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ABSTRACT
Goal-conditioned reinforcement learning (GCRL) aims to learn a

policy that generalizes across different goal conditions. Compared

to non-hierarchical methods, hierarchical GCRL based on subgoals

can alleviate the problem of inaccurately estimating the value func-

tion for faraway goals in offline learning scenarios, thereby leading

to more effective policy learning. Due to the state complexity of

the decision-making process, at different states, we require sub-

goals from varying future time steps to minimize policy errors

caused by noisy value functions, rather than using a fixed future

time step for selecting subgoals. Therefore, we propose a hierar-

chical reinforcement learning algorithm with an elastic subgoal

steps, called ESD (Elastic Subgoal Diffused Policy Learning). Our
method defines a novel high-level policy in which all reachable

states surrounding the current state are considered as potential

subgoals, and the optimal subgoal is selected among them. More-

over, we use diffusion models to represent the hierarchical policies,

enhancing their ability to capture the multimodal data distribution

introduced by the elastic subgoal steps and offline data. We evaluate

the performance of ESD on multiple goal-conditioned benchmarks,

and it demonstrates superior performance compared to previous

baselines. Our method effectively reduces the impact of inaccurate

value function estimates on policy accuracy, especially in complex

tasks and high-dimensional image observations. Code is available

at https://github.com/zhyaoch/ESD.
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1 INTRODUCTION
Reinforcement learning (RL) trains agents to optimize specific

rewards of interest. However, designing an appropriate reward

function is often challenging for many tasks [22, 28, 31, 35]. Goal-

conditioned reinforcement learning (GCRL), as an extension of

traditional RL, can leverage large amounts of unlabeled (reward-

free) data to learn goal-conditioned policies, avoiding the difficulty

of designing reward functions [12, 24]. In real-world scenarios, in-

teracting with the environment often generates large amounts of

unlabeled datasets. Offline GCRL, as a new decision-making ap-

proach, can utilize these existing static datasets to learn effective

policies [7, 16, 18, 29]. However, with these unlabeled datasets, of-

fline GCRL often needs to address the challenges such as sparse

rewards and long horizon problems associated with faraway goals.

Moreover, when the original goal 𝒈 is far from the current state,

the goal-conditioned value function learned from offline data may

have significant noise and fail to provide a clear learning signal

[24], leading to a suboptimal policy.

To tackle these challenges, previous work has used hierarchi-

cal methods to decompose complex tasks into simpler sub-tasks,
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Figure 1: Comparison of inelastic subgoal vs. elastic-subgoal
hierarchical policies. The inelastic-subgoal hierarchical pol-
icy designates (fixed)𝑚-step away state 𝑠𝑡+𝑚 as the subgoal
for the current state 𝑠𝑡 , while the elastic-subgoal hierarchical
policy selects the most critical subgoals from a range of time
spans {1, 2, . . . ,𝑚, . . . , 𝑛}.

known as hierarchical GCRL [10, 17, 30]. This hierarchical struc-

ture effectively addresses the long-horizon and sparse reward prob-

lems, achieving good performance in many scenarios. In particular,

the subgoal-based hierarchical structure decomposes the decision-

making process into subgoals, which to some extent mitigates the

impact of noise in the value function on the policy, as seen in meth-

ods like HIQL [24]. Nonetheless, the selection of subgoals plays a

critical role in the performance of hierarchical policies. Inappro-

priate subgoals can exacerbate the negative impact of noise in the

value function, leading to reduced policy accuracy. For example,

it is unreasonable to use a long subgoal step for decision-making

when the agent is close to the goal, or a short subgoal step when

the agent is far from the goal. This implies that using an inelastic

(fixed) span for subgoal selection (Fig. 1) in all decision stages, as is

the case in HIQL, is an unreasonable hierarchical approach. Fig. 2

demonstrates an example, showing that if the subgoal steps is fixed

to a constant length, the hierarchical policies suffer the failure of

finding optimal solutions, just the same as non-hierarchical policy.

Therefore, a more natural and appropriate hierarchical approach is

to employ subgoal steps of different lengths at different decision

stages (i.e., using an elastic subgoal). Fig. 2 confirms this intuitive

idea, showing that hierarchical policy based on elastic subgoals

is better at resisting noise, and it is also more likely to learn an

optimal solution.

In this work, we introduce the concept of the elastic subgoals

(Fig. 1) into the hierarchical RL to mitigate the impact of noise in the

value function on the policy accuracy. Similar to previous work, we

decompose the original complex Markov Decision Process (MDP)

into a high-level MDP and a low-level MDP [17, 30]. However, un-

like previous approaches, we use the neighborhood of states as the

action set in the high-level MDP, enabling the high-level policy to

select optimal subgoals with an elastic subgoal step. Experimental

results show that using state neighborhoods as the action set for the

high-level policy can effectively mitigate the impact of noise in the

value function on the algorithm. Moreover, when using state neigh-

borhoods as candidate subgoals, there may be multiple neighboring

Noisy Value function Non-Hierarchical
policy

Inelastic-Subgoal (m=3)
Hierarchical Policy

Inelastic-Subgoal (m=4)
Hierarchical Policy

Elastic-Subgoal 
Hierarchical Policy

Inelastic-Subgoal (m=2)
Hierarchical Policy

Goal

Figure 2: Elastic-subgoal hierarchical policy can effectively
address the issue of noisy value estimates compared to
inelastic-subgoal hierarchical policy, and make the optimal
decision. The red arrows indicate the sub-optimal actions
generated by the policy, while the blue arrows represent the
optimal actions. In this gridworld environment, the ground-
truth value function gives higher values for states that are
closer to the goal. However, the estimated value function
commonly suffers from noise disturbance and leads to incor-
rect action selection.

states on the optimal trajectory that are equivalent subgoals (Ap-

pendix ??). For the policy model, these equivalent subgoals exhibit a

typical multimodal distribution. In this case, using a Gaussianmodel

to represent the policy is inadequate, and a generative model capa-

ble of effectively representing multimodal distributions is needed.

