
Multi-Agent Reinforcement Learning with
Selective State-Space Models

Extended Abstract

Jemma Daniel
InstaDeep

London, United Kingdom
j.daniel@instadeep.com

Ruan John de Kock
InstaDeep

Cape Town, South Africa
r.dekock@instadeep.com

Louay Ben Nessir
InstaDeep

Tunis, Tunisia
l.nessir@instadeep.com

Sasha Abramowitz
InstaDeep

Cape Town, South Africa
s.abramowitz@instadeep.com

Omayma Mahjoub
InstaDeep

Tunis, Tunisia
o.mahjoub@instadeep.com

Wiem Khlifi
InstaDeep

Tunis, Tunisia
w.khlifi@instadeep.com

Juan Claude Formanek
InstaDeep

Cape Town, South Africa
c.formanek@instadeep.com

Arnu Pretorius
InstaDeep

Kigali, Rwanda
a.pretorius@instadeep.com

ABSTRACT
Transformer-based architectures have achieved strong performance
in multi-agent reinforcement learning (MARL). A notable example
is the Multi-Agent Transformer (MAT), which is able to achieve
state-of-the-art performance in many cooperative tasks. However,
MAT’s use of attention with quadratic complexity limits scala-
bility to large agent populations. In contrast, State-Space Models
(SSMs), such as Mamba, offer improved efficiency, but their po-
tential in MARL remains unexplored. We introduce Multi-Agent
Mamba (MAM), which replaces attention in MAT with causal, bi-
directional, and cross-attentional Mamba blocks. Experiments show
that MAM matches MAT’s performance while improving compu-
tational efficiency, suggesting SSMs can replace attention-based
architectures in MARL for better scalability.1

CCS CONCEPTS
• Computing methodologies→Multi-agent planning; Plan-
ning under uncertainty.
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1 INTRODUCTION
Multi-agent reinforcement learning (MARL) faces scalability chal-
lenges, particularly as the number of agents increases [1]. The
Multi-Agent Transformer (MAT) [18] achieves state-of-the-art per-
formance but suffers from quadratic scaling in sequence length [17],
creating a computational bottleneck.

State-Space Models (SSMs) [5, 8–10, 10, 16] offer a promising al-
ternative, scaling linearly in sequence length. Of particular interest
is Mamba [7], a selective SSM with fast inference and linear com-
plexity that matches Transformer performance in natural language
tasks.

This paper explores replacing attention in MAT with Mamba
blocks, including vanilla, bi-directional and a novel cross-attention
variant designed to replaceMAT’s cross-attention.We introduce the
Multi-Agent Mamba (MAM) and evaluate its performance against
MAT on numerous well-known MARL benchmark environments.

2 BACKGROUND
Cooperative Multi-Agent Reinforcement Learning. MARL

can be formalised as a Markov game ⟨N , O,A, 𝑅, 𝑃,𝛾⟩ [12], where
N is the set of agents, O and A are the joint observation and
action spaces, respectively, 𝑅 is the joint reward function, 𝑃 is
the transition probability function, and 𝛾 is the discount factor.
Agents select actions using a joint policy 𝝅 to maximise cumulative
rewards.

TheMulti-AgentAdvantageDecompositionTheorem. HAPPO
[11] decomposes the joint advantage into individual advantages
𝐴
𝑖𝑚
𝜋 , enabling sequential policy updates:

𝐴
𝑖1:𝑛
𝜋 =

𝑛∑︁
𝑚=1

𝐴
𝑖𝑚
𝜋

(
o, a𝑖1:𝑚−1 , 𝑎𝑚

)
. (1)
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Figure 1: Left: Task- and environment-aggregated mean
episode returns with 95% confidence intervals. Right: Mean
evaluation step time in SMAX tasks with increasing agent
counts.
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(a) RWARE
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(b) SMAX
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(c) LBF

Figure 2: Aggregated episode returns per environment with
95% confidence intervals.

This so-calledmulti-agent advantage decomposition theorem, above
in Equation 1, simplifies optimisation and provides monotonic pol-
icy improvement guarantees [18].

