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ABSTRACT
Modeling the behaviors of many-agent games is crucial for captur-

ing the dynamics of large-scale complex systems. This is typically

achieved by recovering policies from demonstrations within the

Mean Field Game Imitation Learning (MFGIL) framework. However,

most MFGIL methods assume that demonstrations are collected

from Mean Field Nash Equilibrium (MFNE), implying that agents

make decisions independently. When directly applied to situations

where agents’ decisions are coordinated, such as publicly routed

traffic networks, these techniques often fall short. In this paper, we

propose the Adaptive Mean Field Correlated Equilibrium (AMFCE),

which introduces a generalized assumption that effectively inte-

grates the correlated behaviors common in real-world systems. We

prove the existence of AMFCE under mild conditions and theoreti-

cally show that MFNE is a special case of AMFCE. Building upon

this, we introduce a new Mean Field Correlated Imitation Learning

(MFCIL) algorithm, which recovers expert policy more accurately in

scenarios where agents’ decisions are coordinated. We also provide

a theoretical upper bound for the error in recovering the expert

policy, which is tighter than that of existing methods. Empirical re-

sults on real-world traffic flow prediction and large-scale economic

simulations demonstrate that MFCIL significantly improves the

predictive performance of large populations’ behaviors compared

to existing MFGIL baselines. This improvement highlights potential

of MFCIL to model real-world multi-agent systems.
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1 INTRODUCTION
Modeling behaviors in large-scale multi-agent systems is crucial

for characterizing the properties of complex systems, a task typi-

cally achieved by recovering policies from demonstrations. These

systems span various domains, such as traffic management [1, 15],

ad auctions [9] and economic activities among human [16], where

individual agent decisions collectively drive system dynamics. How-

ever, recovering policies in such environments presents significant

challenges due to the high dimensionality and complexity of agent

interactions. Mean Field Game Imitation Learning (MFGIL) has

shown significant promise in addressing these challenges by recov-

ering policies from demonstrations and reformulating multi-agent

interactions within the Mean Field Game (MFG) framework [6, 7].

In MFG settings, the states of the entire population can be effec-

tively summarized into an empirical state distribution, simplifying

the problem by reducing it to a game between a representative

agent and this empirical distribution [9, 26].

The existing literature on MFGIL typically assumes that expert

demonstrations are collected from the Mean Field Nash Equilibrium

(MFNE) or its variants [6, 25]. However, in many real-world scenar-

ios, these expert demonstrations may originate from environments

where agents’ actions are coordinated. The MFNE, which assumes
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that agents make decisions independently, thus has limited appli-

cability in such settings [14]. For example, drivers’ decisions in a

traffic network often depend on routing recommendations from

mapping applications. The correlated signals introduced by these

applications cannot be adequately captured by MFNE. In summary,

the lack of a comprehensive MFG solution concept that addresses

coordinated decision-making significantly restricts the realism and

practicality of current MFGIL algorithms.

To address this limitation, we introduce the Adaptive Mean Field

Correlated Equilibrium (AMFCE), a more nuanced and adaptable

solution concept that incorporates the correlated behaviors inher-

ent in real-world systems. By acknowledging and integrating the

coordinated decision-making, AMFCE allows for more accurate and

effective modeling of complex real-world scenarios. We prove that

MFNE is a subclass of AMFCE, implying the broader applicability

of our AMFCE-based IL algorithm than existing MFGIL algorithms.

We further propose a novel imitation learning algorithm built upon

the AMFCE concept, called “Mean Field Correlated Imitation Learn-

ing” (MFCIL), which is the first to recover a Correlated Equilibrium

(CE) policy in MFGs. The flexibility and adaptability of AMFCE

allow MFCIL to more accurately model and predict a wider range

of real-world scenarios. We also establish a theoretical upper bound

for the error in recovering expert policy. Notably, MFCIL is the first

practical MFGIL algorithm with a polynomial dependency on the

horizon 𝑇 , specifically O(𝑇
√
𝑇 ), for performance differences. Our

theoretical analysis extends existing analysis results on MFNE to a

more general MFG equilibrium.

We conduct experiments on a variety of tasks, including real-

world scenarios like traffic flow prediction and large-scale economic

simulations. These experiments are designed to validate the effec-

tiveness of our proposed algorithm by comparing its performance

against state-of-the-art MFGIL methods. The results show that our

approach consistently recovers the expert policy more accurately

than existing methods across all tasks, demonstrating its superiority

in both theoretical guarantees and practical applications.

2 PRELIMINARIES
2.1 Classic mean field Nash equilibrium
The classic MFG models a game between a representative agent

and the state distribution of all the other agents. Denote P(X)
as the set of probability distributions over the set X and denote

T = {0, 1, · · · ,𝑇 } as a set of time indexes. 𝑇 is the time horizon.

The state space and the action space are denoted as S and A,

respectively. The population state distribution of a homogeneous𝑁 -

agent game at time 𝑡 is 𝜇𝑡 (𝑠) ≜ lim𝑁→∞
1

𝑁

∑𝑁
𝑖=1 1{𝑠𝑖𝑡 = 𝑠}, where

𝑠𝑖𝑡 is the state of agent 𝑖 at time 𝑡 , and 1{𝑒 } is an indicator function

(with value 1 if expression 𝑒 holds and 0 otherwise). The mean field

flow is defined as 𝜇𝜇𝜇 = {𝜇𝑡 }𝑡 ∈T . The transition kernel for the state

dynamics is denoted as 𝑃 : S×A×P(S) → P(S). At time 𝑡 , after

the representative player chooses its action 𝑎𝑡 according to policy

𝜋𝑡 , it will receive a deterministic reward 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ), and its state

will evolve according to the current state 𝑠𝑡 ∈ S and transition

kernel 𝑃 (·|𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ). For a fixed mean field flow 𝜇𝜇𝜇, the objective of

the representative agent is to solve the following decision-making

problem over all admissible policies 𝜋𝜋𝜋 = {𝜋𝑡 }𝑡 ∈T :

maximize𝜋𝜋𝜋 E𝑠∼𝜇0 [𝑉0 (𝑠, 𝜋𝜋𝜋, 𝜇𝜇𝜇)] ≜ E
[
𝑇∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )
���� 𝑠𝑘 = 𝑠

]
subject to 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ), 𝑎𝑡 ∼ 𝜋𝑡 (𝑠𝑡 ),

(1)

where 𝛾 ∈ (0, 1] is the discount factor. The MFNE [9, 14] is defined

as the following.