Therefore, we use diffusion models, known for their strong repre-

sentational capabilities [13, 19, 20, 27], to represent both high-level

and low-level policy models. This ensures that the policy model can

effectively fit the multimodal distribution resulting from multiple

equivalent subgoals and accurately represent actions under differ-

ent goals. Meanwhile, we employ an advantage-weighted noise

objective to train the diffusion model, implicitly guiding the distri-

bution of the policy during training [11, 34]. This approach avoids

the Out-of-Distribution (OOD) problems [2, 8, 33] that arise from

directly using the value function to guide noisy data during the

denoising process, generating the higher-quality policies.

In summary, our contributions include:(i) We propose Elastic
Subgoal Diffused Policy Learning (ESD) for goal-conditioned offline

RL problems, which introduces state neighborhoods as the action

set for high-level policy within a hierarchical structure. (ii) To
model the multimodal distribution produced under elastic subgoal

steps, we introduce diffusion models to represent policies, and

employ an advantage-weighted noise objective to train the diffusion

model to generate high-quality policy. (iii) We evaluate ESD on

multiple goal-conditioned benchmarks and achieve competitive

performance compared to existing offline GCRL algorithms.
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2 PRELIMINARIES
2.1 Goal-Conditioned Offline RL
The offline GCRL problem is formulated in the context of a Markov

decision process {S,A, 𝜌0,𝑇 , 𝑅,𝛾,G} and a dataset D, where 𝜌0 ∈
P(S) denotes an initial state distribution,S denotes the state space,

A denotes the action space, 𝑇 ∈ S × A → P(S) is the environ-
mental dynamics, G denotes goal space, 𝑅(𝒔𝑡 ,𝒈, 𝒂𝑡 ) denotes a goal
conditioned reward function, and 𝛾 is the discount factor. Follow-

ing the work [24], we assume that the goal space is the same as

the state space (𝑖 .𝑒 ., G = S). The goal of offline GCRL is to find

an optimal policy 𝜋 (𝒂𝑡 |𝒔𝑡 ,𝒈) : S × G → P(A) to maximize the

expected return:

max

𝜋
E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝒔𝑡 ,𝒈, 𝒂𝑡 ) |𝒂𝑡 ∼ 𝜋 (·|𝒔𝑡 ,𝒈), 𝒔𝑡+1 ∼ 𝑇 (·|𝒔𝑡 , 𝒂𝑡 )
]
. (1)

Unlike online GCRL methods, offline GCRL learns from a fixed

datasetD. Since this dataset often has sparse coverage and contains

suboptimal data, the estimated optimal value function is noisy.

Therefore, deriving a more accurate policy 𝜋𝜙 from the noisy value

function becomes crucial.

2.2 In-sample Learning via Expectile Regression
Offline RL often encounters the challenge of out-of-distribution

problems, leading to overestimation of the value function during

training. To solve this issue, IQL [16] avoids querying out-of-sample

actions by replacing themax operator in the Bellman optimal equa-

tion with expectile regression function:

min

𝑉
E(𝒔𝑡 ,𝒂𝑡 )

[
𝐿𝜆
2
(𝑄 (𝒔𝑡 , 𝒂𝑡 ) −𝑉 (𝒔𝑡 ))

]
, (2)

min

𝑄
E(𝒔𝑡 ,𝒂𝑡 ,𝒔𝑡+1 )

[
(𝒓𝑡 + 𝛾𝑉 (𝒔𝑡+1) −𝑄 (𝒔𝑡 , 𝒂𝑡 ))2

]
, (3)

where 𝑄 (𝒔𝑡 , 𝒂𝑡 ) denotes the target network [21]. The expectile

regression function 𝐿𝜆
2
(𝒖) is represented as |𝜆 − I(𝒖 < 0)𝒖2 |, where

I(·) denotes the indicator function. After training the value func-
tions 𝑄 (𝒔𝑡 , 𝒂𝑡 ) and 𝑉 (𝒔𝑡 ), IQL extracts the policy from behavior

policy with advantage weighted regression (AWR)[25]:

max

𝜋
E(𝒔𝑡 ,𝒂𝑡 )

[
exp(𝛽 (𝑄 (𝒔𝑡 , 𝒂𝑡 ) −𝑉 (𝒔𝑡 ))) log𝜋 (𝒂𝑡 |𝒔𝑡 )

]
, (4)

where 𝛽 ∈ R+
0
is the temperature parameter. In addition, there

are also action-free variant [9, 32] of IQL to learn an offline goal-

conditioned V-function without Q-function:

min

𝑉
E(𝒔𝑡 ,𝒂𝑡 ,𝒔𝑡+1 )

[
𝐿𝜆
2
(𝒓𝑡 + 𝛾𝑉 (𝒔𝑡+1) −𝑉 (𝒔𝑡 ))

]
. (5)

Similar to IQL, the policy can be extracted using the following

variant of AWR:

max

𝜋
E(𝒔𝑡 ,𝒂𝑡 ,𝒔𝑡+1 )

[
exp(𝛽 (𝒓𝑡 + 𝛾𝑉 (𝒔𝑡+1) −𝑉 (𝒔𝑡 ))) log𝜋 (𝒂𝑡 |𝒔𝑡 )

]
.

(6)

2.3 Diffusion Model
The diffusion model [13] consists of two processes: the noising

(forward) process and the denoising (sampling) process. The noising

process is modeled as a Markov chain with length 𝐾 , denoted as

Denoising

Denoising

𝒂𝒂𝒕𝒕

𝒂𝒂𝒕𝒕

𝒛𝒛𝒕𝒕

𝒈𝒈

High-Level Policy

Low-Level Policy

Subgoal

High-Level 
Policy

𝑺𝑺𝒕𝒕

Executable Action

Observation

Diffusion Denoising

Low-Level 
Policy

High-Level MDP

Low-Level MDP

Goal
Agent

Subgoal
Start

𝓑𝓑(𝒔𝒔𝒕𝒕,𝒏𝒏)

𝑺𝑺𝒕𝒕

Action

× 𝑲𝑲

× 𝑲𝑲

Figure 3: Hierarchical diffusion policy based on elastic sub-
goals. We decompose the original MDP into a high-level and
a low-level MDPs, and construct the high-level policy and
low-level policy from them by diffusion models.

