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ABSTRACT
In response to the lack of trust in Artificial Intelligence (AI) for
sequential planning, we design a Computational Tree Logic-guided
large language model (LLM)-based natural language explanation
framework designed for the Monte Carlo Tree Search (MCTS) al-
gorithm. MCTS is often considered challenging to interpret due
to the complexity of its search trees, but our framework is flexible
enough to handle a wide range of free-form post-hoc queries and
knowledge-based inquiries centered around MCTS and the Markov
Decision Process (MDP) of the application domain. By transform-
ing user queries into logic and variable statements, our framework
ensures that the evidence obtained from the search tree remains fac-
tually consistent with the underlying environmental dynamics and
any constraints in the actual stochastic control process. We eval-
uate the framework rigorously through quantitative assessments,
where it demonstrates strong performance in terms of accuracy
and factual consistency.
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1 INTRODUCTION
Artificial Intelligence (AI) algorithms often operate as black-box
systems, offering little to no insight into the reasoning behind
their outputs. As a result, domain experts hesitate to deploy these
algorithms in real-world settings due to concerns over transparency,
understandability, and accountability, leaving them without a clear
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Figure 1: We explain sequential planning by combining do-
main knowledge, search process, and logical reasoning.

understanding of the implications or rationale behind the decisions
made by these AI models [5, 12–16].

One family of such AI approaches that is widely used in com-
plex sequential planning problems such as manufacture engineer-
ing [17] and transit route planning [20] is Monte Carlo Tree Search
(MCTS) [10]. Understanding the results and decisions of MCTS
is challenging even for experts due to the large, sampling-based
search trees from which they are derived [2, 4]. Therefore, we de-
velop a logic-enabled large language models (LLMs) framework
that integrates knowledge and symbolic reasoning with natural lan-
guage, creating a robust yet expressive xAI system for explaining
planning algorithms like MCTS (Figure 1).

Aiming to address a flexible range of free-form user queries, our
framework leverages advanced LLMs, which enables the develop-
ment of xAI systems based on natural language [6, 8, 19]. More
specifically, it offers broad flexibility in handling queries by convert-
ing natural language inquiries submitted via a chat interface into
parameterized variables and logic expressions. It then evaluates the
search tree based on the criteria specified by these logic expres-
sions, and the results are presented in the final explanation, once
again expressed in natural language. The framework also enables an
unlimited number of follow-up queries, facilitating an interactive,
back-and-forth communication with the user.

2 METHOD
Background. As the testbed for our framework, we use a para-

transit planning scenario formulated as a Markov Decision Process
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(MDP). We define the state space, action space, constraints, and
reward of the MDP. State transitions are driven by a simulated
demand model for paratransit trip requests. We leverage MCTS to
generate vehicle assignment decisions, which is initiated at each
“decision epoch” [9].

Query Categories and Types. The first category of queries, called
post-hoc queries, seeks explanations for the returned plan after the
algorithm has completed its execution and focuses on explaining
specific MCTS decisions. The second category, called background
knowledge-based queries, focuses on the MCTS decision-making
process in general. After the user submits a query, and a Query-
Classification LLM component interprets the new query and at-
tempts to classify its intent to one of two categories. User queries
are not restricted in terms of content or narration. However, to
strategically address these queries, we pre-define 26 specific query
types based on the user’s underlying intentions for the first cate-
gory. In contrast, for the second category, queries answerable with
background knowledge, there are no specific types, as one piece of
knowledge can address multiple queries.

Logic Generator and Parser. Each pre-defined query type is asso-
ciated with a few-shot prompt, containing example pairs of input
queries and output logic. After a new query is classified into a
specific query type, the corresponding prompt is used to guide the
logic generation LLM component in formulating a logic statement
for the query. We categorize all user questions based on the type
of evidence required to answer them: those that can be addressed
with base-level evidence, referring to information directly extracted
from a tree node; those that rely on derived evidence, requiring
consideration of multiple nodes across different depths or branches;
and those that require logic comparison evidence, involving both
multi-level calculations and comparisons between two branches us-
ing Computation Tree Logic (CTL) [7]. The variables are organized
into a three-level hierarchical structure, where each level builds
upon the variables and logic defined in the previous level.

Logic Scorer. To obtain both quantitative and qualitative evidence,
we define scorer functions that take the MCTS tree including states
and actions as input and return either numerical or boolean val-
ues based on the evaluation of specific criteria [3]. For base-level
variables, the result is obtained by identifying the target node cor-
responding to the variable through tree traversal. For derived evi-
dence variables, we further define formulas to calculate the overall
averaged quantitative result across all relevant nodes in the search
tree. Lastly, we utilize CTL model checking algorithms to obtain
logic comparison evidence, where the input is the MCTS tree.

Knowledge Retrieval. To provide domain knowledge-informed
explanations for category two queries, we prepared a lightweight
knowledge base containing approximately 3,000 words, divided
into 34 chunks. This knowledge base covers background informa-
tion on paratransit services and the MCTS algorithm, as well as
detailed components of the MDP, including predefined constraints,
algorithm objectives, and reward functions. We leverage the RAG
technique with the OpenAI text-embedding-3-small model to
obtain the top 𝑘 results, passing information chunks to the LLM
only if their relatedness scores exceed a predefined threshold.

Table 1: Quantitative evaluation results.

Method Metric @1↑ @3↑

Llama3.1 FactCC / BERT 25.77% / 06.15% 34.62% / 12.31%
Ours (Llama) FactCC / BERT 67.88% / 86.54% 83.27% / 97.50%
GPT-4o FactCC / BERT 42.31% / 40.00% 51.15% / 55.77%
Ours (GPT) FactCC / BERT 72.12% / 88.46% 81.35% / 94.81%

Generating Explanations. Once the list of calculated evidence or
retrieved domain knowledge is obtained, the framework engages
with a Question-Answering LLM to generate the final response.
Key pieces of information provided to the LLM include the original
user query, the evidence variables used, the result from the scorer
function obtained in the previous step, and the retrieved knowledge.

3 EVALUATIONS
We quantitatively evaluate the framework to answer the research
question (RQ): Does our framework outperform existing LLMs in
generating factually accurate and relevant explanations? We con-
sider three LLM models for our evaluation: GPT-4 [1], GPT-4o [1],
and Llama3.1 [18] model. We systematically generated 620 distinct
input queries along with their corresponding ground truth. We com-
pare the generated explanations using two metrics: BERTScore [21]
and FactCC [11].

Factual Consistency Results and Discussions. As shown in Table 1,
the best result achieved across basic LLMs was a 51.15% FactCC
score, and the highest BERTScore achieved was 55.77%. Both results
suggest that basic LLMs struggle to generate relevant and factually
accurate explanations directly. We then compared them with our
framework with GPT-4 and Llama3.1 as backbone models, where
we observed significant improvements. our framework consistently
outperformed the basic LLMs across all categories. Specifically, we
observed a 2.40× improvement using Llama3.1 and a 1.59× improve-
ment using the GPT-4 model for FactCC score. The improvement
in BERTScore was even more evident, with an overall increase of
7.92× for the Llama3.1 backbone model and 1.70× for the GPT-4
backbone model, respectively.

4 CONCLUSION
We present an explainability framework for MCTS sequential plan-
ning. Tested within the context of paratransit planning scenarios,
our framework can address a variety of user queries by offering post-
hoc explanations and RAG-based explanations, through three-level
hierarchical evidence. We thoroughly evaluated the framework per-
formance quantitatively. Results show that our framework achieved
overall superior performance compared to traditional LLMs.
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