Definition 2.1 (MFNE). In classic MFG (Equation (1)), a policy-

population profile (𝜋𝜋𝜋★, 𝜇𝜇𝜇★) is called an MFNE (under initial state

distribution 𝜇0) if

(1) For any policy𝜋𝜋𝜋 ,E𝑠∼𝜇0 [𝑉0 (𝑠, 𝜋𝜋𝜋★, 𝜇𝜇𝜇★)] ≥ E𝑠∼𝜇0 [𝑉0 (𝑠, 𝜋𝜋𝜋, 𝜇𝜇𝜇★)].
(2) (Population side) The mean field flow 𝜇𝜇𝜇∗ satisfies

𝜇∗𝑡 (·) =
∑︁

𝑠∈S,𝑎∈A
𝑃 (·|𝑠, 𝑎, 𝜇∗𝑡−1)𝜋

∗
𝑡−1 (𝑎 |𝑠)𝜇

∗
𝑡−1 (𝑠), (2)

with initial condition 𝜇∗
0
= 𝜇0.

The single player side condition captures the optimality of 𝜋𝜋𝜋★

when the mean field flow 𝜇𝜇𝜇 is fixed. The population side condition

ensures the “consistency” of the solution by guaranteeing that the

state distribution flow of the single player matches the mean field

flow 𝜇𝜇𝜇★.

2.2 Imitation Learning
Let M = (S,A, 𝑃, 𝑟, 𝜇0, 𝛾,𝑇 ) represent a single-agent Markov de-

cision process (MDP). In this notation, S and A denote the state

and action spaces, respectively. The transition kernel for the state

dynamics is denoted by 𝑃 : S×A → P(S). The reward function is

denoted as 𝑟 : S×A → R. The initial distribution of the initial state
𝑠0 is denoted as 𝜇0. The discount factor is represented by 𝛾 ∈ (0, 1],
and 𝑇 corresponds to the horizon. The expected return of a policy

𝜋 is defined as 𝐽 (𝜋) = E
[∑𝑇

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )

]
, where the expectation

is taken with respect to 𝑠0 ∼ 𝜇0, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ) and 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 ).
In the IL setting, a set of expert demonstrations sampled from

expert policy 𝜋𝐸 is provided. The goal of IL is to recover the expert

policy 𝜋𝐸 using the expert demonstration.

IRL is a subclass of IL and it solves the problem in two steps. It

first finds a reward function 𝑟 = max𝑟

(
min𝜋 −𝐻 (𝜋)−𝐽 (𝜋)

)
+𝐽 (𝜋𝐸 )

that rationalizes the expert policy𝜋𝐸 , where𝐻 (𝜋) ≜ E𝜋 [− log𝜋 (𝑎 |𝑠)]
is the causal entropy of the policy 𝜋 [2]. Then a recovered policy

is learned from the reward function 𝑟 by a reinforcement learning

method.

Generative Adversarial Imitation Learning (GAIL) [10] treats IL

as a mini-max game and is trained using a Generative Adversarial

Network (GAN). GAIL introduces a discriminator 𝐷𝜔 to differen-

tiate state-action pairs from 𝜋𝐸 and other policies. The recovered

policy 𝜋𝜃 , parameterized by 𝜃 , plays the role of the generator. It

aims at generating state-action pairs that are difficult for 𝐷𝜔 to

differentiate. The objective function of GAIL is thus defined as

max

𝜃
min

𝑤
E(𝑠,𝑎)∼𝜋𝜃 [log (𝐷𝜔 (𝑠, 𝑎))]+E(𝑠,𝑎)∼𝜋𝐸 [log (1 − 𝐷𝜔 (𝑠, 𝑎))] ,

(3)

whereE(𝑠,𝑎)∼𝜋𝜃 is expectation takenwith respect to 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 ),
𝑎𝑡 ∼ 𝜋𝜃 (·|𝑠𝑡 ), 𝑠0 ∼ 𝜇0 and E(𝑠,𝑎)∼𝜋𝐸 is expectation taken with re-

spect to 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 ), 𝑎𝑡 ∼ 𝜋𝐸 (·|𝑠𝑡 ), 𝑠0 ∼ 𝜇0.
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3 PROBLEM FORMULATION
In this section, we introduce the concept of AMFCE. Then, we estab-

lish the existence of AMFCE under mild conditions and demonstrate

that the MFNE solution set is a subset of the AMFCE solution set.

Additionally, in Appendix B.1, we prove that AMFCE in mean field

games approximates the CE for finite agent settings.

3.1 Adaptive Mean Field Correlated Equilibrium
Compared with MFNE, AMFCE introduces correlated signals in

the process of action sampling, which enlarges the policy set and

provides a more general solution concept for modeling the real-

world decision-making processes where actions of different agents

are coordinated. Before the introduction of the AMFCE, we first

introduce the concepts of correlation device [18] and behavioral

policy.

Definition 3.1 (Correlation Device). The per-step correlation de-

vice 𝜌𝑡 ∈ P(Z) is a distribution over the finite correlated signal

space Z, from which the correlated signal 𝑧𝑡 is sampled at time

𝑡 . We denote 𝜌𝜌𝜌 = {𝜌𝑡 }𝑇𝑡=0 as correlation device over the entire

horizon.

Definition 3.2 (Behavioral Policy). For each time 𝑡 , the per-step

behavioral policy 𝜋𝑡 : Z × S → P(A) maps the state 𝑠 and

correlated signal 𝑧 to a distribution over the action space A.

We denote 𝜋𝜋𝜋 = {𝜋𝑡 }𝑇𝑡=0 as the behavioral policy over the entire

horizon. The term “policy” may be used to replace “behavioral pol-

icy” without confusion. The action space and the state space are

finite. At each time step 𝑡 , a correlated signal 𝑧𝑡 is sampled from the

per-step correlation device 𝜌𝑡 . Subsequently, for each agent at state

𝑠𝑡 , a mediator samples an action 𝑎𝑡 from the per-step behavioral

policy 𝜋𝑡 (·|𝑠𝑡 , 𝑧𝑡 ) as the recommended action for the agent. Impor-

tantly, this recommended action 𝑎𝑡 is private, accessible only to the

respective agent. Mathematically, denote I𝑡 = {𝜌𝑡 , 𝑎𝑡 , 𝜋𝑡 , 𝑠𝑡 , 𝜇𝑡 } as
the information available to the agent at the beginning of step 𝑡 . I𝑡
serves as a criterion for evaluating whether a policy and correlation

device constitute an AMFCE, similar to how the population distri-

bution is used in typical MFNE concepts. The presence of 𝜇𝑡 does

not imply agents have knowledge of the population distribution.