𝑥0:𝐾 . This process involves continuously injecting noise into the

original data 𝒙 ∼ D1
with conditional probability:

𝑞(𝒙𝑘 |𝒙𝑘−1) = N(𝒙𝑘 |
√︁
𝛼𝑘𝒙𝑘−1, (1 − 𝛼𝑘 )𝑰 ), (7)

where 𝑘 ∈ [1, 𝐾], 𝛼0:𝑘 are hyperparameters controlling the variance

schedule. Eventually, the data follows a white noise distribution.

The denoising process is parameterized by the Markov chain:

𝑝𝜃 (𝒙𝑘−1 |𝒙𝑘 ) = N(𝒙𝑘−1 |𝝁𝜃 (𝒙𝑘 , 𝑘), E𝑘 ), (8)

where 𝒙𝐾 ∼ N(0, 𝑰 ), E𝑘 denotes (1−𝛼𝑘 )𝑰 . This process iteratively
samples from a Gaussian distribution to eliminate noise from the

data until the original data is reconstructed. The training is per-

formed by minimizing the variational bound E𝑞
[
− log 𝑝𝜃 (𝒙0:𝐾 )

𝑞 (𝒙1:𝐾 |𝒙 )

]
of the cross-entropy loss:

H(𝑞(𝒙), 𝑝𝜃 (𝒙)) = E𝑞 [− log 𝑝𝜃 (𝒙)] . (9)

3 HIERARCHICAL DECISION STRUCTURE
FOR GOAL-CONDITIONED OFFLINE RL

The combination of hierarchical structure with GCRL decomposes

difficult tasks arising from distant goals, thereby improving policy

performance. However, different hierarchical structures lead to

different decision processes and result in different final results. In

this section, we first introduce two hierarchical structures with

elastic subgoals and inelastic subgoals, respectively, and compare

their performance in a grid environment. Second, the theoretical

analysis of two different structures on a toy problem shows the

advantage of elastic subgoals in mitigating policy errors.

3.1 Hierarchical Policy Structure
Following prior work [17, 30], we extend the standard RL setup to

a hierarchical two-layer structure (Fig. 3) with a high-level policy

𝜋ℎ (𝒛𝑡 |𝒔𝑡 ,𝒈) and a low-level policy 𝜋 ℓ (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ). Here, 𝑧𝑡 can be

1
For convenience, we use 𝒙 to denote 𝒙0

.
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Figure 4: Comparison of the subgoal steps that minimizes policy errors across different states and noise scenarios. The optimal
subgoal steps (the horizontal coordinates of blue stars) vary across different agent states, making it unreasonable to use fixed
steps and inelastic subgoals.

viewed as a subgoal, or a waypoint of state trajectory. The high-

level policy is responsible for decomposing the task and identifying

subgoals 𝑧𝑡 that effectively guide the agent towards the goal, while

the low-level policy is responsible for outputting the optimal action

to reach the subgoal 𝒛𝑡 . This subgoal-based hierarchical structure

provides more accurate learning signals for both the high-level and

low-level policies, thereby mitigating the impact of noise in the

value function on policy accuracy [24]. For the high-level policy, the

value differences between subgoals are more significant compared

to the original action space, offering clearer learning signals. For

the low-level policy, using nearby states as the goal allows for more

accurate value estimation of the action compared to distant goals.

For the high-level policy, one common approach [24] to select

the subgoal 𝒛𝑡 is to use intermediate states 𝒔𝑡+𝑚 that are𝑚 steps

away from the current state 𝒔𝑡 , where𝑚 is a constant value across

all decision stages. We refer to this approach as inelastic-subgoal
hierarchical policy in this paper (Fig. 1). However, due to the com-

plexity of decision-making process, at different states, we require

subgoals from varying time steps to better decompose the origi-

nal goal (see Section 3.2). Therefore, we propose another approach

where the intermediate states 𝒔𝑡+𝑚 can correspond to different time

steps 𝑚 at various decision stages. We refer to this approach as

elastic-subgoal hierarchical policy in this paper (Fig. 1). As shown

in Fig. 2, the hierarchical structure of the elastic subgoal is more

robust against the noise in the value function compared to the in-

elastic subgoal. This phenomenon is intuitive, as the elastic subgoal

naturally simulates the human planning process, where the time

span between subgoals is adjusted based on current circumstances,

thereby enhancing the robustness and effectiveness of the policy.

Optimal 
V-function

𝒔𝒔𝒕𝒕 𝒈𝒈
……

𝒔𝒔𝒕𝒕 𝒈𝒈
……

Noisy 
V-function

ValueDistance to Goal

Figure 5: 1-D toy environment.

3.2 Theoretical Analysis: Inelastic vs. Elastic
Subgoal

To further illustrate the advantage of the elastic subgoal, we study a

toy example (see Fig. 5) with one-dimensional state space proposed

by Park et al. [24]. In this environment, the reward signal is a

sparse goal-conditioned reward function, 𝑟 (𝒔𝑡 ,𝒈) = 0 (if 𝒔𝑡 = 𝒈)
or −1 (otherwise). Therefore, the optimal value function can be

written as 𝑉 ∗ (𝒔𝑡 ,𝒈) = −|𝒔𝑡 − 𝒈 | (assuming 𝛾 = 1). Prior work [24]

further assumes that there exists noise in the learned value function

and the magnitude of noise is proportional to the magnitude of

optimal value, i.e. 𝑉 (𝒔𝑡 ,𝒈) = 𝑉 ∗ (𝒔𝑡 ,𝒈) + 𝛿 |𝑉 ∗ (𝒔𝑡 ,𝒈) |, where 𝛿 is

sampled from a Gaussian distribution with standard deviation 𝜎 ,

denoted as N(0, 𝜎2).
Following Park et al. [24], the probability of the non-hierarchical

policy𝜋 selecting an incorrect action is given as 𝜀 (𝜋) = Φ(−
√
2

𝜎
√
𝑇 2+1
),

where Φ denotes the cumulative distribution function of the stan-

dard normal distribution (Φ(𝑥) = 𝑃 [𝛿 ≤ 𝑥] = 1√
2𝜋

∫ 𝑥
−∞ 𝑒

−𝑡2/2𝑑𝑡 ),

𝑇 denotes the distance between the agent and the goal. For the

inelastic-subgoal hierarchical policy 𝜋ℎ ◦ 𝜋 ℓ , the probability of

selecting an incorrect action is tightly bounded as 𝜀 (𝜋ℎ ◦ 𝜋 ℓ ) ≤

𝜀 (𝜋ℎ) + 𝜀 (𝜋 ℓ ) = Φ

(
−

√
2

𝜎
√
(𝑇 /𝑚)2+1

)
+ Φ

(
−

√
2

𝜎
√
𝑚2+1

)
, where ◦ repre-

sents function composition.

