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ABSTRACT
Artificially intelligent agents deployed in the real worldmust be able
to reliably cooperate with humans (as well as other, heterogeneous
AI agents). To provide formal guarantees of successful cooperation,
we must make some assumptions about how these partner agents
could plausibly behave. Realistic assumptions must account for
the fact that other agents may be just as adaptable as our agent
is. In this work, we consider the setting where an AI agent must
cooperate with members of some target population of agents in a
finitely repeated two-player general-sum game, where individual
utilities are private. Two natural assumptions in this setting are 1)
all agents in the target population are individually rational learners,
and 2) when paired with another member of the population, with
high-probability the agents will achieve the same expected utility
as they would under some Pareto-efficient equilibrium strategy
of the underlying stage game. Our theoretical results show that
these assumptions alone are insufficient to select an AI strategy
that achieves zero-shot cooperation with members of the target
population. We therefore consider the problem of learning such a
cooperation strategy using observations of members of the target
population interacting with one another, and provide upper bounds
on the sample complexity of learning such a cooperation strategy.
Our main result shows that, under the above assumptions, these
bounds can be much stronger than those arising from a “naive”
reduction of the problem to one of imitation learning.
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1 INTRODUCTION
Imagine a hospital deploying an AI assistant to help their surgeons
plan and execute complex surgeries. For instance, the AI assistant
can take the role of a second surgeon in complex procedures that
benefit from a two-surgeon approach [15]. When first deployed,
the AI agent is unlikely to have comprehensive knowledge of the
population consisting of its potential partners (i.e. the surgeons
working in the hospital). Differences between human surgeons,
such as preferences, capabilities, and internal states—including
surgical experience, familiarity with specific procedures, or even
mental focus under pressure—can critically impact cooperation. A
successful AI agent should be able to adapt its strategy to each
human surgeon it partners with. The central question of this paper
is how to efficiently learn such adaptive and cooperative meta-
strategies from a dataset of cooperative interactions between the
members of the target population.

To illustrate, consider experience level. An experienced surgeon
may prefer a fast strategy to reduce surgery duration, improving
post-op recovery time. Conversely, an inexperienced surgeon may
prefer a slower, cautious strategy. Here a strategy refers to the
policy an agent follows in a single collaborative surgery. Our goal
is to learn an adaptive meta-strategy that maps from the history
of interactions (e.g. history of collaborative surgeries performed
so far) to strategies, which allows for the AI agent to adapt to the
needs of its current human partner over time.

It is possible to learn a good AI strategy for individual partners
using past surgical data through imitation learning (e.g. [16]). How-
ever, learning a good meta-strategy through imitation becomes
impractical as task complexity, partner diversity, and task duration
increase. Imitation learning here would mean learning a function
mapping from histories of multiple surgeries to new surgical strate-
gies. To do so, the AI agent would require datasets that capture
long-term interactions between human surgeons and cover the
full range of surgeon and patient profiles. Additionally, in high-
stakes environments like surgery, imperfect imitation may lead to
unacceptable failure modes, resulting in the AI agent’s role being
terminated.

The problem setup. To formalize the above intuitions, we model
the interaction between the AI agent and the individual members of
the population as a repeated, two-player, general-sum matrix game
with private types. Each agent’s type is their private information,
where different types of agents have distinct payoff functions. Types
embed behavioural differences amongst the agents through payoffs,
inducing general-sum games between partners with different types,

∗Author order is alphabetical.
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even though they are collaborating on a task that requires teamwork
(e.g., no-conflict games [1] or ad-hoc teamwork [27]). Each stage
game represents a complete interaction between two agents. For
instance, in the case of our surgery example, a single stage game of
the repeated game corresponds to a complete surgery.

Contributions. We present a novel definition called a socially
intelligent population, where the member agents are (1) Consistent,
meaning an individual will perform at least as good as its best
pure strategy in hindsight and (2) Compatible in pairs, meaning
they achieve performance comparable to a Pareto-optimal Nash
equilibrium (PONE). The former, also called the no-regret property,
is often seen as a minimal requirement for rationality, whereas the
latter has been used to describe successful cooperation by Powers
and Shoham [21]. Our main contribution is an upper bound on
the sample complexity for learning cooperation meta-strategies
in socially intelligent populations. While consistent partners (as
defined in section 3) do not guarantee success for imitation learning,
we demonstrate that compatibility within the population makes
imitation feasible. However, the lower bound on sample complexity
grows exponentially due to the need to account for histories. We
derive an upper bound in Theorem 5.3 showing that for socially
intelligent partners—who are both consistent and compatible—it
is possible to learn cooperation meta-strategies more efficiently
than through imitation alone. A consequence of the lower bound
in Theorem 4.5 is that, even when the target population can be
assumed to be socially intelligent, without additional information
about this population we cannot find a strategy that can reliably
cooperate with members of this population. We therefore consider a
more realistic interpretation of the zero-shot coordination problem,
where the AI agent must cooperate with an entirely new partner
(whose private type is unknown), but has observations of other
members of the population, so it can learn the strategies (perhaps
better thought of as “meta-strategies”) that these agents use to
coordinate with new partners.

Outline. In section 2, we discuss the intuition of our approach
and themotivations behind it. Then in section 3, we define ourmulti-
agent setting and provide background on consistency (in the form
of Hannan-consistency) and external regret. We introduce a novel
definition of compatibility in definition 3.2, inspired by Powers
and Shoham [21]. Section 3.3 introduces our definition of social
intelligence and presents a realistic class of agents that meet this
criterion. In section 4, we frame the learning problem as minimizing
altruistic regret and derive lower bounds on its sample complexity.
Finally, in section 5, we present our upper-bound result, showing
that a strategy we call imitate-then-commit can leverage the social
intelligence of the population to learn cooperative strategies more
efficiently.

2 MOTIVATION
Socially intelligent populations. Our focus in this paper is on

populations where members have established conventions that
enable effective cooperation. For instance, two surgeons can plan
and execute a complex surgery together efficiently, even if they
have not worked together before, because they share a common
set of conventions learned through similar education. This can be

Fast Balanced Cautious
Fast (4, 2) (5, 4) (3, 3)

Balanced (5, 4) (6, 6) (4, 5)
Cautious (3, 3) (4, 5) (7, 7)

Table 1: Payoff matrix for a repeated two-player game with
an experienced surgeon (row) and inexperienced surgeon
(column). The best cooperative outcome is achieved when
experienced surgeon slows down tomatch the inexperienced.

seen as the members of the population being compatible with each
other. In addition, each member should individually satisfy a base
level of rationality. Our definition of social intelligence formalizes
these intuitions.