Neither the policy 𝜋 (𝑎 |𝑠, 𝑧) nor the correlation device 𝜌 (𝑧) relies
on precise population distribution information. Note that the agent

only observes the functional form of 𝜋𝑡 but cannot observe the cor-
related signal 𝑧𝑡 nor the recommended actions for other agents.

Therefore, the agent has to predict the correlated signal 𝑧𝑡 based

on the local information I𝑡 :

𝜌
pred

𝑡 (𝑧𝑡 = 𝑧 |I𝑡 ) =
𝜌𝑡 (𝑧)𝜋𝑡 (𝑎𝑡 |𝑠𝑡 , 𝑧)∑

𝑧′∈Z 𝜌𝑡 (𝑧′)𝜋𝑡 (𝑎𝑡 |𝑠𝑡 , 𝑧′)
. (4)

The agent can then update the prediction for the population state

distribution of the next time step for each possible signal 𝑧 using

the McKean-Vlasov equation:

𝜇
pred

𝑡+1 (·|I𝑡 , 𝑧) =
∑︁
𝑎∈A

∑︁
𝑠∈S

𝜇𝑡 (𝑠)𝑃 (·|𝑠, 𝑎, 𝜇𝑡 )𝜋𝑡 (𝑎 |𝑠, 𝑧) ≜ Φ(𝜇𝑡 , 𝜋𝑡 , 𝑧).

(5)

Given the population state distribution 𝜇, the agent will choose

action 𝑎 to maximize the action value function 𝑄𝜋𝜋𝜋
𝑡 (𝑠, 𝑎, 𝜇, 𝑧;𝜋𝜋𝜋 ′):

𝑄𝜋𝜋𝜋
𝑡 (𝑠, 𝑎, 𝜇, 𝑧;𝜋𝜋𝜋 ′) = 𝑟 (𝑠, 𝑎, 𝜇) + 𝛾E𝜋𝜋𝜋,𝜋𝜋𝜋 ′,𝜌𝜌𝜌

[ 𝑇∑︁
𝑖=𝑡+1

𝛾𝑖−𝑡−1𝑟 (𝑠𝑖 , 𝑎𝑖 , 𝜇𝑖 )
]
.

(6)

The action value function is the expected return of an agent when

the agent follows policy 𝜋𝜋𝜋 while the population adheres to policy

𝜋𝜋𝜋 ′ under the correlation device 𝜌𝜌𝜌 , conditioned on (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 , 𝑧𝑡 ) =
(𝑠, 𝑎, 𝜇, 𝑧). Unless otherwise stated, the expectation E𝜋𝜋𝜋,𝜋𝜋𝜋 ′,𝜌𝜌𝜌 is taken

with respect to 𝑧𝑡 ∼ 𝜌𝑡 (·), 𝑠𝑡 ∼ 𝑃 (·|𝑠𝑡−1,𝑎𝑡−1, 𝜇𝑡−1),𝑎𝑡 ∼ 𝜋𝑡 (·|𝑠𝑡 , 𝑧𝑡 ),
𝜇𝑡 = Φ(𝜇𝑡−1, 𝜋 ′𝑡−1, 𝑧𝑡−1).

To introduce the concept of AMFCE, we define the set of swap

function

U ≜ {𝑢 : A → A},
namely𝑢 is a function thatmodifies an action𝑎 to an action𝑢 (𝑎). Let
Δ𝑡 (𝑠, 𝜇,𝑢;𝜋𝜋𝜋, 𝜌𝜌𝜌) = E

[
𝑄𝜋𝜋𝜋
𝑡 (𝑠,𝑢 (𝑎), 𝜇, 𝑧;𝜋𝜋𝜋) − 𝑄𝜋𝜋𝜋

𝑡 (𝑠, 𝑎, 𝜇, 𝑧;𝜋𝜋𝜋)
]
denote

the difference in the action value functions when the agent takes

action 𝑢 (𝑎) in response to a recommendation 𝑎, where 𝑢 ∈ U. The

expectation is taken with respect to 𝑧 ∼ 𝜌𝑡 (·), 𝑎 ∼ 𝜋𝑡 (·|𝑠, 𝑧).

Definition 3.3 (AMFCE). The profile (𝜋𝜋𝜋★, 𝜌𝜌𝜌★), comprising the

behavioral policy 𝜋𝜋𝜋★ = {𝜋★𝑡 }𝑇𝑡=0 and the correlation device 𝜌𝜌𝜌★ =

{𝜌★𝑡 }𝑇𝑡=0, is an AMFCE if

(1) (Single agent side) No agent has an incentive to unilaterally

deviate from the recommended action after predicting the 𝑧

by Equation (4), i.e. Δ𝑡 (𝑠, 𝜇★𝑡 , 𝑢;𝜋𝜋𝜋★, 𝜌𝜌𝜌★) ≤ 0, ∀𝑢 ∈ U,∀𝑠 ∈
S,∀𝑡 ∈ T .

(2) (Population side) The mean field flow 𝜇𝜇𝜇∗ satisfies 𝜇∗𝑡 (·) =

Φ(𝜇★
𝑡−1, 𝜋

★
𝑡−1, 𝑧𝑡−1), given the correlated signals {𝑧𝑡 }𝑇𝑡=0 and

initial condition 𝜇∗
0
= 𝜇0.

3.2 Properties of AMFCE
This subsection focuses on the properties of AMFCE, including the

conditions to guarantee its existence and its relationship to classic

MFNE. To provide the existence of AMFCE solutions, we define the

best response operator

BR(𝜋𝜋𝜋 ;𝜌𝜌𝜌) = argmax

𝜋𝜋𝜋 ′
E𝜋𝜋𝜋 ′,𝜋𝜋𝜋,𝜌𝜌𝜌

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )
]
.

Then the existence of AMFCE is derived using Kakutani’s fixed

point theorem [12] with the operator BR. We next provide a suffi-

cient condition for the existence of AMFCE.