From the above proposition, we can observe that the optimal

subgoal steps𝑚∗ (that minimize the 𝜀 (𝜋 ℓ ◦ 𝜋ℎ)) vary with the dis-

tance 𝑇 between the agent and the goal. As shown in Fig. 4, the

curves illustrate how the 𝜀 (𝜋 ℓ ◦ 𝜋ℎ) changes with different subgoal

steps𝑚 for various state distances 𝑇 . The horizontal coordinates

of the blue stars indicate the optimal subgoal steps𝑚∗ for each 𝑇 .
As 𝑇 changes, the optimal𝑚∗ varies and does not follow a simple

mapping with𝑇 . This implies that using fixed horizon steps for sub-

goal selection across all decision stages is non-optimal. Therefore,

selecting elastic subgoals within a sufficient large range of time

steps has more potential to find the optimal solutions.

4 ELASTIC SUBGOAL DIFFUSED POLICY
LEARNING

Based on the analysis in the previous section, using an elastic

hierarchical policy to suppress the impact of noise in the value

function is promising. We propose a new algorithm, Elastic Subgoal
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Diffused Policy Learning (ESD) to solve the offline GCRL problem.

ESD consists of a high-level and a low-level policy, both based on

a diffusion model. The high-level policy is responsible for setting

subgoals using elastic subgoal steps, while the low-level policy

plans the concrete actions to reach the subgoals. In this section,

we first describe the definitions of the high-level and low-level

MDPs in ESD. Second, we describe how to learn the value function

simultaneously in both the high-level MDP and low-level MDP.

Finally, we propose a new advantage-weighted noise objective to

assist the diffusion model in extracting the policy from the value

function.

4.1 High-level and Low-level MDPs
The effectiveness of hierarchical RL largely depends on the se-

lection of candidate subgoals. As motivated in Section 3.2, using

fixed-length subgoal steps for selecting subgoals across all decision

stages is unreasonable. Adopting different subgoal steps at various

decision stages allows for better suppression of noise. Therefore, our

method, ESD, employs an approach based on elastic subgoal steps

to improve subgoal selection. To achieve this, we first introduce

the 𝑛-neighborhood B(𝒔𝑡 , 𝑛) of state 𝒔𝑡 :

B(𝒔𝑡 , 𝑛) := {𝒛𝑡 | ∀𝝉 (𝒔𝑡 , 𝒛𝑡 ), 1 < 𝑑𝝉 ≤ 𝑛} ,

where 𝑛 represents the maximum subgoal steps of the agent, 𝑑𝝉
refers to the length of the state-only trajectory segment 𝝉 (𝒔𝑡 , 𝒛𝑡 ) =
(𝒔𝑡 , 𝒔𝑡+1, . . . , 𝒔𝑡+𝑑𝝉 (𝒔𝑡 ,𝒛𝑡 )−1, 𝒛𝑡 ). Thus, 𝒛𝑡 ∈ B(𝒔𝑡 , 𝑛) indicates that
the subgoal 𝒛𝑡 can be reached from 𝒔𝑡 within 𝑛 steps.

Based on B(𝒔𝑡 , 𝑛), we define the high-level MDP 𝑀𝐷𝑃ℎ , where

its state space Sℎ remains the same as the original MDP. For each

state 𝒔𝑡 ∈ Sℎ , Aℎ (𝒔𝑡 ) denotes the set of subgoal states within the

neighborhood B(𝒔𝑡 , 𝑛). Each subgoal 𝒛𝑡 ∈ Aℎ (𝒔𝑡 ) represents a
deterministic transition from state 𝒔𝑡 to the subgoal 𝒛𝑡 . The reward
for transitioning from state 𝒔𝑡 to subgoal 𝒛𝑡 is given by:

𝑅ℎ (𝒔𝑡 ,𝒈, 𝒛𝑡 ) =
𝑑𝝉∗ (𝒔𝑡 ,𝒛𝑡 )−1∑︁

𝑖=0

𝛾𝑖𝑟𝝉𝑡+𝑖 , (10)

where 𝝉∗ (𝒔𝑡 , 𝒛𝑡 ) is the optimal trajectory to reach subgoal 𝒛𝑡 from
state 𝒔𝑡 , 𝑑𝝉∗ denotes the length of the 𝝉∗, 𝑟𝝉

𝑡+𝑖 represents the 𝑖-th
reward in the path 𝝉∗ (𝒔𝑡 , 𝒛𝑡 ). Therefore, 𝑅ℎ (𝒔𝑡 ,𝒈, 𝒛𝑡 ) represents
the sum of rewards along the optimal path 𝝉∗ (𝒔𝑡 , 𝒛𝑡 ) from state

𝒔𝑡 to subgoal 𝒛𝑡 . Thus, the optimal Q-function 𝑄ℎ∗ (𝒔𝑡 ,𝒈, 𝒛𝑡 ) and
V-function 𝑉ℎ∗ (𝒔𝑡 ,𝒈) are defined as follows:

𝑄ℎ∗ (𝒔𝑡 ,𝒈, 𝒛𝑡 ) = 𝑅ℎ (𝒔𝑡 ,𝒈, 𝒛𝑡 ) + Γ(𝒔𝑡 , 𝒛𝑡 )𝑉ℎ∗ (𝒛𝑡 ,𝒈)

= max

𝝉 (𝒔𝑡 ,𝒛𝑡 )


𝑑𝝉∑︁
𝑖

𝛾𝑖 𝒓𝝉𝑡+𝑖 + 𝛾
𝑑𝝉𝑉ℎ∗ (𝒛𝑡 ,𝒈)


(11)

𝑉ℎ∗ (𝒔𝑡 ,𝒈) = max

𝒛𝑡 ∈B(𝒔𝑡 ,𝑛)
𝑄ℎ∗ (𝒔𝑡 ,𝒈, 𝒛𝑡 ), (12)

where the discount factor Γ(𝒔𝑡 , 𝒛𝑡 ) = 𝛾𝑑𝝉∗ . Due to the difficulty of di-

rectly obtaining rewards 𝑅ℎ (𝒔𝑡 ,𝒈, 𝒛𝑡 ) and discount factors Γ(𝒔𝑡 , 𝒛𝑡 )
corresponding to the optimal transition trajectory, we use the𝑚𝑎𝑥

operator in Eq. (11) to represent them, extracting the corresponding

values from the offline dataset. Using the aforementioned value

function, we can select the optimal subgoal 𝒛𝑡 within a sufficient

large neighbor of current 𝑠𝑡 to guide the agent, thereby decompos-

ing the original goal with elastic subgoals.