Multi-Agent Transformer (MAT). MAT [18] applies self- and
cross-attention over agent observations and actions. Given key,
query and value matrices (K,Q,V), attention is

attention(K,Q,V) = softmax
(
QK𝑇

𝑑𝑘

)
V. (2)

While achieving unmatched performance, MAT scales quadratically
with agents, which swiftly becomes infeasible in scenarios with
large agent populations.

State-Space Models (SSMs) and Mamba. SSMs model a con-
tinuous and time-invariant system with an input signal 𝑥 (𝑡) ∈ R𝐷

via a latent state ℎ(𝑡) ∈ R𝑁 evolving as

ℎ′ (𝑡) = Aℎ(𝑡) + B𝑥 (𝑡), 𝑦 (𝑡) = Cℎ(𝑡), (3)

for output 𝑦 (𝑡) ∈ R𝐷 . Equation 3 can also be discretised. These
parameters can all be made learnable, but model dynamics are
constant. Mamba [7] introduces input-dependent parameters and a
hardware-aware parallel recurrent mode, achieving linear scaling
with strong performance. This makesMamba a promising candidate
for replacing Transformers in MARL architectures.

3 MULTI-AGENT MAMBA (MAM)
3.1 Encoder
MAT’s encoder relies on unmasked self-attention, while vanilla
Mamba is causal by construction. To preserve bidirectional infor-
mation flow, we adopt a bi-directional Mamba block outlined by
Schiff et al. [15]. This involves applying Mamba twice, once for-
ward and once reversed, and then merging the outputso maintain
parameter efficiency, we share projection weights.

3.2 Decoder
Mamba naturally supports causal processing on a single sequence,
making it a straightforward replacement for MAT’s self-attention.
However, adapting Mamba for cross-attention requires modifica-
tion. We introduce CrossMamba, which extends Mamba to process
two input sequences. Inspired by Mamba’s attentional form in [2],
we reformulate Mamba’s state-space representation to incorporate
cross-sequence dependencies. In our MARL setup, observations
form the target sequence, while actions serve as the source, enabling
effective cross-agent information flow during action selection.

4 EXPERIMENTS
4.1 Experimental Setup
We build on the JAX-based MARL library Mava [4]. We evaluate
MAM on JAX-based versions of Robotic Warehouse (RWARE) [13],
Level-Based Foraging (LBF) [3] and the StarCraft Multi-Agent Chal-
lenge (SMAX) [14]. Each environment includes tasks of varying
difficulty and agent counts, totalling three RWARE tasks, seven LBF
tasks and eleven SMAX tasks.

We train each algorithm for 20M timesteps on ten random seeds,
evaluating performance 61 times throughout training. At each eval-
uation, we compute episode returns across 32 rollouts and aggregate
results using MARL-eval with min-max normalisation [6].

4.2 Results
Performance Results. The left-hand plot in Figure 1 compares

MAM, MAT, and MAPPO, aggregated over all tasks and environ-
ments. MAM achieves performance on par with MAT, the current
state-of-the-art, while learning faster.

To ensure fairness, we normalise and aggregate results per envi-
ronment using MARL-eval [6]. Figure 2 shows that MAM’s final
performance is comparable to MAT’s in each environment, with
superior sample efficiency in SMAX. SMAX tasks feature more
agents (9.7 on average vs. 3 in LBF and 3.3 in RWARE), suggesting
that MAM possesses superior scaling abilities with increasing agent
counts.

Inference Speed Results. MAM operates solely in recurrent
mode, leading to faster inference. The right-hand plot in Figure 1
demonstrates that MAT’s evaluation time scales quadratically with
agent count, while MAM and MAPPO scale linearly. This efficiency
could make MAM preferable for real-world many-agent systems.

5 CONCLUSION
We introducedMulti-AgentMamba (MAM), a sequence-basedMARL
architecture that replaces attention with causal, bi-directional, and
cross-attentional Mamba blocks. Experiments show that MAM
matches MAT’s performance with improved computational effi-
ciency, while potentially offering better sample efficiency in many-
agent settings.

Despite these strengths, current MARL benchmarks limit evalu-
ation in large-agent scenarios, and our JAX-based implementation
of MAM cannot fully leverage the CUDA optimisations of PyTorch-
based Mamba. Future work includes developing many-agent envi-
ronments for testing and implementing specific optimisations to
make MAM more faithful to the original Mamba implementation.
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