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ABSTRACT
This work explores the set of planning problems we define as
hypothesis-driven planning. In these problems, a human with po-
tentially no access to the system’s underlying planning model (e.g.,
the reward or transition functions) is interested in answering a
set of questions (hypotheses) that are not reflected in the under-
lying planning problem. To reason about the possible hypotheses
and autonomously decide which one is most likely, we develop a
new multiple-dynamic hypothesis belief Markov decision process
(MDH-BMDP). This enables adding multiple hypotheses for exist-
ing planning problems and reasoning over arbitrary belief shapes
using existing sparse tree search solvers. Lastly, we suggest a reward
function that supports balancing the objectives of determining the
correct hypothesis in time and performing well in the underlying
problem; and test the framework’s applicability and performance
of the new reward function in simulations.
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1 INTRODUCTION
Consider a human operator that detects an unexpected behavior
while monitoring a cyber-physical system, e.g., a drone performing
some inspection task while suddenly suffering from a possible rotor
failure [10], or a space-object tracking system for space domain
awareness (SDA) that observes some anomaly in the orbit of an
object [7]. The operator, with potentially no access to the planning
algorithm or model of the system, is interested in answering a set of
questions (hypotheses) that are not reflected in the underlying prob-
lem definition (Figure 1). For example, is a space object currently
making a surprise maneuver, or is it malfunctioning?
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Did satellite 551 
change orbits?

Did it lose 
a rotor?

Did it perform 
routine 

station-keeping?

Did the 
control break?

Figure 1: Examples of possible questions/hypotheses when
monitoring cyber-physical systems

In some cases, taking information-gathering actions such as addi-
tional measurements or control inputs given to the system can help
resolve uncertainty and determine the most accurate hypothesis.
To resolve the uncertainty over the correct hypothesis, the original
planning problem is augmented to form a new planning problem,
with objectives that often compete with the objectives of the base
problem. We define the task of optimizing actions that can help
resolve uncertainty and determine the most probable hypothesis as
hypothesis-driven planning.

Unfortunately, this problem suffers from the ‘curse of history’,
similar to a partially observable Markov decision process (POMDP).
To plan in continuous domains, an agent must reason over count-
lessly many possible action-observation histories, each resulting in
a different belief over the unknown state. The problem is exacer-
bated in the hypothesis-driven context since each action-observation
pair spawns a different belief for each hypothesis. This research
explores the hypothesis-driven planning problem to find a for-
mulation that enables reasoning over multiple hypotheses while
allowing tractable solutions using existing sparse tree search algo-
rithms. We focus on hypotheses that are spawned due to different
dynamic models in an underlying POMDP and seek a reward func-
tion that balances the goals of determining the (most likely) correct
hypothesis and performing well in the underlying POMDP.

2 HYPOTHESIS-DRIVEN PLANNING
Many planning problems can be framed as sequential decision-
making problems and modeled as partially observable Markov
decision processes (POMDPs). A POMDP is defined by the tuple
(S,A,𝑇 ,O, 𝑍,R, 𝛾), where S, A are the sets of all possible states
and actions, respectively. 𝑇 (𝑠, 𝑎, 𝑠′) = 𝑝 (𝑠′ |𝑠, 𝑎) is a stochastic state
transition model, which defines the probability of transitioning
to state 𝑠′ ∈ S from state 𝑠 ∈ S after taking action 𝑎 ∈ A, O is
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the set of all possible observations, and 𝑍 (𝑠′, 𝑎, 𝑜) = 𝑝 (𝑜 |𝑠′, 𝑎) is
the stochastic observation function. Finally, the reward function
R(𝑠, 𝑎) determines the immediate reward the agent receives when
taking action 𝑎 at state 𝑠 , and 𝛾 ∈ [0, 1) is a discount factor.

As the true state 𝑠 of a POMDP is unknown, an agent maintains
a belief over states 𝑠 ∈ S, which summarizes the history ℎ𝑡 =

(𝑏0, 𝑎0, 𝑜1, 𝑎1, ..., 𝑜𝑡 ) of all actions taken and observations received
up to and including time step 𝑡 and starting from initial belief 𝑏0.
During planning, the belief is updated using Bayes’ rule

𝑏′𝑡 (𝑠′) = 𝑝 (𝑠𝑡 = 𝑠′ |ℎ𝑡 ) ∝ 𝑍 (𝑠′, 𝑎𝑡 , 𝑜𝑡 ) ·
∫
𝑠∈S

𝑏𝑡−1 (𝑠) ·𝑇 (𝑠, 𝑎𝑡 , 𝑠′)𝑑𝑠.

This results in a different belief 𝑏′𝑡 (𝑠′) = 𝑝 (𝑠′ |𝑎𝑡 , 𝑜𝑡 ) for each pos-
sible action–observation pair, which makes the POMDP problem
intractable in continuous domains.