Theorem 3.4. Let the reward function 𝑟 (𝑠, 𝑎, 𝜇) and transition kernel
𝑃 (𝑠′ |𝑠, 𝑎, 𝜇) be bounded and continuous with respect to the population
state distribution 𝜇. Under these mild conditions, there exists at least
one AMFCE solution.

Proof sketch. We first prove that BR has a closed graph (Lemma

B.2), and BR(𝜋𝜋𝜋 ;𝜌𝜌𝜌) is a convex set given 𝜋𝜋𝜋 and 𝜌𝜌𝜌 . (Lemma B.3).

According to Kakutani’s fixed point theorem, there exists 𝝅∗ =

BR(𝝅∗
;𝜌𝜌𝜌). Therefore, Δ𝑡 (𝑠𝑡 , 𝜇𝑡 , 𝑢;𝜋𝜋𝜋∗, 𝜌𝜌𝜌) ≤ 0, ∀𝑢 ∈ U,∀𝑠𝑡 ∈

S,∀𝑡 ∈ T and 𝜇𝜇𝜇 = {𝜇𝑡 }𝑇𝑡=0 satisfies the population side condition

of AMFCE. □

AMFCE is a more general solution concept compared to MFNE.

Corollary 3.5 shows that MFNE is a subclass of AMFCE.
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Corollary 3.5. Every MFNE can be transformed into an AMFCE.

The proof is deferred to Appendix B.4. Corollary 3.5 implies

that any IL algorithm designed to recover AMFCE policies can also

recover MFNE policies.

4 IMITATION LEARNING FOR AMFCE
In this section, we propose a novel IL algorithm for recovering

AMFCE from expert demonstrations.

We denote the AMFCE under the designed reward function 𝑟

and correlation device 𝜌𝜌𝜌 as AMFCE(𝑟, 𝜌𝜌𝜌). The condition of AMFCE,

as defined in Definition 3.3, implies that agents cannot improve the

policy 𝜋𝜋𝜋 through 1-step temporal difference learning. We proceed

to derive equivalent constraints for multi-step temporal difference

learning, outlined in Proposition 4.2. Utilizing the Lagrangian re-

formulation of these equivalent multi-step constraints, we propose

the IL algorithm for recovering AMFCE.

We first introduce the concept of the Correlated Imitation Gap

(CIG) for deriving the multi-step constraints.

Definition 4.1 (CIG). For a given action sequence 𝑎0:𝑇 , the policy

𝜋𝜋𝜋 and correlation device 𝜌𝜌𝜌 , the CIG is defined as R(𝑎0:𝑇 , 𝜋𝜋𝜋, 𝜌𝜌𝜌) ≜
E
[ ∑𝑇

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )

���𝑎0:𝑇 ] − 𝐽 (𝜋𝜋𝜋,𝜋𝜋𝜋, 𝜌𝜌𝜌), where the expectation is

taken with respect to 𝑧𝑡 ∼ 𝜌𝑡 (·), 𝑠𝑡 ∼ 𝑃 (·|𝑠𝑡−1, 𝑎𝑡−1, 𝜇𝑡−1). Here,
𝐽 (𝜋𝜋𝜋,𝜋𝜋𝜋 ′, 𝜌𝜌𝜌) = E𝜋𝜋𝜋,𝜋𝜋𝜋 ′,𝜌𝜌𝜌

[∑𝑇
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )
]
represents the expected

return of the agent when it follows policy 𝜋𝜋𝜋 while the population

adheres to policy 𝜋𝜋𝜋 ′ under the correlation device 𝜌𝜌𝜌 .

The CIG is defined as the gap of expected return between the

agent taking action sequence 𝑎0:𝑇 and the policy 𝜋𝜋𝜋 . Then we can

get a criterion for AMFCE based on CIG.

Proposition 4.2. (𝜋𝜋𝜋, 𝜌𝜌𝜌) is an AMFCE solution if and only if

R(𝑎0:𝑇 , 𝜋𝜋𝜋, 𝜌𝜌𝜌) ≤ 0,

∀𝑎𝑡 ∈ A, 0 ≤ 𝑡 ≤ 𝑇 .

The proof is deferred to Appendix B.5. Intuitively, Proposition 4.2

shows the multi-step constraints for AMFCE. Therefore, the process

of finding AMFCE can be defined as an optimization problem with

finite constraints measured by the CIG.We propose a Lagrangian re-

formulation to findAMFCE.𝐿(𝜋𝜋𝜋, 𝜌𝜌𝜌, 𝜆, 𝑟 ) ≜ ∑
𝜏𝑘 ∈D𝐸

𝜆(𝜏𝑘 )R(𝑎0:𝑇 , 𝜋𝜋𝜋, 𝜌𝜌𝜌),
where D𝐸 is a set of action-signal sequences 𝜏𝑘 = {(𝑎𝑡 , 𝑧𝑡 )}𝑇𝑡=0. We

show that the Lagrangian form captures the difference of expected

returns between two policies by selecting 𝜆.

Theorem 4.3. For policy 𝜋𝜋𝜋∗ and correlation device 𝜌𝜌𝜌 , let 𝜆𝜋𝜋𝜋∗ (𝜏𝑘 ) =∏𝑇
𝑡=0 𝜌𝑡 (𝑧𝑡 )𝜋∗𝑡 (𝑎𝑡 |𝑠𝑡 , 𝑧𝑡 ) be the probability of generating the sequence

𝜏𝑘 using policy𝜋𝜋𝜋∗ and correlation device𝜌𝜌𝜌 . Thenwe have𝐿(𝜋𝜋𝜋, 𝜌𝜌𝜌, 𝜆𝜋𝜋𝜋∗ , 𝑟 ) =
𝐽𝜋𝜋𝜋

∗ (𝜋𝜋𝜋,𝜋𝜋𝜋, 𝜌𝜌𝜌) − 𝐽 (𝜋𝜋𝜋,𝜋𝜋𝜋, 𝜌𝜌𝜌), where

𝐽𝜋𝜋𝜋
∗
(𝜋𝜋𝜋,𝜋𝜋𝜋, 𝜌𝜌𝜌) = E𝜋𝜋𝜋∗

[
E𝜋𝜋𝜋,𝜋𝜋𝜋,𝜌𝜌𝜌

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑢 (𝑎𝑡 ), 𝜇𝑡 )
�����{𝑢 (𝑎𝑡 ) = 𝑎′𝑡 }0:𝑇

] ]
,

𝑎′𝑡 ∼ 𝜋∗𝑡 (·|𝑠𝑡 , 𝜇𝑡 ).