General-sum games. In our setting, agents with different types
will have distinct payoff functions due to different behavioural
propensities. Consider the example given in Table 1 for a pair of
experienced and inexperienced surgeons. Even though the surgery
is a cooperative task, the agents have non-identical payoffs due
to differences between their types (i.e. experience level). Here, the
general-sum aspect models the potential failure of coordination
between the agents due to their private types. If the row player is
experienced and mistakenly thinks its partner is also experienced,
it will choose the fast approach, leading to the sub-optimal cooper-
ation outcomes. However, if for instance the agents learned each
other’s types through repeated interactions, they can both choose
the cautious approach towards the optimal cooperation outcome
(Cautious, Cautious).

Our approach proposes that the AI agent initially mimics the
behaviour of a teammember over a short horizon, gathering enough
information to infer its partners’ types, while behaving as expected
from a member of the team. For instance, the AI agent can start by
imitating the average behavior of a human surgeon from the dataset,
gradually inferring the human partner’s type. This preliminary
imitation might not be immediately efficient for the specific partner,
but as long as it remains human-like, it is more likely to be tolerated.
Once the partner’s type is inferred, the AI agent can transition to a
type-conditioned strategy that is well-aligned with its partner. This
approach would ensure that the partner is more likely to engage
with the AI agent as a trusted collaborator, avoiding early-stage
friction that might otherwise lead to the termination of the AI
agent’s involvement. Our formalization of the repeated two-player
general sum matrix games setting is motivated from the notion
of replicator dynamics [3, 25] in evolutionary game theory. The
replicator equation represents the proportion of each type in a
population as the difference of the fitness of a population for that
type to the average fitness across all types. The replicator dynamics
construct helps to understand the type of the two agents sampled
for our repeated two-player general sum matrix games.

Our theoretical results apply to various real-world scenarios
where the goal of an AI agent is to learn how to cooperate with
self-interested agents with private types such as humans. Most
importantly, our AI agent itself is not necessarily self-interested,
since its goal is to assist or cooperate with partners coming from
a population. However, the partners it is trying to cooperate with
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are self-interested. Our framework offers efficient bounds for learn-
ing viable cooperation meta-strategies based solely on observed
interactions between the members of the population. We provide
further motivating examples of populations and use cases in the
supplementary materials 1 like customer support chatbots, legal
assistants, software development assistants, AI health coach and
human-robot cooperation in a factory.

3 PRELIMINARIES
Repeated two-player matrix games with private types. First, we

define a class of repeated two-player matrix games with private
types with the tuple G = (I,A,Θ,𝐺,𝑇 ) where I = {1, 2} is the set
of agents, A is the set of 𝑁 pure strategies available to both agents
(called actions henceforth), Θ is a space of types, 𝐺 is a function
that maps an agent type 𝜃 ∈ Θ to a payoff matrix 𝐺 (𝜃 ) ∈ R𝑁×𝑁 ,
and 0 < 𝑇 < ∞ is a fixed number of stages. Let 𝜽 = (𝜃1, 𝜃2) denote
a joint type for both agents. Then, a specific instance of a game
from this class is given by G(𝜽 ) = (I,A,𝐺 (𝜽 ), 𝜽 ,𝑇 ) such that
𝐺 (𝜽 ) = [𝐺 (𝜃1),𝐺 (𝜃2)⊤] is its payoff matrix.

Throughout the paper, we will assume that a joint type 𝜽 directly
induces the game G(𝜽 ), and the class G is fixed. Then in a single
episode, the agents play G(𝜽 ) for 𝑇 stages. We let 𝑎1

𝑡 and 𝑎
2
𝑡 denote

the actions chosen by agents 1 and 2 in stage 0 < 𝑡 ≤ 𝑇 . For
mixed strategies𝜎, 𝜎′ ∈ Δ(A), we let𝐺 (𝜎, 𝜎′;𝜃𝑖 ) = 𝜎⊤𝐺 (𝜃𝑖 )𝜎′. We
overload 𝑎1

𝑡 and 𝑎
2
𝑡 to also denote the mixed strategies that assign

all probability mass to actions 𝑎1
𝑡 and 𝑎2

𝑡 , such that 𝐺 (𝑎1
𝑡 , 𝑎

2
𝑡 ;𝜃1)

and 𝐺 (𝑎1
𝑡 , 𝑎

2
𝑡 ;𝜃2) are agent 1 and 2’s realized payoffs at stage 𝑡 .

We also assume that without the loss of generality, for all 𝜃 ∈ Θ,
𝐺 (𝑎1

𝑡 = 𝑎, 𝑎2
𝑡 = 𝑎′, 𝜃 ) ∈ [0, 1],∀𝑎, 𝑎′ ∈ A. In other words, payoffs

are always bounded in [0, 1] .
Let H𝑡 = (A × A)𝑡 be the set of histories of length 𝑡 (with

H0 = {∅}), and let H≤𝑡 =
⋃𝑡

𝑠=0 H𝑠 be the set of all histories
of length at most 𝑡 . The meta-strategy space Π for an agent is
then the space of mappings 𝜋 : Θ × H≤𝑇−1 ↦→ Δ(A), where
Δ(A) is the set of probability distributions over the action set. As
a functional of types, a meta-strategy 𝜋 (𝜃, ·) maps a type 𝜃 to a
behavioral strategy [26, Chapter 5.2.2] that maps histories of play to
action distributions, such that 𝑎𝑖𝑡 ∼ 𝜋𝑖 (𝜃𝑖 , ℎ𝑡−1). We denote agent
𝑖’s expected total payoff for following meta-strategy 𝜋 against 𝜋 ′
as

𝑀𝑖 (𝜋, 𝜋 ′;𝜃, 𝜃 ′) = E

[
𝑇∑︁
𝑡=1

𝐺 (𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ;𝜃𝑖 )
����� 𝜋𝑖 = 𝜋, 𝜋−𝑖 = 𝜋 ′,
𝜃𝑖 = 𝜃, 𝜃−𝑖 = 𝜃 ′

]
(1)

where the expectation is with respect to the strategies.