Following Park et al. [24], given a subgoal 𝒛𝑡 provided by the

high-level policy 𝜋ℎ , we define the low-level MDP 𝑀𝐷𝑃 ℓ as an

MDP with 𝒛𝑡 as the goal. Although 𝑀𝐷𝑃 ℓ retains the same state

space, action space, and dynamics as the original MDP, the decision-

making process is simplified from a long-horizon problem to a short-

horizon problem. This simplification allows the low-level policy to

receive a clear learning signal, as it queries the value function with

only nearby states, thereby reducing the overall task complexity.

4.2 Offline RL for Value Function
We now demonstrate that it is possible to simultaneously obtain

the optimal value functions for both the high-level and low-level

MDPs through offline RL. To achieve this, we first introduce the

following proposition:

Proposition 1. Given arbitrary 𝒈 ∈ G, 𝒔 ∈ S, let𝑉ℎ∗ (𝒔,𝒈) be the
optimal V-function in high-level𝑀𝐷𝑃ℎ , 𝑉 ℓ ∗ (𝒔,𝒈) be the optimal V-
function in low-level𝑀𝐷𝑃 ℓ . If environment dynamics is deterministic
[9], optimal V-function 𝑉ℎ

∗ (𝒔,𝒈) and optimal V-function 𝑉 ℓ ∗ (𝒔,𝒈)
are equivalent:

𝑉ℎ∗ (𝒔,𝒈) = 𝑉 ℓ∗ (𝒔,𝒈) for all 𝒔 ∈ S, 𝒈 ∈ G
The proof can be found in the supplementary Appendix ??. Ac-

cording to Proposition 1, we replace the value function 𝑉ℎ (𝒔𝑡 , 𝒛𝑡 )
in Eq. (11) with the value function 𝑉 ℓ (𝒔𝑡 , 𝒛𝑡 ), resulting in Eq. (13).

𝑄ℎ∗ (𝒔𝑡 ,𝒈, 𝒛𝑡 ) = max

𝝉 (𝒔𝑡 ,𝒛𝑡 )


𝑑𝝉∑︁
𝑖

𝛾𝑖 𝒓𝝉𝑡+𝑖 + 𝛾
𝑑𝝉𝑉 ℓ∗ (𝒛𝑡 ,𝒈)

 . (13)

Referring to IQL, we employ the expectile function to represent the

additional𝑚𝑎𝑥 operator in Eq. (13), leading to Eq. (14). Moreover,

we leverage the action-free variant of IQL to learn the value func-

tion 𝑉 ℓ (𝒔𝑡 , 𝒛𝑡 ) [9, 32]. Consequently, we can combine the learning

processes for the value functions in both the high-level and the

low-level MDPs into the following loss function:

L𝑄ℎ (𝜙) = E(𝝉 (𝒔𝑡 ,𝒛𝑡 ),𝒈)
[
𝐿𝝀
2

(
𝜒ℓ −𝑄ℎ

𝜙
(𝒔𝑡 ,𝒈, 𝒛𝑡 )

)]
(14)

L𝑉 ℓ (𝜓 ) = E(𝒔𝑡 ,𝒈,𝒔𝑡+1 )
[
𝐿𝝀
2
(𝒓𝑡 + 𝛾𝑉

ℓ
𝜓 (𝒔𝑡+1,𝒈) −𝑉 ℓ𝜓 (𝒔𝑡 ,𝒈))

]
, (15)

where 𝜒ℓ equals
∑𝑑𝝉
𝑖=0

𝛾𝑖 𝒓𝝉
𝑡+𝑖 + 𝛾

𝑑𝝉𝑉
ℓ
𝜓 (𝒛𝑡 ,𝒈). During training, the

goal 𝒈 is chosen with a probability of 0.3 for a random state, 0.5

for a terminal state, and 0.2 for the current state [1, 9]. Note that

we do not learn a 𝑄ℓ here. This is because, under the deterministic

environment assumption in Proposition 1, we can unbiasedly re-

place 𝑄ℓ with 𝒓𝑡 + 𝛾𝑉
ℓ
𝜓 (𝒔𝑡+1, 𝒛𝑡 ) [9], thereby reducing the number

of neural networks required and improving training efficiency. It

should be noted that in non-deterministic environments, we need

to additionally learn two networks,𝑉ℎ (Appendix ??) and𝑄ℓ (using
Eqs. (2) and (3)), to obtain more accurate results.

4.3 Diffusion Policy
Following AWR [16, 25, 26], we can directly extract the policy from

behavior policy 𝜋𝛽 and Q-function with a weighted distribution

form:

𝜋ℎ (𝒛𝑡 |𝒔𝑡 ,𝒈) ∝ 𝜋𝛽 (𝒛𝑡 |𝒔𝑡 ,𝒈 )𝑤 (𝑄ℎ (𝒔𝑡 ,𝒈, 𝒛𝑡 )), (16)
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𝜋 ℓ (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) ∝ 𝜋𝛽 (𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 )𝑤 (𝑄ℓ (𝒔𝑡 , 𝒛𝑡 , 𝒂𝑡 )), (17)

where𝑤 is amonotonic increasing function (e.g. advantage-weighted

function) used to assign a weight to each action. This can be ab-

stracted as a classifier-guided method [3] in diffusion model:

𝑝 (𝒙) ∝ 𝑞(𝒙) 𝑓 (𝒙), (18)

where 𝒙 represents 𝒂𝑡 or 𝒛𝑡 . However, if directly using the weight

function𝑤 (𝑄) as a classifier 𝑓 to guide behavior policy 𝑞(𝒙) = 𝜋𝛽
during denoising process [14]:

𝑝𝜃 (𝒙𝑘−1 |𝒙𝑘 ) = N(𝒙𝑘−1 |𝝁𝜃 + 𝜂E𝑘∇𝒙𝑘 log 𝑓 (𝒙
𝑘 ), E𝑘 ), (19)

we will face severe OOD problems. This is because the noisy data

distribution during the denoising process (i.e., 𝑝𝜃 (𝒙𝑘 ), 𝑘 = [1, 𝐾])
differs significantly from the data distribution𝑞(𝒙) generated by the
behavior policy. Therefore, the gradient ∇𝒙𝑘 log 𝑓 (𝒙𝑘 ) estimated by

the learned value function for these OOD noisy data is inaccurate.