The proof of Theorem 4.3 is deferred to Appendix B.6.

Our approach addresses the challenge of inaccessible reward

signals in IL settings by constructing a reward function that ra-

tionalizes the expert policy. To achieve this, we introduce the

AMFCE Inverse Reinforcement Learning (AMFCE-IRL) operator

AMFCE − IRL𝜓 , equipped with a reward regularizer 𝜓 , as moti-

vated by Theorem 4.3. This operator aims to maximize the gap in

expected returns between the expert policy 𝜋𝜋𝜋𝐸 and an alternative

policy 𝜋𝜋𝜋 , effectively rationalizing the expert policy based on expert

demonstrations.

AMFCE − IRL𝜓 (𝝅𝐸 , 𝜌𝜌𝜌𝐸 ) = argmax

𝑟

(
−𝜓 (𝑟 )−max

𝜋𝜋𝜋
𝐿(𝜋𝜋𝜋𝐸 , 𝜌𝜌𝜌𝐸 , 𝜆𝜋𝜋𝜋∗ , 𝑟 )

)
,

(7)

where (𝜋𝜋𝜋𝐸 , 𝜌𝜌𝜌𝐸 ) is the AMFCE from which expert demonstrations

are sampled. The regularizer for the reward function is chosen as

the adversarial reward function regularizer to avoid overfitting [10].

We recover the AMFCE policy AMFCE(𝑟, 𝜌𝜌𝜌𝐸 ) by Equation (8),

where 𝑟 = AMFCE − IRL(𝝅𝐸 , 𝜌𝜌𝜌𝐸 ).
AMFCE ◦ AMFCE-IRL𝜓 (𝜋𝜋𝜋𝐸 , 𝜌𝜌𝜌𝐸 ) = argmin

𝜋𝜋𝜋
max

𝑟
𝐽 (𝜋𝜋𝜋𝐸 , 𝜋𝜋𝜋𝐸 , 𝜌𝜌𝜌𝐸 )

− 𝐽𝜋𝜋𝜋 (𝜋𝜋𝜋𝐸 , 𝜋𝜋𝜋𝐸 , 𝜌𝜌𝜌𝐸 ) −𝜓𝐺𝐴 (𝑟 )
,

(8)

Proposition 4.4. The objective in Equation (8) can be reformulated
as the following practical objective function:

min

𝜋𝜋𝜋
max

𝜔
E𝜋𝜋𝜋𝐸 ,𝜋𝜋𝜋𝐸 ,𝜌𝜌𝜌𝐸

[ 𝑇∑︁
𝑡=0

𝛾𝑡 log𝐷𝜔 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )
]

+E𝜋𝜋𝜋,𝜋𝜋𝜋𝐸 ,𝜌𝜌𝜌𝐸

[ 𝑇∑︁
𝑡=0

𝛾𝑡 log
(
1 − 𝐷𝜔 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )

) ]
,

(9)

where 𝐷𝜔 represents the discriminator network parameterized with
𝜔 , taking (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ) as input and producing a real number in the
range (0, 1) as output.

The proof is deferred to Appendix B.7. This proposition shows

that the AMFCE policy can be recovered by the GAN. Note that

simply using Equation (9) to solve AMFCE cannot recover 𝜌𝜌𝜌𝐸 , so

we derive 𝜌𝜌𝜌 using a gradient descent method in the Proposition 4.5

with proof in Appendix B.8.

Proposition 4.5. If the correlation device 𝜌𝜙𝑡 is parameterized with
𝜙 , the gradient to optimize 𝜙 given state 𝑠 is

E
𝑧∼𝜌𝜙𝑡 ( ·)

[
∇𝜙 log 𝜌

𝜙
𝑡 (𝑧)E𝑎∼𝜋𝑡 ( · |𝑠,𝑧 )𝑄

𝜋𝜋𝜋
𝑡 (𝑠, 𝑎, 𝜇, 𝑧;𝜋𝜋𝜋)

]
.

The population state distribution 𝜇𝑡 influences both the input of

𝐷𝜔 and transition kernel in Equation (9). However, the population

state distribution 𝜇𝑡 in expert demonstrations is often inaccessible.

We characterize 𝜇𝑡 using the signature of 𝑧𝑧𝑧0:𝑡 from rough path the-

ory [13], denoted as 𝜇𝑡 = Sig(𝑧𝑧𝑧0:𝑡 ), bypassing the circular reasoning
problem [21]. Please refer to Appendix I for details.

We approximately optimize the following surrogate objective

function of Equation (9).

min

𝜋𝜋𝜋
max

𝜔
E𝜋𝜋𝜋𝐸 ,𝜋𝜋𝜋𝐸 ,𝜌𝜌𝜌𝐸

[ 𝑇∑︁
𝑡=0

𝛾𝑡
(
log𝐷𝜔 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ) + log 2

) ]
+ E𝜋𝜋𝜋,𝜋𝜋𝜋,𝜌𝜌𝜌𝐸

[ 𝑇∑︁
𝑡=0

𝛾𝑡
(
log

(
1 − 𝐷𝜔 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )

)
+ log 2

) ] (10)

Combine the above analysis, we propose a new algorithm, MFCIL,

to recover the AMFCE policy and the correlation device from expert

demonstrations. The algorithm is shown in Algorithm 1. Although
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Table 1: Results for numerical tasks. The performative difference between the recovered policy and the ground truth policy is
measured by log loss under different correlated signals 𝑧. The number in the bracket is the standard deviation over 3 independent
runs.