3.1 Consistency
A natural criterion for rationality is that an agent should attempt to
achieve a payoff nearly as large as the best response to its partner’s
average strategy, whichwe refer to as consistency. To account for the
non-stationary behavior of other agents’, we specifically consider

1The supplementary materials for our paper can be found in its arXiv version at
https://arxiv.org/abs/2407.00419

𝐴 𝐵

𝐴 2, 2 0, 0
𝐵 0, 0 1, 1

(a) A fully-cooperative 2x2 matrix game.

𝐶 𝐷

𝐶 2, 2 0, 3
𝐷 3, 0 1, 1

(b) The prisoner’s dilemma game.

Table 2

Hannan consistency [13], which in our finite-time setting simply
requires that an agent have bounded external regret over 𝑇 stages.
The external regret for agent 𝑖 is defined as

𝑅ext𝑖 (ℎ;𝜃𝑖 ) = max
𝑎𝑖 ∈[𝑁 ]

|ℎ |∑︁
𝑡=1

{
𝐺 (𝑎𝑖 , 𝑎−𝑖𝑡 (ℎ);𝜃𝑖 ) −𝐺 (𝑎𝑖𝑡 (ℎ), 𝑎−𝑖𝑡 (ℎ);𝜃𝑖 )

}
(2)

where 𝑎𝑖𝑡 (ℎ) denotes the action 𝑖 played at stage 𝑡 within the history
ℎ ∈ H≤𝑇 .

Definition 3.1 (Consistency). For 𝛿, 𝜖,𝑇 > 0, an agent 𝑖 ∈ {1, 2} is
(𝛿, 𝜖,𝑇 )-consistent if, for all types 𝜃 ∈ Θ, and any partner strategy,
we have that 1

𝑇
𝑅ext
𝑖

(ℎ𝑇 ;𝜃 ) ≤ 𝜖 with probability at least 1 − 𝛿 .

In essence, consistency requires an agent 𝑖 to achieve bounded
external regret regardless of its type or partner. We also define
the expected external regret 𝑅ext

𝑖
(ℎ;𝜃 ) by replacing the 𝑎𝑖𝑡 (ℎ) (the

action 𝑖 played at stage 𝑡 ) with their full meta-strategy 𝜋𝑖 (𝜃, ℎ𝑡 ).
𝑅ext
𝑖

(ℎ;𝜃 ) and 𝑅ext
𝑖

(ℎ;𝜃 ) are related by the inequality

𝑅ext𝑖 (ℎ𝑡 ;𝜃 ) ≤ 𝑅ext𝑖 (ℎ𝑡 ;𝜃 ) +
√︂
𝑇

2
ln

1
𝛿
, (3)

which holds with probability (w.p.) at least 1 − 𝛿 for all 𝑡 ≤ 𝑇

simultaneously (this follows directly from [6, Lemma 4.1]). We
therefore only need to bound 𝑅ext

𝑖
(ℎ𝑡 ;𝜃 ) to provide high-probability

regret bounds.

3.2 Compatibility
Even in a fully cooperative game, the fact that both agents are
consistent does not guarantee that they will achieve an optimal
outcome. In the 2 × 2 game in Table 2a for example, both (𝐴,𝐴)
and (𝐵, 𝐵) are Nash equilibria to which consistent agents could con-
verge, but only (𝐴,𝐴) is optimal. In general-sum games, consistency
may preclude Pareto-optimal outcomes, as in the classic prisoner’s
dilemma game (Table 2b), where the only outcome in which neither
player incurs positive regret is (𝐷,𝐷), which is Pareto-dominated
by (𝐶,𝐶). Therefore, similar to Powers and Shoham [21], we de-
fine successful cooperation in terms of the Pareto-optimal Nash
equilibria (PONE) [18] of a game G(𝜽 ).

Let N(𝜽 ) ⊆ Δ(A) × Δ(A) be the set of Nash equilibria (NE)
of G(𝜽 ). For a fully-cooperative game, N(𝜽 ) will contain all glob-
ally optimal strategy profiles. It may, however, also contain joint
strategies that are highly sub-optimal. Let P(𝜽 ) ⊆ N (𝜽 ) denote
the set of Pareto optimal Nash equilibria. In this work, we say that
a strategy profile ⟨𝜎1, 𝜎2⟩ ∈ P(𝜽 ) if and only if ⟨𝜎1, 𝜎2⟩ ∈ N (𝜽 ),
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and there does not exist ⟨𝜎′1, 𝜎
′
2⟩ ∈ N (𝜽 ) such that 𝐺 (𝜎′1, 𝜎

′
2;𝜃1) ≥

𝐺 (𝜎1, 𝜎2;𝜃1) and𝐺 (𝜎′2, 𝜎
′
1;𝜃2) ≥ 𝐺 (𝜎2, 𝜎1;𝜃2), and𝐺 (𝜎′

𝑖
, 𝜎′−𝑖 ;𝜃𝑖 ) ≥

𝐺 (𝜎𝑖 , 𝜎−𝑖 ;𝜃𝑖 ) for some 𝑖 ∈ {1, 2}. This means that ⟨𝜎1, 𝜎2⟩ is a PONE
if it is a Nash equilibrium of G(𝜽 ), and it is not Pareto-dominated by
any other Nash equilibrium of G(𝜽 ). Intuitively, if two agents are
individually consistent, and willing to cooperate with each other,
their joint payoff profile should come close to a PONE.We formalize
this intuition as follows:

Definition 3.2 (Compatibility). For 𝛿, 𝜖,𝑇 > 0, two agents 𝜋1 and
𝜋2 are (𝛿, 𝜖,𝑇 )-compatible if, when played together, for any joint
type 𝜽 , w.p. at least 1 − 𝛿 , ∃⟨𝜎∗1 , 𝜎

∗
2 ⟩ ∈ P(𝜽 ) s.t.

1
𝑇

𝑇∑︁
𝑡=1

𝐺 (𝜎∗𝑖 , 𝜎
∗
−𝑖 ;𝜃𝑖 ) −𝐺 (𝑎𝑖𝑡 , 𝑎−𝑖𝑡 ;𝜃𝑖 ) ≤ 𝜖, (4)

for both 𝑖 = 1 and 𝑖 = 2.

A pair of agents is compatible if, when paired together, with
high-probability over their path of play ℎ𝑇 there will exist some
PONE that does not 𝜖-dominate their realized payoffs. Note that
this definition is the approximate and finite-horizon version of the
one provided in [21].