To address this issue, we employ an advantage-weighted noise

objective to directly learn the original distribution 𝑞(𝒙) 𝑓 (𝒙) during
training:

E𝑘,𝑞,𝝐
[
𝑓 (𝒙) | |𝝐 − 𝝐𝜃 (𝒙𝑘 , 𝑘) | |2

]
, (20)

where we use the advantage function as the weight function 𝑓 . The

proof can be found in supplementary Appendix ??. Through the

above training objective, we can achieve the desired target policy

using only Eq. (8) during sampling, without relying on classifier

guidance. The sampling process can be reformulated as:

𝒙𝑘−1 =
1√︁
𝛼𝑘
(𝒙𝑘 − 𝛽𝑘√︁

1 − 𝛼𝑘
𝝐𝜃 (𝒙𝑘 , 𝑘)) +

√︃
𝛽𝑘𝝐 . (21)

Therefore, during inference, we can discard the classifier to avoid

computing gradients on noisy data, thereby preventing the OOD

issues caused by using value function (or advantage function)-

based classifier estimations on noisy data. Meanwhile, this approach

avoids the introduction of time-consuming gradient backpropaga-

tion operations, thereby improving denoising efficiency.

Consequently, the loss function to learn policy 𝜋ℎ
𝜃ℎ
(𝒛𝑡 |𝒔𝑡 ,𝒈) and

𝜋 ℓ
𝜃ℓ
(𝒂𝑡 |𝒔𝑡 , 𝒛𝑡 ) using the diffusion model is as follow:

L𝜋ℎ (𝜃ℎ) = E𝑘,(𝒔𝑡 ,𝒈,𝒛𝑡 ),𝝐
[
exp(𝛽ℎ · 𝐴ℎ (𝒔𝑡 ,𝒈, 𝒛𝑡 )) | |𝝐 − �̂�𝑧 | |2

]
(22)

L𝜋 ℓ (𝜃ℓ ) = E𝑘,(𝒔𝑡 ,𝒛𝑡 ,𝒂𝑡 ),𝝐
[
exp(𝛽ℓ · 𝐴ℓ (𝒔𝑡 , 𝒛𝑡 , 𝒂𝑡 )) | |𝝐 − �̂�𝑎 | |2

]
(23)

where �̂�𝑧 denotes 𝝐𝜃ℎ (𝒛
𝑘
𝑡 , 𝑘 ; (𝒔𝑡 ,𝒈)), �̂�𝑎 denotes 𝝐𝜃ℓ (𝒂𝑘𝑡 , 𝑘 ; (𝒔𝑡 , 𝒛𝑡 )),

𝛽ℎ and 𝛽ℓ denote the temperature parameter for high-level and low-

level policies respectively. During training, we use the advantage

function𝐴ℎ (𝒔𝑡 ,𝒈, 𝒛𝑡 ) = 𝑄ℎ𝜙 (𝒔𝑡 ,𝒈, 𝒛𝑡 )−𝑉
ℓ
𝜓
(𝒔𝑡 ,𝒈) and𝐴ℓ (𝒔𝑡 , 𝒛𝑡 , 𝒂𝑡 ) =

𝒓𝑡 + 𝛾𝑉
ℓ
𝜓 (𝒔𝑡+1, 𝒛𝑡 ) −𝑉 ℓ𝜓 (𝒔𝑡 , 𝒛𝑡 ) instead of the Q-function in Eq.(16)

and (17) as the weight function 𝑓 for smaller variance. This will

make the learning process of the diffusion model more stable.

So far, we have explained all modules utilized within the ESD

(Fig. 3). Our algorithm consists of two stages. First, we learn the

goal-conditioned value function of both the high-level MDP and

the low-level MDP together, performing a number of gradient up-

dates alternating between Eqs. (14) and (15). Second, we perform

stochastic gradient descent on Eqs. (22) and (23) to learn the goal-

conditioned diffusion policy. The entire training process is summa-

rized in Algorithm 1.

Algorithm 1 Training Stage of the ESD

Require:
High-level policy model 𝜋ℎ

𝜃ℎ
, Low-level policy model 𝜋 ℓ

𝜃ℓ
, Q-

function 𝑄ℎ
𝜙
, V-function 𝑉 ℓ

𝜓
, Offline dataset D

1: Initialize 𝜋ℎ
𝜃ℎ
, 𝜋 ℓ
𝜃ℓ
, 𝑄ℎ

𝜙
, 𝑉 ℓ
𝜓

2:

3: #learn value function
4: For step 𝑗 ← 1 to𝑀 do:

5: Update 𝜙 by minimizing L𝑄ℎ (𝜙) with (𝝉 (𝒔𝑡 , 𝒛𝑡 ),𝒈) ∼ D
6: Update𝜓 by minimizing L𝑉 ℓ (𝜓 ) with (𝒔𝑡 ,𝒈, 𝒔𝑡+1) ∼ D
7: End for
8:

9: #learn hierarchical policy
10: For step 𝑗 ← 1 to𝑀 do:

11: Update 𝜃ℎ by minimizing L𝜋ℎ (𝜃ℎ) with (𝒔𝑡 ,𝒈, 𝒛𝑡 ) ∼ D
12: Update 𝜃ℓ by minimizing L𝜋 ℓ (𝜃ℓ ) with (𝒔𝑡 , 𝒛𝑡 , 𝒂𝑡 ) ∼ D
13: End for

5 EXPERIMENT
In this section, we conduct a series of experiments to answer the

following questions. 1) Does ESD exhibit performance advantages

over previous offline GCRL algorithms? 2) Does the diffusion model

outperform the unimodalmodel when used as policymodels? 3) Can

ESD better mitigate policy errors caused by noisy value functions?