Task

Correlated

Signal

MFCIL

(Our Method)

MFIRL MFAIRL

Logistic

Regression

Multinomial MaxEnt ICE

Squeeze with

𝑇 = {0, 1, 2}

𝑧 = 0 0.643 (0.000) 1.450 (2.857) 4.064 (0.879) 4.484 (0.054) 0.686 (0.002) -

𝑧 = 1 0.647 (0.003) 3.245 (1.650) 4.144 (0.629) 0.000 (0.000) 2.577 (0.149) -

𝑧 = 2 0.020 (0.001) 1.072 (2.229) 6.934 (4.447) 7.091 (0.107) 0.282 (0.087) -

𝑧 = 3 0.045 (0.005) 7.871 (4.368) 1.027 (1.279) 10.638 (0.163) 0.001 (0.001) -

Squeeze with

𝑇 = {0, 1}
𝑧 = 0 0.648 (0.002) 3.828 (1.582) 4.067 (0.088) 1.985 (0.165) 0.991 (0.102) 0.946 (0.073)

𝑧 = 1 0.638 (0.001) 2.009 (1.191) 10.074 (0.174) 2.139 (0.169) 2.947 (0.359) 0.648 (0.011)

RPS 𝑧 = 0 1.083 (0.000) 7.127 (0.753) 3.221 (1.330) 4.805 (0.131) 5.850 (0.306) 1.537 (0.019)

Flock

𝑧 = 0 0.002 (0.000) 5.591 (0.869) 12.430 (2.759) 0.000 (0.000) 1.383 (0.004) -

𝑧 = 1 0.016 (0.003) 11.687 (1.158) 13.042 (1.533) 7.887 (0.031) 1.127 (0.007) -

𝑧 = 2 0.045 (0.009) 7.500 (3.955) 10.065 (5.074) 18.339 (0.010) 0.951 (0.009) -

𝑧 = 3 0.026 (0.003) 3.847 (3.967) 9.312 (4.711) 35.253 (0.037) 1.264 (0.011) -

Algorithm 1 Mean field correlated imitation learning (MFCIL)

Require: Expert demonstration set sampled from (𝜋𝜋𝜋, 𝜌𝜌𝜌): D𝐸 =

{𝑠0, 𝑧0, 𝑎0, 𝑠1, 𝑧1, 𝑎1, . . . 𝑠𝑇 , 𝑧𝑇 , 𝑎𝑇 }, initial population state distri-

bution 𝜇0.

for each iteration do
Obtain trajectories from (𝜋𝜋𝜋, 𝜌𝜌𝜌) by the process: 𝑠0 ∼ 𝜇0, 𝑎𝑡 ∼
𝜋𝜃 (·|𝑠𝑡 , 𝑧𝑡 ), 𝑠𝑡+1 ∼ 𝑃 (· | 𝑠𝑡 , 𝜇𝑡 ), 𝑧𝑡 ∼ 𝜌

𝜙
𝑡 (·);

for 𝑖 in {0, 1, 2, . . . } do
Update 𝜔 based on the surrogate objective function Equa-

tion (10).

end for
for 𝑡 in {0, 1, 2, . . . } do
Update 𝜃 by Actor-Critic algorithm with small step size

based on the surrogate objective function Equation (10).

Update 𝜙 according to Proposition 4.5;

end for
end for
Return Policy 𝜋𝜋𝜋𝜃 , correlation device 𝜌𝜌𝜌𝜙 .

this algorithm is designed for recovering AMFCE, it can also be

applied to recover MFNE by setting the correlation device as Dirac

distribution. In the Theorem 4.7, we provide a theoretical guarantee

for the quality of the policy recovered by MFCIL.

Assumption 4.6. The transition kernel 𝑃 (·|𝑠, 𝑎, 𝜇) and the reward

function 𝑟 (𝑠, 𝑎, 𝜇) are Lipschitz continuous with respect to popula-

tion state distribution 𝜇 and have corresponding Lipschitz constants

𝐿𝑃 and 𝐿𝑅 , respectively. The reward function is bounded by 𝑟max.

The expert policy 𝜋𝜋𝜋𝐸 and recovered policy 𝜋𝜋𝜋 satisfy

max

𝜔
E𝜋𝜋𝜋𝐸 ,𝜋𝜋𝜋𝐸 ,𝜌𝜌𝜌𝐸

[ 𝑇∑︁
𝑡=0

𝛾𝑡
(
log𝐷𝜔 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 ) + log 2

) ]
+ E𝜋𝜋𝜋,𝜋𝜋𝜋,𝜌𝜌𝜌𝐸

[ 𝑇∑︁
𝑡=0

𝛾𝑡
(
log

(
1 − 𝐷𝜔 (𝑠𝑡 , 𝑎𝑡 , 𝜇𝑡 )

)
+ log 2

) ]
≤ 𝜖,

(11)

which can be achieved by MFCIL.

Theorem 4.7. Under Assumption 4.6, for any given action sequence
𝑎0:𝑇 , the CIG of recovered policy 𝜋𝜋𝜋 is bounded by

R(𝑎0:𝑇 , 𝜋𝜋𝜋, 𝜌𝜌𝜌𝐸 ) ≤ 2 (2𝐿𝑅 + 𝑟max + 𝛾𝑇𝐿𝑃𝑟max)
√
2𝜖𝑇 .

Proof sketch. We leverage Lemma B.4 to establish a bound on

the expected return differences between the recovered policy 𝜋𝜋𝜋

and the expert policy 𝜋𝜋𝜋𝐸 . We then relate the Jensen-Shannon (JS)

divergence between the occupancy measures to the optimization

error 𝜖 , leading to a bound on the to the CIG. □

The proof is deferred to Appendix B.9. As the value of 𝜖 decreases,

the policy 𝜋𝜋𝜋 recovered by MFCIL approaches the AMFCE policy

more closely. If 𝜖 = 0, the recovered policy 𝜋𝜋𝜋 is an exact AMFCE

policy. We also provide the imitation gap between the recovered

policy in Corollary 4.8 similar to [21].

Corollary 4.8. The imitation gap between the recovered policy 𝜋𝜋𝜋 is
bounded by

max

𝜋̂𝜋𝜋
𝐽 𝜋̂𝜋𝜋 (𝜋𝜋𝜋,𝜋𝜋𝜋, 𝜌𝜌𝜌𝐸 ) − 𝐽 (𝜋𝜋𝜋,𝜋𝜋𝜋, 𝜌𝜌𝜌𝐸 ) ≤ 2(3𝐿𝑅 + 𝛾𝑇𝐿𝑃𝑟max + 𝑟max)

√
2𝜖𝑇 .

The proof is deferred to Appendix B.10. The imitation gap in

Corollary 4.8 exhibits a polynomial dependency on the horizon.

