
Multi-Agent Pickup and Delivery with Batteries
Extended Abstract

Marcello Bavaro
Politecnico di Milano

Milan, Italy
marcello.bavaro@polimi.it

Francesco Amigoni
Politecnico di Milano

Milan, Italy
francesco.amigoni@polimi.it

ABSTRACT
In Multi-Agent Pickup and Delivery (MAPD), a group of moving
agents plan coordinated paths to execute pickup and delivery tasks
appearing online in a known environment. The typical application
of MAPD is in warehouses, where the agents are mobile robots
powered by batteries. Current research on MAPD does not fully
take into account the need for the agents to recharge their batteries
when planning paths. In this paper, we study a variant of the MAPD
problem, called MAPD-b, which considers battery consumption and
charging stations, and we propose an algorithm to solve it.

KEYWORDS
Multi-Agent Pickup and Delivery; Path Planning; Batteries

ACM Reference Format:
Marcello Bavaro and Francesco Amigoni. 2025. Multi-Agent Pickup and
Delivery with Batteries: Extended Abstract. In Proc. of the 24th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025),
Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
Multi-Agent Pickup and Delivery (MAPD) refers to the problem
of planning coordinated conflict-free paths for a set of agents that
perform pickup and delivery tasks appearing online, within a com-
mon known environment [3]. MAPD models various real-world
situations and its main application is when agents are robots in a
warehouse [3]. In this setting, robots are often powered by batteries
with limited capacity. While battery capacity usually allows a robot
to work for a working day (e.g., 8 hours), during peak periods robots
may have to work for a longer time, making it relevant to include
battery recharging during planning [4, 9].

Notwithstanding their importance, to the best of our knowledge,
batteries are not usually considered in the literature about coor-
dinated path planning for MAPD. Beyond MAPD, [5–7] propose
solutions for routing battery-powered electric vehicles in an offline
setting, in which all tasks are known a priori. In such a scenario,
it is possible to efficiently adopt solving techniques like integer
linear programming or similar ones, while in our problem the tasks
are not known a priori and appear online. In [2], the solution is
limited to the scenario in which each agent is associated with a
fixed charging station and can charge only after fulfilling a set of

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

tasks. Moreover, battery consumption only depends on the length
of the paths without taking into account wait actions.

In this paper, we introduce a variant of the MAPD problem,
called MAPD-b, that accounts for agents’ batteries consumption
and the presence of charging stations where agents can recharge.
We assume to have a model of the consumption for the actions
of the agents and we present an algorithm that exploits it to plan
paths for the agents to complete the tasks and to recharge.

2 PROBLEM STATEMENT
A MAPD with batteries (MAPD-b) problem is a variation of the
plain MAPD problem [3]. There are 𝑛 agents 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}
that move in an environment modeled as an undirected connected
graph 𝐺 = (𝑉 , 𝐸). Here, we consider environments 𝐺 that are 2-
dimensional grids with square cells. Cells can be free or obstacles.
Free cells are the vertices 𝑉 . We consider 4-connected grids: two
free cells 𝑣 and 𝑣 ′ are adjacent, namely (𝑣, 𝑣 ′) ∈ 𝐸, if their squares
share an edge. (Our results can be easily generalized to generic
graphs 𝐺 .) A task set T stores tasks that are dynamically added
to the system. A task 𝜏 𝑗 = (𝑠 𝑗 , 𝑔 𝑗) ∈ T is composed of a pickup
location 𝑠 𝑗 and a delivery location 𝑔 𝑗 . There are𝑚 charging stations
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} which are located in free cells (vertices in 𝑉).
We assume that 𝑛 = 𝑚, namely the number of agents is equal to
the number of charging stations.

Time is discretized into time steps. At each time step, an agent 𝑎𝑖
can perform two actions:move to an adjacent location 𝑣 ′ connected
to its current location 𝑣 by an edge 𝑒 = (𝑣, 𝑣 ′) or wait in its current
location. Both actions last one time step or, equivalently, cost one
unit of time. Two types of conflicts must be avoided when planning
paths: vertex conflicts, when two agents occupy the same vertex at
the same time step, and swapping conflicts, when two agents cross
the same edge in opposite directions at the same time step.

Each agent 𝑎𝑖 has a battery whose charge level at time step 𝑡

is denoted as 𝑏𝑡
𝑖
while its maximum charge level is denoted by 𝐵𝑖 .