4) How do the modules of ESD influence its performance?

5.1 Does ESD Exhibit Performance Advantages
over Previous Offline GCRL Algorithms?

Baselines. We compare various goal-conditioned offline decision

algorithms with the ESD. The compared baselines include imita-

tion learning like goal-conditioned behavioral cloning (GCBC) [4],

RvS-G [5], and hierarchical goal-conditioned behavioral cloning

(HGCBC) [23]; sequence models like the Trajectory Transformer

(TT) [15]; and offline GCRL methods such as the goal-conditioned

variant of IQL [16] (GC-IQL) and CRL [6]. Additionally, we in-

clude hierarchical offline GCRL methods like HIQL (which uses the

inelastic subgoal) [24] and goal-conditioned variant of POR [32]

(GC-POR), which employs hierarchy but utilizes a shorter inelastic

subgoal (i.e. predict the immediate next state as a subgoal).

We evaluate ESD on various benchmarks (for a detailed descrip-

tion of the benchmarks, please refer to supplementary Appendix ??)
and present all test results in Table 1. In AntMaze environments,

ESD outperforms all other baselines. In Kitchen environments, ESD

performs competitively with the best performance of prior methods.

On the more challenging AntSoccer, CALVIN and Procgen envi-

ronment, ESD outperforms all other baselines by a large margin. In

all these environments, ESD surpasses the hierarchical algorithms

HQIL and POR, which use a fixed length of𝑚(> 1) and 1 for inelas-
tic subgoal selection. We conjecture that the success in all those

datasets should be attributed to the effective planning capability
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Table 1: Performance on the offline goal-condtioned benchmarks. We show that ESD either matches or outperforms the current
offline GCRL algorithm across various environments. The normalized scores are reported using a multiplier of 25 for Kitchen
and CALVIN tasks, and 100 for all other tasks. We present the mean and the standard error over 8 random seeds. The top two
scores per task are highlighted in dark blue and light blue, respectively.

Dataset GCBC HGCBC GC-IQL GC-POR TT CRL RvS-G HIQL ESD-Gauss ESD

AntMaze-Umaze 56.7 57.5 89.2 90.4 100.0 - 65.4 83.3 97.5±3.2 97.1±2.6
AntMaze-Umaze-Diverse 57.1 53.8 68.5 68.2 - - 60.9 85.4 93.3±5.8 92.9±4.2
AntMaze-Medium-Play 67.3 71.6 63.5 74.8 100.0 - 58.1 86.8 89.2±3.2 90.8±6.4

AntMaze-Medium-Diverse 71.9 66.3 70.9 71.4 93.3 - 57.3 84.1 85.0±6.0 88.3±6.0
AntMaze-Large-Play 20.2 63.9 50.7 49.0 60.0 - 32.4 88.2 89.6±4.2 88.8±6.0

AntMaze-Large-Diverse 23.1 64.7 56.5 63.2 66.7 - 36.9 86.1 84.6±5.3 87.9±5.0
AntMaze-Ultra-Play 14.4 39.4 21.6 29.8 33.3 - - 52.9 51.7±19.3 56.7±9.1

AntMaze-Ultra-Diverse 20.7 38.2 29.8 31.0 20.0 - - 39.2 50.6±24.1 55.8±11.3
Average 41.4 56.9 56.3 59.6 - - - 75.7 80.2 82.3

Kitchen-Partial 38.5 32.0 39.2 18.4 - 51.4 - 65.0 66.2±5.6 69.8±2.1
Kitchen-Mixed 46.7 46.8 51.3 27.9 - 60.3 - 67.7 68.7±7.3 67.1±5.0

Average 42.6 39.4 45.3 23.2 - 54.0 - 66.4 67.5 68.5

AntSoccer-Arena-Navigate 5.0 4.2 50.0 61.7 - 23.0 - 58.0 62.5±12.7 77.5±8.3
AntSoccer-Arena-Stitch 2.0 0 7.0 9.6 - 1.0 - 13.0 17.1±2.6 39.6±10.3

Average 3.5 2.1 28.5 35.7 - 12.0 - 35.5 39.8 58.6

Scene-Play 5.0 6.3 51.0 50.0 - 19.0 - 38.0 60.0±7.8 64.2±8.9
Scene-Noisy 1.0 1.7 26.0 17.5 - 1.0 - 25.0 29.6±6.8 47.1±7.7
Average 3.0 4.0 38.5 33.8 - 10.0 - 31.5 44.8 55.7

Procgen-Maze-500-Train 16.8 14.3 72.5 75.8 - - - 82.5 80.8±6.4 84.2±5.0
Procgen-Maze-500-Test 14.5 11.2 49.5 53.8 - - - 64.5 70.8±10.0 72.2±8.5
Procgen-Maze-1000-Train 27.2 15.0 78.2 82 - - - 87.0 85.4±9.1 86.3±14.8
Procgen-Maze-1000-Test 12.0 14.5 60 69.8 - - - 78.2 78.8±6.2 87.5±10.8

Average 14.4 13.3 60.7 66.5 - - - 75.1 79.0 82.6

CALVIN 17.3 3.1 7.8 12.4 - - - 43.8 50.5±20.9 63.9±27.9
Average 17.3 3.1 7.8 12.4 - - - 43.8 50.5 63.9

of elastic subgoals. Additionally, the strong representational capa-

bility of the diffusion model has also had a significant impact on

the accurate representation of the subgoals. Therefore, we conduct

a detailed analysis of the contributions of the diffusion model and

the elastic subgoal in Section 5.2 and Section 5.4, respectively.

5.2 Does the Diffusion Model Outperform the
Unimodal Model as a Policy model?

To demonstrate the importance of using the diffusion model as a

policy model, we also test a version of ESD with the Gaussian pol-

icy model, called ESD-Gauss (details in supplementary Appendix

??). As shown in Table 1, we observe that on average across all six

environments, ESD outperforms ESD-Gauss. Notably, in the chal-

lenging CALVIN and AntSoccer environments, the diffusion model

provides a substantial improvement over the unimodal Gaussian

model. In sophisticated image-based environments (Procgen), the

diffusion model also shows a significant advantage. This indicates

that the diffusion model is a better choice for representing policies

with multimodal distributions.