5 EXPERIMENTS
5.1 Tasks
The performance of MFCIL is evaluated through experiments con-

ducted on a diverse range of tasks, which can be categorized into

two types: numerical tasks and real-world tasks. We provide the

code in https://github.com/zhiyu-zhao-ucas/MFCIL.

Numerical tasks include Sequential Squeeze, Rock-Paper-Scissors

(RPS), and Flock. These tasks are widely used in the MFG research.
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(a) Recovered policies at time step 500.
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(b) Recovered policies at time step 1000.

Figure 1: Visualization of the learning process for the Flock task over 1,000 steps. (a) Policies recovered by different algorithms
at step 500, showing that MFCIL successfully recovers the expert policy faster than other methods. (b) Policies at step 1,000,
demonstrating that MFCIL is the only method to fully recover the expert policy. These figures depict two-dimensional
projections of motion captured from a higher-dimensional space.

Table 2: Results of Traffic Flow Prediction. The metric is log
loss. The number in the bracket is the standard deviation
over 3 independent runs.

Lewisham Hammersmith Ealing

MFCIL (Our Method) 0.742 (0.011) 0.897 (0.002) 1.091 (0.001)
MFIRL 12.346 (0.294) 9.853 (2.892) 11.625 (0.435)

MFAIRL 8.893 (2.302) 6.485 (1.940) 11.609 (1.202)

Redbridge Enfield Big Ben

MFCIL (Our Method) 0.052 (0.011) 0.394 (0.003) 1.599 (0.000)
MFIRL 11.720 (0.633) 11.750 (0.603) 7.482 (1.539)

MFAIRL 4.537 (4.544) 9.871 (4.052) 12.477 (1.005)

Table 3: Results of TaxAI. The number in the bracket is the
standard deviation over 3 independent runs.

MFCIL MFIRL MFAIRL

Wasserstein Distance

with the Expert Policy

27.620 (0.170) 33.096 (0.912) 49.532 (0.661)

Household Reward 29243.837 (12.819) 75.776 (4.488) 116.803 (33.556)

Government Reward 3355.917 (12.819) -678.563 (21.290) -417.833 (228.319)

For these experiments, expert policies are solved analytically. Real-

world tasks encompass Traffic Flow Prediction and TaxAI simu-

lations. The Traffic Flow Prediction task involves predicting the

traffic flow in a complex traffic network based on the real-world

data.

The TaxAI environment simulates interactions between a gov-

ernment and a large number of households, demonstrating the

0 500
Training Steps

0.48

0.50

0.52

0.54

ρ

0 500
Training Steps

0.22

0.24

0.26

0.28

ρ

ρ(z= 0) ρ(z= 1) ρ(z= 2) ρ(z= 3)

Figure 2: The distribution of correlation device 𝜌 recovered
by MFCIL. The solid line shows the mean and the shaded
area represents the standard deviation over 3 independent
runs. The dash line shows the ground truth of 𝜌 .

performance and scalability of our algorithm in complex economic

scenarios. The expert policies of these tasks are derived from the

real-world data. Given the large-scale and complex nature of real-

world tasks, we evaluate the scalability of MFCIL against leading

MFGIL baselines in our experiments.

5.1.1 Numerical Tasks.

Squeeze. Sequential Squeeze is a game with multi-steps. The

purpose of implementing this game is to verify the ability to recover

expert policy through demonstrations sampled from a multi-step

game.
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Figure 3: Learning curves of MFCIL, MFIRL and MFAIRL in
TaxAI environment. The solid line shows the mean and the
shaded area represents the standard deviation over 3 indepen-
dent runs. The “Averaged Household Reward” and “Averaged
Government Reward” indicate the average cumulative re-
wards over time.

RPS. This RPS task is a traditional MFG task [5, 7, 8]. The demon-

strations are sampled from MFNE. We use RPS to verify that the

algorithm proposed can recover MFNE, which also supports the

result in Corollary 3.5.

Flock. The Flock task is based on the movement of fish. This task

aims to evaluate the performance of algorithms in a MFG that does

not satisfy the monotonicity condition [19].

5.1.2 Real-world Tasks.

Traffic Flow Prediction. : In the Traffic Flow Prediction task, we

use the real-world traffic data of London from Uber Movement.

Our goal is to predict traffic flow in a real-world traffic network

consisting of six locations: Lewisham, Hammersmith, Ealing, Red-

bridge, Enfield, and Big Ben. We collected the individual traveling

data among these six locations from Uber Movement as expert

demonstrations.

TaxAI. We tested our algorithm using the TaxAI environment,

which simulates economic interactions between the government

and 100 households. This scalable simulator, grounded in real-world

data from the 2022 Survey of Consumer Finances, enables detailed

analysis and validation of tax policies’ impacts on household be-

havior and government revenue.

More details about the tasks are deferred to Appendix F.

5.2 Baselines
We compare our proposed MFCIL algorithm with state-of-the-art

MFGIL algorithms, MFIRL [6], and MFAIRL [7]. Since MFIRL and

MFAIRL do not take the correlated signal into consideration, we

treat the signature of correlated signals as an extension of the state

for all algorithms, enabling a fair comparison among all methods.

We also compare MFCIL with MaxEnt ICE, smoothed multinomial

distribution over the joint actions, and logistic regression [23]. As

MaxEnt ICE is designed to recover correlated equilibrium in the

matrix game, we only compare MFCIL with MaxEnt ICE on tasks

RPS and Sequential Squeeze with T = {0, 1}.

5.3 Evaluation Metrics
We assess the quality of the learned policies for all methods. Our

focus lies in the difference between the recovered policy and the

expert policy, as shown in Table 1 and Table 2, to evaluate the

quality of the policy learned by each method. We use the log loss,

E𝑎∼𝜋𝐸 ( · |𝑠,𝑧 ) [− log(𝜋 (𝑎 |𝑠, 𝑧))], to measure the difference between

the recovered policy 𝜋 and the expert policy 𝜋𝐸 in all numerical

tasks and the Traffic Flow Prediction Task. The action space in

TaxAI simulator is continuous, so we employ the Wasserstein dis-

tance to measure the discrepancy between the recovered policy 𝜋

and the expert policy 𝜋𝐸 . Additionally, we present both the govern-

ment and household rewards.