At the beginning, all the batteries are fully charged (𝑏𝑡=0
𝑖

= 𝐵𝑖).
Actions performed by an agent consume an amount of battery 𝐶𝑚
for themove actions and𝐶𝑤 for thewait actions.We assume that the
consumptions are identical for all the agents (this assumption can be
easily removed). An agent can recharge its battery at any charging
station. We assume (but this can be easily changed) that, for each
time step waiting in a charging station, an agent 𝑎𝑖 recharges its
battery of an amount 0.1 · 𝐵𝑖 until the battery is fully charged.

Solving a MAPD-b problem consists of planning conflict-free
paths for the agents to complete all the tasks. To complete a task 𝜏 𝑗
an agent must visit its pickup (𝑠 𝑗) and delivery (𝑔 𝑗) locations, in this
order. The quality of a solution is evaluated in terms of makespan,
which is the time step at which the last task is completed, or service

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2428

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

time, which is the average time between the time step at which a
task 𝜏 appears in T and the time step at which 𝜏 is completed. An
optimal solution minimizes either makespan or service time. The
MAPD problem is NP-hard to solve optimally [8] and so is also the
MAPD-b problem.

Note that, in our setting, agents deplete their batteries and, at
some point, they need to recharge in order to be able to complete the
tasks. Note also that, when some agents run out of their batteries,
the remaining agents could still complete all the tasks, but likely
with a larger makespan and service time.

3 PROPOSED ALGORITHM
The algorithm we propose in this paper to address the MAPD-b
problem is a variation of the Token Passing (TP) algorithm. TP is a
popular decentralized algorithm used to solve MAPD problems [3].
Its main idea is that single agents plan paths in turns, taking into
account the paths already planned by other agents to avoid con-
flicts. TP is based on a block of memory shared among the agents
and called token. It contains the current paths of all agents and
the current set of tasks T . Agents not executing any task request
the token, which is assigned to each one of them in turns. The
token holder analyzes the available tasks, chooses the one with
the closest pickup location, uses a single-agent path planner (e.g.,
A*) to compute a minimum cost path to complete the task that is
conflict-free (given the paths in the token), stores it in the token,
and releases the token.

Our algorithm is called A-TP because it is far-sighted as the
ant (A) of the fable by Aesop1. In A-TP, agents behave slightly
differently than in plain TP. When, at time step 𝑡 , an agent 𝑎𝑖 plans
a path to complete a task 𝜏 𝑗 = (𝑠 𝑗 , 𝑔 𝑗), a path is returned if and
only if the battery level 𝑏𝑡+Δ𝑡

𝑖
of 𝑎𝑖 at time step 𝑡 + Δ𝑡 when it will

be in 𝑔 𝑗 will be enough to follow a path that reaches an available
charging station 𝑐𝑘 ∈ 𝐶 . A charging station 𝑐𝑘 is available at 𝑡 when
no agent is at 𝑐𝑘 or is heading to 𝑐𝑘 (i.e., there is no path heading to
𝑐𝑘 in the token) at 𝑡 . The battery consumption of a path is computed
according to the consumptions of move and wait actions (𝐶𝑚 and
𝐶𝑤 , respectively) composing the path. Practically, when an agent
𝑎𝑖 plans a path to complete a task, it reserves a subsequent path
to a charging station. In this way, an agent always has a reserved
path to a charging station, which is stored in the token, so other
agents can see it and plan accordingly. After an agent 𝑎𝑖 completes
its current task, it decides whether to recharge or execute another
task. If a path to complete a task (and then reach a charging station,
as described above) exists given the current battery level, then 𝑎𝑖
performs the task. Otherwise, 𝑎𝑖 reserves a path to reach the closest
available charging station starting from the next time step 𝑡 + 1
(to have the chance of performing any new task that could appear
at 𝑡 + 1). If this is not possible, 𝑎𝑖 immediately moves towards a
charging station following the previously reserved path.

When using the A-TP algorithm in MAPD-b, no agent will run
out-of-battery if (a) the initial battery levels of all agents are enough
to reach a charging station from their start locations, (b) at least
one agent has a maximum battery level sufficient to complete the
most expensive task, and (c) the consumption model (𝐶𝑚 and 𝐶𝑤)
is accurate.

1https://en.wikipedia.org/wiki/The_Ant_and_the_Grasshopper

4 EXPERIMENTAL ACTIVITY
The A-TP algorithm is implemented in Python 3.10 and tested in
two simulated warehouses. The first warehouse is represented by a
grid of 15× 15 cells with 10 agents, 10 charging stations, 24 delivery
locations, and 24 pickup locations. The second warehouse is bigger
and composed of 40×40 cells with 26 agents, 26 charging stations, 40
delivery locations, and 216 pickup locations. The density of agents
in the environments and the values for 𝐶𝑚 and 𝐶𝑤 (see later) are
realistically set according to [1].