For the populations we consider, compatibility is a reasonable as-
sumption. In a way, we focus on populations that have evolved over
a long time learning to cooperate with each other. In the case of our
illustrative surgery example (section 1), the population has evolved
dynamically over the course of humanmedical history, learning and
adapting its conventions to enable compatibility. Behaviours that
are not compatible cannot survive in this population, considering
medical professionals must confer to certain rules, guidelines, and
behavioural norms amongst each other.

3.3 Socially Intelligent Agents
We argue that it is natural to model an existing population of coop-
erating agents as a set of approximately compatible, but otherwise
heterogeneous agents. We therefore introduce the more general
idea of a socially intelligent class of agents that are compatible with
any other member of their class:

Definition 3.3 (Social Intelligence). A set C of agents forms a
socially intelligent class w.r.t. Θ if, for some 𝛿, 𝜖,𝑇 > 0, each agent
𝜋 ∈ C is (𝛿, 𝜖,𝑇 )-consistent for all 𝜃 ∈ Θ, and any two agents
𝜋, 𝜋 ′ ∈ C are (𝛿, 𝜖,𝑇 )-compatible over all joint types Θ. An in-
dividual agent 𝜋 is called socially intelligent if it forms a socially
intelligent class {𝜋} with itself.

The consistency requirement ensures that any agent in the popu-
lation always has bounded average regret, whereas the approximate
compatibility means if both agents are from C, with high proba-
bility there will exist some PONE that does not 𝜖-dominate their
path of play. Below we describe a socially intelligent class based on
a pre-agreed handshake protocol. These protocols can be thought
of as handshakes that allow the members of a socially intelligent
population identify each other’s types efficiently.

Handshake protocols. For a type space Θ, we first define a func-
tion 𝑠 that maps from each joint type 𝜽 to a strategy profile in P(𝜽 )
such that 𝑠 (𝜽 ) ∈ P(𝜽 ). We can think of this function as a common
“convention” the agents in C have settled upon. Since we assume

private types, members of C do not know each other’s type at the
beginning of their interaction. If any type 𝜃 ∈ Θ can be communi-
cated to others in a sequence of 𝑘 < 𝑇 actions, then agents in C
can agree on a handshake protocol. Let the protocol be a map 𝜅
from types to a history-dependent policy. Then, at the beginning of
each episode, both agents will play their corresponding 𝜅 (𝜃𝑖 ) for
𝑘-steps in order to communicate their types.

This handshake protocol is quite general. For example, consider
the illustrative example of two surgeons with different experience
levels from the section 1. When two new agents are paired together,
they might both choose the cautious strategy for the first couple of
surgeries. Over time, surgeon 1 might shift its strategy to balanced
and then to fast, signalling to the surgeon 2 that they are experi-
enced and prefer to be fast. If throughout this period, surgeon 2
sticks to being cautious, this handshake would signal to both that
the surgeon 1 is experienced, while 2 is inexperienced.

After identifying each other through their initial behaviour, the
agents play 𝑠 ((𝜃𝑖 , 𝜃−𝑖 )) for the remaining 𝑇 − 𝑘 steps. The agents
must still ensure (authenticate) their partner does not deviate from
𝑠 ((𝜃𝑖 , 𝜃−𝑖 )) for safety against adversarial “imposter agents” outside
𝐶 which can still play 𝜅 (𝜃−𝑖 ), posing as a member of 𝐶. Since
playing a PONE jointly will lead to low regret for both, if 𝑖’s regret
exceeds a certain threshold, this would indicate −𝑖 is deviating
from 𝑠 significantly. The threshold can be chosen by the aid of the
following lemma,

Lemma 3.4. For any 𝛿,𝑇 > 0, if both players follow strategy 𝑠 (𝜽 )
at each stage, then with probability at least 1 − 𝛿 we have

𝑅ext𝑖 (ℎ𝑡 ;𝜃𝑖 ) ≤
√︂

2𝑇 ln
2
𝛿

and 𝑅ext𝑖 (ℎ𝑡 ;𝜃𝑖 ) ≤ 2
√︂

2𝑇 ln
4
𝛿
, (5)

which follows from an application of the Azuma-Hoeffding in-
equality (shown in supplementary material section 1.1). Then the
question is what safe strategy should the 𝑖 fall back into, if the rule
is triggered. We base the fallback strategy on the multiplicative
weights [12] update rule, defined as:

𝑠𝑖mw,𝑘 (ℎ𝑡 ;𝜃𝑖 ) ∝ 𝑠𝑖mw,𝑘 (ℎ𝑡−1;𝜃𝑖 ) exp
(
−𝜂𝐺 (𝑘, 𝑎−𝑖𝑡−1 (ℎ);𝜃𝑖 )

)
(6)

for 𝑘 ∈ 𝑁 , where 𝑠𝑖mw (ℎ0;𝜃𝑖 ) is the uniform strategy. Define 𝜋mw,𝑇

as the agent that plays 𝑠𝑖mw (ℎ𝑡 ;𝜃𝑖 )with learning rate𝜂 =
√︁

8 ln(𝑁 /𝑇 ).
The expected external regret of 𝜋mw,𝑇 is bounded as

𝑅ext𝑖 (ℎ𝑇 ;𝜃𝑖 ) ≤
√︂
𝑇

2
ln𝑁 (7)

surely [6, Theorem 2.2]. We then define the agent’s overall meta-
strategy 𝜋𝑇,𝜖 as follows:

(1) In first 𝑘 steps, play 𝜅 (𝜃𝑖 ).
(2) If −𝑖’s behaviour in ℎ𝑘 not compatible with 𝜅 (𝜃 ) for any

𝜃 ∈ Θ, switch to 𝜋mw,𝑇 for all subsequent stages.

(3) While 𝑅ext
𝑖

(ℎ𝑡 ;𝜃𝑖 ) ≤ 𝑘 +𝜖 (𝑇 −𝑘) −
√︃

𝑇−𝑘
2 ln𝑁 −1, play 𝑠𝑖 (𝜽 ).