5.4 Results and Analysis
5.4.1 Numerical tasks. The results for numerical tasks are pre-

sented in Table 1. Overall, MFCIL consistently outperforms other

methods. While supervised learning methods, such as logistic re-

gression and smoothed multinomial distribution, may occasionally

surpass MFCIL in certain metrics, they generally suffer from higher

log loss compared to MFCIL. MFIRL and MFAIRL exhibit larger

deviations and higher log loss than MFCIL in Table 1. These results

underscore the inability of MFIRL and MFAIRL to recover AMFCE

and effectively handle games with correlated signals.

MFCIL consistently outperforms MFIRL and MFAIRL in the

Squeeze and Flock tasks because it is the first IL algorithm ca-

pable of recovering AMFCE. This capability enables MFCIL to ef-

fectively handle scenarios where agents’ actions are coordinated,

where MFNE-based algorithms may struggle. In the RPS task, MF-

CIL surpasses other algorithms for two key reasons. Theoretically,

MFCIL achieves a significantly lower bound on the error between

the occupancy measure of the recovered policy and the expert

policy compared to traditional MFGIL methods. Since MFNE is a

subclass of AMFCE, MFCIL naturally outperforms others in this

task. Technically, MFCIL leverages the correlated signal sequence

to characterize the population distribution, bypassing the variance

introduced by estimating the population distribution from samples,

resulting in lower deviation. MaxEnt ICE performs poorly due to its

limited reward function class, assuming a linear reward structure.

We visualize the learning process of the Flock task over a total

of 1,000 steps. Figure 1a displays the policies recovered by different
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algorithms at step 500, while Figure 1b shows the policies at step

1,000. At step 500, MFCIL successfully recovers the expert policy

faster than other methods, as illustrated in Figure 1a. By step 1,000,

MFCIL is the only method that successfully recovers the expert

policy, as shown in Figure 1b. We also plot the distribution of

the correlation device 𝜌 recovered by the MFCIL in the Figure 2,

illustrating that MFCIL can recover the correlation device with

rapid convergence speed.

5.4.2 Real-world tasks. In the Traffic Flow Prediction task, our

MFCIL method consistently outperforms other approaches across

all locations, achieving significantly lower log loss values for more

accurate and stable traffic flow predictions, as detailed in Table 2.

In the TaxAI simulations, as shown in Table 3, MFCIL demonstrates

superior performance through the lowest Wasserstein distance and

higher rewards for households and governments, emphasizing its

practical utility in tax policy optimization and potential to enhance

real-world economic strategies. The learning curve in Figure 3

indicates faster convergence. These results not only validate MF-

CIL’s effectiveness but also confirm its reliability in managing the

complexities of real-world data.

6 RELATEDWORK
6.1 Multi-agent Imitation Learning
Previous research in Multi-agent Imitation Learning (MAIL) has

extended single-agent IL algorithms to Markov games [11, 22, 27].

However, these algorithms encounter scalability challenges due to

the curse of dimensionality. To address the scalability challenge,

Yang et al. proposed a multi-type mean field approximation that ap-

proximates Nash equilibrium in Markov games [24]. Nevertheless,

this approach does not consider the MFG and MFNE, thus failing

to account for the interdependence between mean field flow and

policy.

6.2 MFG Imitation Learning
Yang et al. introduced a method for inferring the MFG model

through Inverse Reinforcement Learning (IRL), under the assump-

tion that the equilibrium underlying the demonstrations is the

Mean Field Social Optimum (MFSO). This condition is applicable

solely to fully cooperative settings [25]. Chen et al. extended this

method to mixed cooperative-competitive settings by assuming

that the demonstrations are sampled from MFNE and its variant

[6, 7]. Ramponi et al. proposed the solution concept named Nash

Imitation Gap (NIG) and provided upper bounds of NIG for several

different settings [21], but they focused on experts achieving a Nash

equilibrium.

6.3 Mean Field Equilibrium Concepts
While existing MFGIL algorithms have not incorporated CE, there

have been a few, albeit limited, works that introduce CE into the

MFG. Campi and Fischer assume that a mediator recommends the

same stochastic policy to the entire population, resulting in a lim-

ited equilibrium set identical to the classic MFNE [3]. Additionally,

it is often more practical for the mediator to recommend actions

rather than stochastic policies to individuals. Muller et al. [17]

Table 4: Comparison of Solution Concepts

Solution Concept

Interdependent Independent on

Decision Making Future Information

MFNE ✗ ✗

MFCE ✓ ✗

AMFCE ✓ ✓

assume that the mediator recommends a deterministic policy (sam-

pled from a distribution named “population recommendation” over

the deterministic policy space) to each individual. Both MFCE con-

cepts assume that a fixed correlated signal (recommended policy in

Campi and Fischer, and population recommendation in Muller et al.

[17].) is realized at the beginning of the game, allowing agents to

observe future signals or recommendations. However, this assump-

tion is impractical in real-world scenarios where decisions, such

as economic behavior, depend on real-time conditions, with future

information remaining inaccessible. To address these limitations,

we propose the AMFCE concept, which extends the existing MFCE

solution concepts by allowing agents to operate without access to

future signals, making it more applicable to dynamic, real-world

environments.

This enhanced flexibility caters to real-world scenarios where

varying correlated signals are introduced by the mediator. We pro-

vide a concrete example demonstrating the greater generality of

our equilibrium concept over that proposed by Muller et al. [17] in

Appendix G. We also discuss the difference between AMFCE and

MFNE with common noise [4, 20] in Appendix E. We also provide

an example and explanation in Appendix C to clarify why AMFCE

is more practical than MFCE concept in Campi and Fisher. The

comparison is summarized in the Table 4.

7 CONCLUSION
In this paper, we introduced the Adaptive Mean Field Correlated

Equilibrium (AMFCE) to address the limitations of existing MFGIL

methods in modeling correlated agent behaviors. Based on AMFCE,

we developed the MFCIL algorithm to enhance policy recovery

in environments where decisions of agent are coordinated. Our

approach not only recovers expert policies more accurately but

also establishes a tighter theoretical upper bound for the error com-

pared to existing methods. We demonstrated MFCIL’s effectiveness

through experiments including real-world traffic flow prediction

and large-scale economic simulations. Results show that MFCIL

significantly outperforms existing MFGIL baselines in predicting

large population behaviors, particularly in scenarios where agents’

decisions are coordinated. Our work expands the applicability of

MFGIL to a broader range of real-world multi-agent systems and

opens new avenues for modeling complex, correlated behaviors in

large-scale populations.
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