For each run, 2000 or 6000 tasks are generated by randomly
choosing pickup and delivery locations. The initial battery level
of each agent 𝑎𝑖 , corresponding to the maximum level 𝐵𝑖 , is ran-
domly generated from a uniform distribution 𝑈 (80, 100). In the
tests, the paths are planned using A* with a heuristic ℎ equal to the
Manhattan distance. We test for various 𝐶𝑚 and 𝐶𝑤 consumption
configurations, ranging from low to high consumption levels. Each
configuration (number of tasks, 𝐶𝑚 , 𝐶𝑤) is tested averaging over
20 runs. A run is considered completed if all the tasks are executed
within 30,000 time steps.

Due to space constraints, we discuss only a very small sample
of the results we obtained. For example, on the 15 × 15 warehouse
with 𝐶𝑚 = 1 and 𝐶𝑤 = 0.1 (for which agents need to recharge
their batteries on average 50 times for each run), A-TP successfully
completes all 20 runs. In the bigger environment, with 𝐶𝑚 = 0.01,
𝐶𝑤 = 0.01, and 6000 tasks (for which each agent needs to recharge
at least once) A-TP completes all the tasks. In all experiments we
performed, no agent ran out-of-battery, as expected. The drawback
is the doubling of the number of calls to the A* path planner made
by A-TP. Basically, the number of calls to A* for planning recharging
paths is almost equal to the number of calls to A* for planning paths
to complete tasks. This, however, does not prevent the application
of A-TP to real-world scenarios since it needs, on average, 50 ms
per time step to plan on our hardware (a computer with an Intel
Core i5-12400F and 16 GB of DDR4 RAM).

5 CONCLUSION
In this paper, we presented a variant of the MAPD problem, called
MAPD-b, which accounts for the depletion of the batteries of agents
and allows for the presence of charging stations. We also introduced
a solving algorithm for MAPD-b, called A-TP, that guarantees that
no agent runs out-of-battery. In future work, we will investigate
variants of A-TP that require fewer charging stations than agents
(𝑚 < 𝑛). Moreover, we will start to move towards implementing
our algorithm on real robots.

ACKNOWLEDGMENTS
This paper is supported by PNRR-PE-AI FAIR project funded by the
NextGeneration EU program.

REFERENCES
[1] E. Guizzo. 2008. KIVA SYSTEMS: three engineers, hundreds of robots, one ware-

house. IEEE Spectrum. https://spectrum.ieee.org/three-engineers-hundreds-of-
robots-one-warehouse

[2] F. Kudo and K. Cai. 2024. Anytime Multi-Task Multi-Agent Pickup and Delivery
Under Energy Constraint. IEEE RA-L 9, 11 (2024), 10145–10152.

[3] H. Ma, J. Li, T. Kumar, and S. Koenig. 2017. Lifelong Multi-Agent Path Finding for
Online Pickup and Delivery Tasks. In Proc. AAMAS. 837–845.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2429

https://spectrum.ieee.org/three-engineers-hundreds-of-robots-one-warehouse
https://spectrum.ieee.org/three-engineers-hundreds-of-robots-one-warehouse

[4] D. McNulty, A. Hennessy, M. Li, E. Armstrong, and K. Ryan. 2022. A review of
Li-ion batteries for autonomous mobile robots: Perspectives and outlook for the
future. J Power Sources 545 (2022), 231943.

[5] H. Qin, X. Su, T. Ren, and Z. Luo. 2021. A review on the electric vehicle routing
problems: Variants and algorithms. Frontiers of Engineering Management 8 (2021),
370–389.

[6] M. Soysal, M. Çimen, and S. Belbağ. 2020. Pickup and delivery with electric
vehicles under stochastic battery depletion. Computers & Industrial Engineering

146 (2020), 106512.
[7] J. Yang and H. Sun. 2015. Battery swap station location-routing problem with

capacitated electric vehicles. Comput Oper Res 55 (2015), 217–232.
[8] J. Yu and S. LaValle. 2013. Structure and intractability of optimal multi-robot path

planning on graphs. In Proc. AAAI. 1443–1449.
[9] B. Zou, X. Xu, and R. De Koster. 2018. Evaluating battery charging and swapping

strategies in a robotic mobile fulfillment system. Eur J Oper Res 267, 2 (2018),
733–753.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2430

	Abstract
	1 Introduction
	2 Problem Statement
	3 Proposed Algorithm
	4 Experimental Activity
	5 Conclusion
	Acknowledgments
	References