Formulti-hypothesis problems, with uncertainty about themodel
itself, each action–observation pair generates multiple beliefs that
must be reasoned over. These might stem from uncertainty in (i)
which object generated a measurement signal, also known as the
data association problem [2], [5], or (ii) which transition model
generated the next state. The latter has been considered under
three different formulations: planning with hybrid dynamics [3],
[6], Robust POMDPs [11], [12], and Bayes-adaptive POMDPs [13],
[9]. The common denominator for the multi-hypothesis planning
literature is the implicit assumption that the planning and inference
objectives coincide. The task of planning for the base POMDP thus
aligns with the task of reasoning over multiple possible models. For
the set of hypothesis-driven problems considered in this work, this
means that the task of determining which hypothesis is most proba-
ble does not affect the planning optimization process. Nevertheless,
determining the correct hypothesis can be crucial for explaining
a surprising behavior or understanding certain outcomes, thus re-
quires a new formulation and treatment of the problem.

3 PROBLEM STATEMENT AND APPROACH
Consider a ‘base’ partially observable Markovian planning problem
P, that can be framed as a POMDP. Denote the system’s state
space as S𝑥 and the corresponding belief space as B𝑥 . Assume that
there is uncertainty regarding the transition model that derives the
base state space, that is, there are 𝑛H distinct possible transition
models 𝑇𝑖 (with no transitions between them), each corresponding
to hypothesis H𝑖 . We define the set of questions of whether model
𝑖 is correct asH . Then the belief over all possible hypotheses states
SH is represented by BH . The hypothesis-driven POMDP problem
P̄ considered in this work searches for an optimal policy 𝜋∗ that
maximizes the expected cumulative reward over two potentially
competing requirements – deciding which hypothesis H𝑖 , with
transition model 𝑇𝑖 , is (most likely) correct, and still performing
well in the original underlying problem P.

To solve the hypothesis-driven POMDP problem P̄ we choose a
belief-MDP formulation. Any POMDP is a belief-MDP, with a set
of belief states 𝑏 ∈ B, a belief transition model T (𝑏, 𝑎, 𝑏′) [8] and a
belief-dependent reward function [1], 𝜌 (𝑏, 𝑎) =

∫
𝑠∈S 𝑏 (𝑠)R(𝑠, 𝑎)𝑑𝑠+

𝜚 (𝑏, 𝑎). Where the first term is the expected reward when the state
𝑠 is distributed according to 𝑏, and 𝜚 (𝑏, 𝑎) is a belief-dependent
reward such as Shannon’s entropy or Kullback-Leibler divergence.
A belief-dependent reward is advantageous for hypothesis-driven
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Figure 2: Simulation results showing the effect of different
reward functions

planning, as it naturally enables reasoning about uncertainty over
possible hypotheses.

Formally, we define the new multiple-dynamics hypothesis belief
MDP (MDH-BMDP) with the tuple, (B̄ = B𝑥 × BH,A, T̄ , 𝜌, 𝛾),
where B̄ is the augmented belief state, which includes the base
belief state B𝑥 and the hypothesis state BH . A and 𝛾 are the same
as in the base problem P, T̄ is the set of transition models including
all belief transition models T𝑖 for 𝑖 = 1 : 𝑛H for all dynamics
hypotheses. Lastly 𝜌 is the new reward function, which is defined
as a convex combination of the underlying problem reward, 𝜌𝑥 and
the hypothesis-based reward 𝜌H ,

𝜌 = (1 −𝑤) · 𝜌𝑥 (𝑏𝑥 , 𝑎) +𝑤 · 𝜚H (𝑏H, 𝑎),

where𝑤 ∈ [0, 1] is a weight parameter to prioritize the hypothesis
task versus following the base problem behavior.

4 CONTRIBUTION SUMMARY
This work defines the hypothesis-driven POMDP problem as the set
of multi-hypothesis POMDP problems where explicitly determining
the most accurate hypothesis is one of the optimization objectives.
These problems naturally arise in human-robot collaboration, when
the human detects a surprising behavior or unexpected outcome
and wants to explore it. In that case, we want to reason over differ-
ent possible models, that might justify the observed behavior and
provide an alternative explanation. We formulate the problem as
belief-MDP, dubbed MDH-BMDP, and solve it using existing sparse
tree search algorithms.

To motivate actions that can help resolve uncertainty and deter-
mine the most probable hypothesis while still performing well in
the underlying POMDP problem, we explore new reward functions,
explicitly rewarding in-time decisions. Simulation results demon-
strate the advantage of the new reward functions over entropy-
based reward, balancing between timely hypothesis decisions and
the underlying problem objectives (Figure 2). More details on this
work, such as the effect of the reward weight𝑤 on the quality of
the solution, and the connection between the base reward and the
hypothesis belief reward can be found in the arXiv version [4].
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