(4) Otherwise, switch to 𝜋mw,𝑇 for all subsequent stages.
The theorem below shows that agents that follow the meta-strategy
above form a socially intelligent class among themselves. All proofs
have been deferred to the supplementary material section 1.
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Theorem 3.5. For any 𝛿,𝑇 > 𝑘 , let 𝜖0 ≥
√︃

2
(𝑇−𝑘 ) ln 2

𝛿
, and let

𝜖1 = 𝜖0 +
√︃

1
2(𝑇−𝑘 ) ln𝑁 + 1

(𝑇−𝑘 ) . Then for 𝜖 = 𝜖1 +
√︃

(𝑇−𝑘 )
2 ln 1

𝛿
,

the 𝜋𝑇,𝜖1 is (𝛿, 𝜖,𝑇 )-socially intelligent.

4 LEARNING TO COOPERATE
Going forward, we will assume that our agent (henceforth referred
to as the “AI agent”) will take the role of agent 1, while the other
agent (referred to as the “partner”) will be agent 2. Our goal is to
choose a meta-strategy for the AI agent that can cooperate with a
partner drawn from some target population nearly as effectively as
agents from this population cooperate with one another. For the
class of games G = (I,A,Θ,𝐺,𝑇 ) as defined in section 3, we will
let the target population be a set C of agents forming a (𝛿, 𝜖,𝑇 )-SI
class with respect to Θ. Ideally, we would hope to choose an AI
meta-strategy 𝜋 that can cooperate with C without any additional
information about the strategies in C. Looking at the handshake
protocol example in Section 3.3, we can see that in many cases
a population is likely to use arbitrary conventions to coordinate
their behavior, and intuitively we would imagine cooperation to
be impossible without prior knowledge of these conventions. (We
make this intuition formal in Theorem 4.5).

We therefore consider the problem of learning a cooperative
meta-strategy using prior observations of members of the target
population interacting with one another. We define a social learning
problem by a tuple {G, C, 𝜌, 𝜇}, where C is the target population
(SI w.r.t. Θ), 𝜌 is a distribution over C, while 𝜇 is a distribution
over the joint type space Θ × Θ. We can think of C as the set
of possible strategies that any member of the target population
might follow, while 𝜌 is the frequency of those strategies within
the population. To choose an AI strategy, we leverage a dataset
D = {(𝜃 𝑗1 , 𝜃

𝑗

2 , ℎ
𝑗

𝑇
) | 𝑗 ∈ [𝑛]} covering 𝑛 episodes of length 𝑇 . In each

episode 𝑗 , two agents 𝜋1
𝑗
and 𝜋2

𝑗
are sampled independently from

𝜌 , and played together under the joint type 𝜽 𝑗 ∼ 𝜇. The AI agent
observes the full history ℎ 𝑗

𝑇
, along with the agents’ types 𝜃 𝑗1 and

𝜃
𝑗

2 . We denote a specific learning algorithm as a data conditioned
strategy 𝜋 (D).

4.1 Altruistic Regret
We seek an AI strategy that minimizes the regret relative to some
Pareto optimal solution to 𝐺 (𝜽 ). Rather than minimizing regret
in terms of the AI’s own payoffs, however, we seek to minimize
partner’s relative to their (worst case) PONE in𝐺 (𝜽 ). We formalize
this regret with the following definition:

Definition 4.1 (Altruistic Regret). Let (𝜎∗
𝑖
, 𝜎∗−𝑖 ) denote the PONE

with the lowest payoff for the agent −𝑖 where 𝑖 ∈ {1, 2}. The altru-
istic regret of agent 𝑖 is defined as

𝑅alt𝑖 (ℎ𝑇 ;𝜃−𝑖 ) =
𝑇∑︁
𝑡=1

𝐺 (𝜎∗𝑖 , 𝜎
∗
−𝑖 ;𝜃−𝑖 ) −𝐺 (𝑎𝑖 (ℎ𝑡 ), 𝑎−𝑖 (ℎ𝑡 );𝜃−𝑖 ). (8)

In practical cooperation tasks, we would expect outcomes that
have low regret for the partner will have low regret for the AI agent
as well.

The cooperation objective for the AI agent can then be formalized
as minimising the altruistic regret. Unlike the definition suggests,

the AI agent must know its own type as well. This is due to the fact
that as seen in the handshake protocols example, if the AI agent
fails to imitate a human of its type or fail to communicate its type
correctly, the partner might switch to a safe strategy.

The goal for the AI agent is to minimize its expected altruistic
regret over partners sampled from 𝜌 and types sampled from 𝜇. The
following lemma shows that we can treat the problem ofminimizing
regret with respect to a heterogeneous population C as that of
minimizing regret w.r.t. a single stochastic strategy.

Lemma 4.2. Let C be a finite set of agents that are (𝛿, 𝜖,𝑇 )-socially
intelligent w.r.t. type space Θ, and let 𝜌 be a distribution over C. There
exists a mixed strategy 𝜌 that forms an (𝛿, 𝜖,𝑇 )-socially intelligent
class, and which is equivalent to playing against partners sampled
from 𝜌 in expectation.

Proof. In a perfect recall game, every behavioural strategy has an
equivalent mixed strategy and vice-versa [2]. Thus 𝜌 can equiva-
lently be defined as a distribution over mixed strategies so that
𝜌 ∈ Δ(Δ(𝑁 )). Then defining 𝜌 (𝑎) =

∫
Δ(𝑁 ) 𝜎 (𝑎) 𝑑𝜌 (𝜎) where

𝑎 ∈ [𝑁 ] denotes a pure strategy (i.e. action) completes the proof.
In order to show the joint impact of consistency and compatibility

on the learning problem, we discuss the cases where the population
is either consistent or compatible, but not both.

4.2 Consistency without Compatibility
Assume that C consists of agents that are consistent but not neces-
sarily compatible. The most general class in this case is the class of
all no-external-regret learners (no-regret henceforth). It is a well-
established result that the long-run average of no-regret learning
converges to the set of coarse correlated equilibria. The question is
whether the AI agent can learn to do better than a coarse correlated
equilibrium when paired with a member of C, using only a dataset
D that consists of histories of play for different Coarse Correlated
Equilibria (CCE).

Theorem 4.3. There exists a consistent yet incompatible class of
agents C such that even with an infinite amount of data, in the worst-
case, the AI agent suffers constant altruistic regret.