5.3 Can ESD Better Mitigate Policy Errors
Caused by Noisy Value Functions?

In general, when the dataset contains less data and has lower cov-

erage, the discrepancy between the learned value function and the

optimal value function becomes larger, resulting in greater noise

in the value function. Therefore, we train multiple algorithms on

datasets with varying sizes to assess the ability of ESD to resist noise

in the value function. As shown in Fig 6, ESD performs relatively sta-

ble across datasets with different sizes. In contrast, HIQL exhibits a

noticeable decline on the AntMaze-Umaze-Diverse. In the AntMaze-

Medium-Diverse, HIQL is more sensitive to the dataset size than

ESD, showing greater fluctuations. In the AntMaze-Large-Diverse,

both ESD and HIQL experience a significant drop in performance

when the dataset size decreases to around 0.2𝑀 . However, before

the dataset size drops to 0.2𝑀 , HIQL’s performance decline is more
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pronounced than that of ESD. Therefore, ESD is more effective in

mitigating the impact of noise than the other algorithms.
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Figure 6: Analysis of performance under varying dataset
sizes. As the dataset size decreases, the performance drop of
ESD is relatively smaller compared to other algorithms.

5.4 Ablation Study
Next, we conduct an ablation study to verify whether the advantage-

weighted noise objective can better train the policy model based on

diffusion model, compared to the classifier-guided method (Table 2).

We use both the Q-function and the advantage-weighted function

exp(𝛽 ·𝐴) as classifiers to guide the sampling process of the diffusion

model under the classifier-guided method, resulting in ESD-QClf
and ESD-AClf, respectively. From Table 2, it can be observed that

the model trained using the classifier-guided method performs

worse than the model trained with the advantage-weighted noise

objective. Moreover, the performance of ESD-QClf and ESD-AClf is

roughly the same as ESD-BC, which does not apply any guidance

to the diffusion policy model (i.e., employing imitation learning in

both the high-level and low-level policies based on elastic subgoals).

Therefore, we conjecture that advantage-weighted noise objective

can better train the policy model based on diffusion models.

Table 2: Ablation study of advantage-weighted noise objec-
tive. Due to the impact of OOD problems, the performance of
ESD-QClf and ESD-AClf is lower than ESD, which is trained
by the advantage-weighted noise objective.

Dataset ESD-BC ESD-QClf ESD-AClf ESD

AntMaze-Umaze 73.3±9.0 90.6±4.9 92.7±3.9 97.1±2.6
AntMaze-Medium-Play 17.4±9.0 71.3±5.4 84.0±3.9 90.8±6.4
AntMaze-Large-Play 18.7±7.5 51.3±9.8 80±10.5 88.8±6.0
AntMaze-Ultra-Play 32.0±4.5 40.7±9.0 61.3±12.7 56.7±9.1

Average 35.4 63.5 79.5 83.4

Kitchen-Partial 57.2±6.3 53.8±8.7 59.4±10.6 69.8±2.1
Kitchen-Mixed 59.3±6.5 49.0±11.4 57.1±7.1 67.1±5.0

Average 58.3 51.4 58.25 68.5

Moreover, to further demonstrate the advantages of elastic sub-

goals compared to inelastic subgoals, we compared ESD with two

inelastic-subgoal hierarchical policies, HIQL and POR, as shown

in Table 3. These two algorithms utilize fixed lengths of𝑚(> 1)
and 1 for inelastic subgoal selection, respectively. For fairness, we

used diffusion models as the basis for the policy models, employ-

ing the same network architecture across all comparisons. The

results show that elastic subgoals consistently exhibit significant

advantages across various environments. Moreover, when using a

Gaussian model as the policy model, ESD-Gauss also demonstrates

significant advantages compared to these algorithms (see Table 1).

This indicates that elastic subgoals are better at mitigating the im-

pact of noise in the value function, thereby enabling the learning

of better policies.

Table 3: Ablation study of elastic subgoal under diffusion pol-
icy model. Elastic subgoal (ESD) significantly improves per-
formance in both the Antmaze and CALVIN environments.
◦ represents non-hierarchical policy, △ represents inelastic-
subgoal hierarchical policy, ⋆ represents elastic-subgoal hi-
erarchical policy.

Dataset GC-IQL-D◦ GC-POR-D△ HIQL-D△ ESD⋆

AntMaze-Umaze 89.5±5.8 93.3±6.5 88.4±8.3 97.1±2.6
AntMaze-Medium-Play 73.3±13.2 79.2±12.6 85.6±4.2 90.8±6.4
AntMaze-Large-Play 44.3±17.5 56.7±22.8 86.7±5.6 88.8±6.0
AntMaze-Ultra-Play 28.6±13.7 36.7±22.4 57.5±14.9 56.7±9.1

Average 58.9 66.5 79.6 83.4

CALVIN 18.9±16.6 9.3±9.1 46.2±16.7 63.9±27.9
Average 18.9 9.3 46.2 63.9

Scene-Play 49.5±9.8 41.7±3.7 57.1±10.3 64.2±8.9
Scene-Noisy 45.0±6.4 36.7±8.3 31.3±10.3 47.1±7.7
Average 47.3 39.2 44.2 55.7

We refer to supplementary Appendix ?? for further experimen-

tal analyses, including subgoal visualizations, comparisons of the

number of parameters and inference times, and an ablation study

on the maximum subgoal time steps.

6 CONCLUSION
We propose ESD as an effective hierarchical algorithm for offline

GCRL. We introduce the idea of elastic subgoal in the high-level pol-

icy to decompose goals into subgoals, which is better at suppressing

the impact of noise compared to inelastic approaches. In addition, to

handle the multimodal distribution of subgoals and actions, we use

the diffusion model to learn such multimodal policies and employ

an implicit guidance method to guide the denoising process. Exper-

imental results show that ESD achieves competitive performance

and outperforms other algorithms on various benchmarks. Since

ESD employs a diffusion model with powerful representation capac-

ity as the policy model, it is suitable for scaling to large, real-world

applications with multimodal data. Future work can apply ESD to

larger architectures and explore learning policies on large-scale

reward-free datasets, such as driving data and internet videos.
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