictive coding for offline reinforcement learning. Advances in Neural Information
Processing Systems 36 (2024).

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

2298

https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=a7APmM4B9d
https://openreview.net/forum?id=rALA0Xo6yNJ

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Trajectory Stitching for RvS-G
	4.1 Didactic Example
	4.2 Empirical Observation
	4.3 Theoretical Analysis

	5 Methodology: Spatial Composition RvS
	6 Experiments
	6.1 Environmental Settings
	6.2 Baselines
	6.3 D4RL Results
	6.4 Ablation of the Learning Weights
	6.5 Ablation of the Goal Sampling Strategy
	6.6 Sub-optimal Trajectory Stitching Capability

	7 Conclusion
	Acknowledgments
	References