Proof. The proof follows from the theorem 5.1 of Monnot and
Piliouras [20] which shows that given any coarse correlated equi-
librium of a two-player normal-form game, there exists a pair of
no-regret learners that would converge to it. Since C can be any
subset of no-regret learners, we cannot exclude those who con-
verge to inefficient CCE. If the class C contains only the agents that
converge to Pareto-inefficient CCE, we cannot hope to learn opti-
mal strategies from any dataset. For example, consider the payoff
matrices given in table 3 for two pairs of types. Here, the payoff of
each agent depends only on its partner. In both games, there exists
only one PONE with payoffs (3, 4). However, every pure and mixed
strategy profile is a CCE in both matrices. In the worst case, we may
have a class of agents C that only converge to the CCE (𝐵, 𝐵) .More
importantly, the behavior of each agent does not need to carry any
information about their type, since each agent’s payoff depends
solely on its partner. When the AI’s strategy is deployed, it will
face a partner drawn from C whose type is unknown, regardless of
the imitation demonstrations dataset. Since we cannot infer type
from behavior any more, there is no way for the AI agent to know
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𝐴 𝐵

𝐴 3, 2 1, 2
𝐵 3, 4 1, 4

(a) The game matrix for types (𝜃1, 𝜃2 )

𝐴 𝐵

𝐴 3, 4 1, 4
𝐵 3, 2 1, 2

(b) The game matrix for types (𝜃3, 𝜃4 )

Table 3: A class of games where an agent’s payoff depends
only on its partner.

which of the two game matrices it is playing. At best, the AI (row
player) can choose one of the two PONE with uniform probability
and commit to it. There is a 0.5 probability that the AI will play the
wrong PONE, incurring constant altruistic regret.

4.3 Compatibility without Consistency
Assume that the members of C are compatible, but not consistent.
We can construct such a class as in Section 3.3, with agents us-
ing a handshake protocol to exchange type information, and then
playing the agreed-upon PONE of the current game. However, if
at any any time an agent deviates from this chosen solution, there
is no restriction on what strategy each agent will follow from that
point forward. The members of C may even employ grim-trigger
strategies that “punish” any mistake on the part of the other agent
by following a highly sub-optimal strategy. Even if at some point
in the future they could potentially switch back to a cooperative
strategy (i.e., forgive the other agent), this may not occur within
the finite horizon𝑇 . A single mistake at any time on the part of the
AI agent may yield the maximal altruistic regret for the remainder
of the interaction. The AI must therefore learn to imitate at least
one member of C perfectly using the dataset D, and the problem
of learning to cooperate reduces to imitation learning (specifically
the no-interaction setting of Rajaraman et al. [24]).

We can derive a lower bound on the altruistic regret in this
case by considering a game in which there is only a single type
(such that individual payoffs are common knowledge), and each
agent’s payoffs depend only on their own actions. Specifically, the
first 𝑁 − 1 actions each yield a payoff of 1, regardless of the other
agent’s action, while the 𝑁 th action yields a payoff of 0. In this
game we can construct a compatible class C such that, for the first
𝑘 ≤ 𝑇 steps, the agents execute some “authentication protocol”,
which allows them to identify other agents following strategies in
C. For the first 𝑘 − 1 steps, each agent samples one of the first 𝑁 − 1
actions, with the sequence of actions forming a challenge code that
the other agent must respond to by selecting the correct action at
step 𝑘 . If an agent’s partner fails to provide the correct response
at step 𝑘 , the agent will follow the 𝑁 th action for the remaining
𝑇 − 𝑘 steps, such that it receives no further payoff from that point
forward. Using such strategies, and an approach similar to that
of [24], we can derive a lower bound on the altruistic regret as a
function of the number of samples in the dataset |D|.

Theorem 4.4. Let 𝐾 = |D| be the number of interaction histories
in the dataset. For any 𝑘 < 𝑇 , and any 𝛿, 𝜖 ≥ 0, there exists a class
of games G, and class C of (𝛿, 𝜖,𝑇 )-compatible agents such that,
for any data-dependent meta-strategy 𝜋 (D), the altruistic regret is
lower-bounded as

E
[
𝑅alt𝑖 (ℎ𝑇 ;𝜃−𝑖 )

]
≥ 𝑇 − 𝑘

𝑒

𝑁 − 2
𝑁 − 1

min

{
1
2
,
(𝑁 − 1)𝑘−1 − 1

2𝐾 + 1

}
, (9)

where the expectation is taken over ℎ𝑇 , 𝜽 , and D. Then, for small
altruistic regret, the sample complexity grows exponentially in 𝑘 .

Proof sketch. We choose an “authentication” function 𝑓 : [𝑁 −
1]𝑘−1 ↦→ [𝑁 − 1] that maps each possible (𝑘 − 1)-step history of
actions to a specific action in [𝑁 − 1]. We then construct a class C
consisting of a single meta-strategy that, for the first 𝑘 − 1 steps
selects its actions so that the initial 𝑘 − 1 step history of its actions
is distributed according to a specific, nearly uniform distribution
𝜇. At step 𝑘 , agent 𝑖 chooses action 𝑓 (ℎ−𝑖

𝑘−1), where ℎ
−𝑖
𝑘−1 is the

sequence of actions chosen by the other agent −𝑖 . So long as agent
−𝑖 response with the correct action 𝑓 (ℎ𝑖

𝑘−1) at step 𝑘 , agent 𝑖 will
continue to choose actions in [𝑁 − 1]. Therefore, in self-play C will
be (𝛿, 𝜖,𝑇 )-compatible for any 𝛿, 𝜖 > 0.

The AI, however, is unaware of 𝑓 , andmust estimate this function
from D. If the AI’s strategy fails to correctly authenticate at step 𝑘 ,
its partner will switch to the 𝑁 th action, which yields a payoff of
zero, such that the AI will suffer an altruistic regret of𝑇 −𝑘 . Because
𝑓 is deterministic, a meta-strategy found via imitation learning will
correctly authenticate for any history ℎ−𝑖

𝑘−1 found in D, but has a
probability of 1− 1/(𝑁 − 1) of failing to authenticate for an unseen
history. By sampling from a carefully chosen distribution 𝜇, we
can ensure that the probability of encountering an unseen history
is greater than min

{
1
2 , [(𝑁 − 1)𝑘−1 − 1]/(2𝐾 + 1)

}
, which leads

immediately to the lower-bound on the expected altruistic regret.
Note that we can choose any 𝑘 < 𝑇 so as to maximize this lower
bound for any values of 𝑇 , 𝑁 and 𝐾 .

