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ABSTRACT
Large Language Models (LLMs) have demonstrated potential in
simulating macroeconomic systems by integrating the agent-based
models. Unlike rule-based systems or neural networks with fixed
learning patterns, LLM agents capture the heterogeneity of eco-
nomic actors. However, existing LLM-based simulation environ-
ments are generally static, maintaining constant government poli-
cies. In this study, we introduce a hierarchical framework that
incorporates LLM economic agents and an LLM planner capable
of formulating policies in response to evolving economic condi-
tions. Utilizing the proposed framework, we further examine the
simulated system’s resilience to economic shocks by analyzing how
economic agents respond to unforeseen events and how the planner
adapts to mitigate these challenges. Our results indicate that the
proposed framework improves the stability of the economic system
and captures more dynamic macroeconomic phenomena, offering
a precise and versatile simulation platform for studying real-world
economic dynamics.
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1 INTRODUCTION
The complexity of modern economies has prompted researchers
to explore methods for simulating macroeconomic systems, with a
particular focus on Agent-Based Models (ABMs) [6, 15]. Early mod-
els, relying on rule-based systems or neural networks, struggled to
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capture the behavioral heterogeneity of real economies [1, 17]. The
introduction of neural networks has improved the flexibility and
intelligence of modern ABM models by integrating deep learning
methods such as reinforcement learning [16, 22].

However, generalization and robustness across different envi-
ronments remain challenging. Recent advancements in Large Lan-
guage Models (LLMs) have demonstrated advanced abilities such
as reasoning and decision-making [2, 5, 8], enabling them to sim-
ulate complex economic activities like trade and resource alloca-
tion [9, 14, 19, 21]. EconAgent, which employs LLM agents for
macroeconomic simulations, offers a more nuanced representation
of economic agents but still treats agent interactions statically and
overlooks dynamic government policies and economic shocks [12].

We propose a hierarchical, dynamic multi-agent framework that
incorporates LLM agents to simulate economic policy planning
and shock resilience. Our framework simulates adaptive agent be-
havior and evaluates the system’s response to economic shocks
by enabling LLM agents to adjust policies such as tax rates and
inflation targets, thereby capturing interactions between heteroge-
neous agents and policy planners. Our experiments demonstrate
that both LLM planners and agents can detect shocks, leading to
swift recovery and enhanced system stability.

2 METHOD
2.1 Hierarchical Multi-Agent Framework
Building on the work of EconAgent [12], we introduce a macroeco-
nomic simulation framework that employs agent-based modeling
to capture complex economic interactions, as illustrated in Figure 1.
The system consists of a planner and multiple heterogeneous eco-
nomic agents operating on different timescales. Our framework
extends previous efforts by incorporating dynamic planner decision-
making and economic shocks to better mirror real-world conditions.

The planner optimizes macroeconomic variables—such as tax
rates and inflation targets—on an annual basis, while the economic
agents adjust their behavior monthly according to individual pref-
erences and incentives. The planner 𝑃 observes 𝑜𝑡 based on: (1)
macroeconomic indicators—such as unemployment rate, inflation
rate, GDP growth, average wage, and economic equality—for the
past 𝐿 years, and (2) historical government policies over the past
𝐿 years. Based on these observations, the planner sets tax rates
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Figure 1: An overview of our approach.

for each income bracket (𝜏1, . . . , 𝜏𝐵 ), constrained between 𝜏low and
𝜏high, and determines the target inflation rate 𝜋𝑡 for the coming
year. For example, when the planner adjusts income tax rates, it
affects the post-tax income that agents receive, which in turn alters
their utility functions. This multi-agent learning problem, which
naturally emerges in various economic and machine learning sce-
narios [4, 7], resembles a Stackelberg game [18], where the planner,
acting as a leader, optimizes long-term economic outcomes while in-
dividual agents, as followers, make strategic decisions to maximize
their own utilities within the constraints of these policies.

2.2 Grounding LLM as Planner
To effectively simulate the planner’s role using an LLM, we incor-
porate reflective and iterative reasoning processes. The Principle
and Observation Module provides macroeconomic guidelines for
adjusting tax rates and setting inflation targets based on economic
growth, inequality, and stability. Following Laffer curve theory [11],
the planner optimizes tax rates to maximize redistribution without
hindering economic activity. Additionally, the Taylor Rule [3, 20]
and the Phillips Curve [13] guide the planner in balancing infla-
tion and unemployment to enhance social welfare. The Reflection
Module reviews historical trajectories by retrieving 𝐿 prior action-
observation pairs, facilitating continuous policy improvement. By
analyzing past trajectories, fundamental economic principles, and
current observations, the LLM-based planner iteratively refines its
decision-making, ensuring adaptive and robust policy formulation.

3 EXPERIMENTS
Our experiments explore how a planner can control key macroeco-
nomic indicators—such as GDP growth, unemployment, inflation,
and equality—through the implementation of tax policies and infla-
tion targets. We set the number of agents to 50. Figure 2 illustrates
the system’s economic situation during a natural disaster, where
the productivity factor 𝐴 drops sharply, triggering price inflation
and reducing GDP. In our method, the unemployment rate spikes
to 20% and societal equality falls below 50%. As productivity recov-
ers after five years, inflation stabilizes around 1%, unemployment
decreases to 10%, and equality rises above 50%, indicating economic
recovery.
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Figure 2: Variation of annual macroeconomic indicators un-
der an economic shock caused by a natural disaster. The
shock occurs in the eighth year of the simulation.

In contrast, the EconAgent environment maintains high societal
equality immediately after the shock. However, this hinders eco-
nomic recovery post-disaster [10]. Rule-based models recover GDP
better but show equality levels below 50% (in some cases below
40%), suggesting uneven recovery benefits. Additionally, these mod-
els experience extreme inflation fluctuations between -60% and 60%.
AI-ECO exhibits 35% equality and 50% unemployment, resulting in
consistently low GDP.

4 CONCLUSION
In conclusion, this work advances macroeconomic simulation with
the hierarchical framework of economic agents and a dynamic pol-
icy planner. Unlike static models, our planner adapts to evolving
conditions, aligning better with real-world complexities. By uti-
lizing the principle and reflection modules, it effectively handles
economic shocks and enhances social welfare, resulting in a re-
silient system. The study shows that our method captures intricate
economic behaviors, making it a valuable platform for exploring
macroeconomic policies. This work highlights the potential of LLMs
in simulating complex economic systems, opening new pathways
for analyzing responsive policymaking and economic phenomena.
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