4.4 Lower Bound for Socially Intelligent
Populations

Theorem 4.5. Let 𝐾 = |D|. For any 𝛿, 𝜖 > 0, there exists a class of
games G, and class C of (𝛿, 𝜖,𝑇 )-socially intelligent agents such that,
for any data-dependent meta-strategy 𝜋 (D), the altruistic regret is
lower-bounded as

E
[
𝑅alt𝑖 (ℎ𝑇 ;𝜃−𝑖 )

]
≥ Ω

©­«(𝑇 − 𝑘) min

{
1
2
,
(𝑁 )𝑘−2 − 1

2𝐾 + 1

}ª®¬ , (10)

for some 𝑘 ≥ 𝑇𝜖 .
Proof sketch. Similar to the proof for Theorem 4.3, we can define

a class of games in which players must exchange their private types
to be compatible, while at the same time they can implement consis-
tent behavior without revealing anything about their types. We can
construct a socially intelligent class of agents for this class of games.
We can then augment these agents such that they implement a 𝑘-
step authentication protocol (as in Theorem 4.4) before switching
to the socially intelligent meta-strategy if authentication succeeds.
If authentication fails, the agents will switch to some alternative
consistent meta-strategy. So long as 𝑘 − 1 ≤ 𝑇𝜖 , the resulting class
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of agents will be (𝛿, 𝜖,𝑇 )-socially intelligent. As discussed in section
4.2, a consistent meta-strategy may never communicate an agent’s
type. Without knowing its partner’s type, the AI agent may suffer
arbitrarily large altruistic regret at each step, as it cannot identify
the actions that will maximize its partner’s utility.

5 UPPER BOUND FOR SOCIALLY
INTELLIGENT POPULATIONS

Algorithm 1 The 𝑇 -step imitate-then-commit meta-strategy (de-
noted by 𝜋 𝐼𝐶

𝑇
). It is assumed here that the AI acts as agent 1.

1: Inputs: Interaction dataset D, imitation time 𝑇 .
2: Initialize the imitation policy 𝜋1

𝑇
(𝐷).

3: for step 𝑡 = 1, . . . ,𝑇 do
4: Execute action 𝑎𝑖𝑡 ∼ 𝜋1

𝑇
(ℎ𝑡 ;𝐷)

5: end for
6: for action 𝑗 ∈ 𝑁 do
7: 𝑧 𝑗 =

∑
𝑖∈𝑁 𝑧 (ℎ𝑇 )𝑖, 𝑗

8: for action 𝑖 ∈ 𝑁 do
9: 𝑥 𝑗 (𝑖) = 𝑧 (ℎ𝑇 )𝑖, 𝑗/𝑧 𝑗
10: end for
11: end for
12: Sample 𝑥 = 𝑥 𝑗 with probably 𝑧 𝑗
13: for step 𝑡 = 𝑇 + 1, . . . ,𝑇 do
14: Execute action 𝑎𝑖𝑡 ∼ 𝑥
15: end for

A key idea behind this work is that against a socially intelligent
target population, rather than trying to imitate a member of the
population perfectly throughout the entire episode, the AI agent
only needs to imitate them long enough to learn about its part-
ner’s private type. Once it has this information, the AI agent can
leverage the fact that the partner’s strategy is consistent against
any strategy, and try to “coerce” the human partner into playing a
strategy that minimizes the altruistic regret. We will refer to such
meta-strategies as imitate-then-commit (IC) strategies, which use
the previous observations D to learn an imitation strategy that it
follows for the first 𝑇 < 𝑇 steps of the interaction. In this section
we provide an upper bound on the expected altruistic regret of a
specific (IC) meta-strategy, as a function of the number of episodes
in D, subject to the following assumptions:

Assumption 5.1. For 𝛿0, 𝛿1, 𝜖0, 𝜖1 > 0, and 𝑇 < 𝑇 , we have that
(1) 𝜌 is (𝛿0, 𝜖0,𝑇 )-consistent.
(2) 𝜌 is (𝛿1, 𝜖1,𝑇 )-compatible.

Imitation learning. Under an imitate-then-commit meta-strategy,
the sample complexity is defined entirely by the number of episodes
the AI agent needs to observe to learn a good 𝑇 -step imitation
policy. Fortunately, imitation learning is a well-studied problem,
and we can largely leverage existing complexity bounds. The one
caveat is that in this setting we need bounds on the total variation
distance between the distribution over the partial history ℎ

𝑇
under

the population strategy 𝜌 , and that under the learned strategy.
Given the dataset D, we define the imitation strategy 𝜋1

𝑇
(D) such

that 𝜋1
𝑇
(ℎ;D) is the empirical distribution over agent 1’s actions

for each history ℎ occurring in D, while 𝜋1
𝑇
(ℎ;D) is the uniform

distribution over𝑁 forℎ ∉ D. We also define themarginal imitation
strategy 𝜋1

𝑇
= ED [𝜋1

𝑇
(ℎ;D)], where the expectation is taken over

the sampling of the dataset D itself. We then have the following
bound on the distribution of ℎ

𝑇
under the imitation strategy:

Lemma 5.2. Let 𝑝
𝑇
be the distribution over partial histories ℎ

𝑇
under the population strategy 𝜌 paired with itself, and let 𝑝

𝑇
be their

distribution under 𝜋1
𝑇
paired with 𝜌 . We have that

∥𝑝
𝑇
− 𝑝

𝑇
∥TV ≤ min

1,
𝑁 2(𝑇+1)𝑇 log(𝐾)

𝐾

 , (11)

where 𝐾 = |D|.

This upper bound follows directly from that of [24] via Lemma
1 of [8] (see supplementary material section 2.1 for full proof). We
note that the imitation strategy 𝜋1

𝑇
(ℎ;D) marginalizes over agent

1’s private type, and so the AI does not need to know its own type.

Imitate-then-commit strategy. For historyℎ
𝑇
∈ H

𝑇
, we let 𝑧 (ℎ

𝑇
) ∈

Δ(𝑁 × 𝑁 ) denote the empirical joint strategy played up to and in-
cluding step𝑇 . We show that, given 𝑧 (ℎ

𝑇
), it is possible to construct

a mixture 𝜈 over mixed strategies 𝑥 ∈ Δ(𝑁 ) such that, in expecta-
tion over 𝜈 , the partner’s payoff under their best response to 𝑥 ∼ 𝜈
will be at least as large as their payoff under 𝑧 (ℎ

𝑇
). The IC strategy

described in Algorithm 1 follows 𝜋1
𝑇
(ℎ; D) for the first𝑇 steps, and

then commits to a mixed strategy 𝑥 for he remainder of the inter-
action. We then have the following upper bound on the altruistic
regret achievable with an imitate-then-commit strategy:

Theorem5.3. Given that Assumption 5.1 holds for 𝜌 , if the AI follows
𝜋 IC (D) (Algorithm 1) as agent 1, its altruistic regret satisfies

E
[

1
𝑇
𝑅alt1 (ℎ𝑇 , 𝜃2)

]
≤ 𝛿 (𝐾) + 𝜖1 + 𝛿1 +

𝑇 −𝑇
𝑇

(𝜖0 + 𝛿0), (12)

where 𝐾 = |D| and 𝛿 (𝐾) is defined as

𝛿 (𝐾) = min
1,

𝑁 2(𝑇+1)𝑇 log(𝐾)
𝐾

 (13)

and where the expectation is taken over ℎ𝑇 , 𝜽 , and D.

Proof sketch: By Lemma 5.2, we can learn an imitation strategy
such that the corresponding distribution over ℎ

𝑇
and 𝑧 (ℎ

𝑇
) is close

to that under 𝜌 in self-play. As 𝜌 is compatible, both agents’ payoffs
under 𝑧 (ℎ

𝑇
) must be close to those under some PONE. Finally, we

can construct a mixture 𝜈 for agent 1 such that agent 2’s payoffs
under its (approximate) best-response are almost as large as those
under 𝑧 (ℎ

𝑇
) (see supplementary material section 2.2).

6 RELATEDWORKS
Ourwork is closely related to the previous targeted learningmodel [7,
21, 22],which defines similar compatibility and consistency criteria.
The notion of targeted optimality [7] include convergence to learn-
ing an approximately best response in a multi-agent model with
high probability in a tractable number of steps against a population
of memory-bounded adaptive agents. The main difference with our
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work is that targeted learning only requires consistency against a
specific target class of partners, which generally would not include
the agent itself, or other adaptive agents. We require socially intel-
ligent agents to be consistent against all possible partner strategies.
We also require that cooperation and consistent learning occur over
a fixed time horizon𝑇 , rather than asymptotically. These differences
mean that a hypothetical “universally cooperative” agent might be
able to leverage the consistency of its partner to achieve cooper-
ation without a prearranged convention. “Universal cooperation”
in a population is relevant for specific populations as described in
our illustrative examples like surgeons in a hospital, workers in a
factory etc. In these settings it is reasonable to assume that most
agents will be able to cooperate with each other professionally,
since if a member fails to do this, they would be not be a member of
that population. Furthermore, our model allows agents in the popu-
lation to possess highly conflicting preferences, and our definition
of cooperation only requires that agents identify mutually bene-
ficial joint strategies when these exist. Socially intelligent agents
can be modeled as individually rational learners [17] to achieve
Pareto-efficient joint behavior. Our research builds on this work by
considering a learning setting where the agent when paired with
any member of the population will achieve at least the same utility
with high probability as the Pareto-efficient approach.

The problem of training agents to be able to cooperate with
previously unseen partners is sometimes referred to as ad hoc team-
work [19, 27] or zero-shot coordination [14], especially in the context
of multiagent reinforcement learning. Many approaches in rein-
forcement learning train cooperative policies that are robust to
possible strategies that a human or an AI agent can follow [5]. A
lot of these methods build a “population” of partner strategies and
maximizes the diversity of this population in order to train the AI’s
policy against it [10, 28]. Other approaches assume that there is
no prior coordination between the agents [14] to learn rational
joint strategies while estimating the agents’ mutual uncertainty
about one-another’s strategies [30]. Ad-hoc multiagent coordina-
tion can be helpful to learn cooperation among AI agents with the
“other-play” algorithm [14] that finds such a strategy as a solution to
the corresponding label free coordination problem [30]. A possible
approach to solve these problems can be self-play [31] where the
agent can optimize themselves by playing with past iterations of
themselves in order to estimate the strategies of unseen partners.
However, the "self-play" approach can learn cooperative strategies
which can "over-fit" [29] to one another in the population of agents.
A key goal of Ad hoc coordination (teamwork) and aligned research
in zero-shot coordination work has been to avoid this type of over-
fitting [9]. Our problem domain is closely related to both ad hoc
teamwork or zero-shot coordination, since we consider training an
agent to cooperate with previously unseen partners, and assume no
control over the partner. Even though population-based training
approaches to ad hoc teamwork are common, they focus on fully
cooperative environments such as Dec-POMDPs, where the main
issue is creating a diverse enough population to train with [23].
We consider partners that are self-interested, and do not assume
identical payoffs.

Finally, in the case of Hannan-consistent partners, our problem
setting is closely related to strategizing against and learning to ma-
nipulate no-regret learners [4, 11]. This line of work studies whether

an optimizer agent can achieve better payoff than CCE against no-
regret learners by learning to enforce a Stackelberg equilibria on
them. Their emphasis is on online learning and the optimizer’s
payoff, while we focus on the offline setting and cooperation.

7 CONCLUSION
We provide formal guarantees for successful and reliable coopera-
tion of AI agents with populations of socially intelligent agents. We
present a novel definition of social intelligent populations based on
the assumptions that 1) members of the population are individually
rational, and 2) pairs of members can achieve performance compa-
rable to a Pareto-optimal Nash equilibrium.We formalize the notion
of consistency and compatibility of agents in repeated, two-player,
general-sum matrix games with private types. Our theoretical guar-
antees are in the offline cooperation setting where the agent has
to cooperate with unseen partners in the population to strategise
against and manipulate no-regret policies for which we formalize
the idea of altruistic regret. We prove that the assumptions on its
own are insufficient to learn zero-shot cooperation with partners of
the socially intelligent target population. We provide upper bounds
on the sample complexity needed to learn a successful cooperation
strategy along with lower bounds on when the multi-agent cooper-
ation setting is needed with respect to the populations’ trajectories,
the state space and the length of the learning episodes. The bounds
in these settings of the agent actively querying the MDP without
knowing the transition dynamics of the population or the agent
observing the populations’ transition dynamics are much stronger
than the bounds that can be derived by naively reducing the cooper-
ation problem to one of reinforcement learning. These complexity
analysis and formally proven bounds can be helpful to sustainably
model the alignment problem of AI agents.
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