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ABSTRACT
One of the core challenges frequently cited in the multi-agent re-
inforcement learning (MARL) literature motivating the framing of
a sequential decision-making problem as a multi-agent problem,
instead of a centralised single-agent problem, is the exponential
growth in the action space with the number of agents. The assump-
tion that this is always a challenge suggests that this exponentially
larger action space poses two specific problems compared with cen-
tralised approaches: (1) overwhelming memory requirements and
(2) low sample efficiency due to the large optimisation space. Al-
though a core tenet within the MARL community, few works have
concretely tested this assumption empirically within a controlled
setting to give some indication of its severity in practice.

In this work, we compare fully centralised learning with fully
decentralised learning. Using a novel 𝑁 -agent array game akin
to the canonical Climbing matrix game, we re-establish a well-
known result; that fully centralised learning is able to find the
globally optimal solution while decentralised learning fails. We
further demonstrate that these trends hold for more modern MARL
benchmarks that run on hardware accelerators and leverage the
computational efficiency gains of the JAX framework.
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1 INTRODUCTION
When considering a multi-agent systems task, a common first ap-
proach is to model such a problem as a centralised single-agent
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task. Single-agent RL has been well studied, provides numerous
methods for a wide range of settings and, in some cases, has con-
vergence guarantees. The question of how sensible this approach
is has existed for over two decades in terms of limitations on learnt
behaviours and computational complexity [1, 2], yet in the authors
experience, practitioners still consider centralised controllers to be
a competitive alternative to truly decentralised MARL methods. We
posit that these question may have arisen due to (1) computational
advances and (2) a lack of a clear empirical evidence in the literature
comparing these two approaches.

To this end, we perform an empirical investigation to test whether
the centralised approach is indeed sensible. We begin by showing
that in canonical settings, that were standard in early MARL re-
search, fully centralised learning can achieve superior performance
using modern hardware acceleration, even as the action space and
the number of agents are scaled. Therefore, in the context of sim-
pler problems and modern hardware, fully centralised learning can
be considered a strong approach. However, when transitioning to
more recent higher-dimensional research environments, we show
that computational memory and hardware simply can not keep up
when trying a fully centralised approach. In the context of multi-
agent systems, we hope that these findings provide useful ways to
think about which approach is likely sensible for a given scenario.

2 EXPERIMENTS
2.1 Benchmarking environments

Climbing game. The Climbing game [4] is a matrix game with
a pay-off matrix

r𝑐 =


11 −30 0
−30 7 6
0 0 5

 (1)

and has a shadowed equilibrium [7] leading independent agents
to favour sub-optimal local optima.

N-player array games. We construct two𝑁 -player array games
which can be adapted to large numbers of agents and actions: (1)
the shadowed equilibrium game which maintains the shadowed
equilibrium properties of the Climbing game and (2) the needle-in-
a-haystack game which tests for effective exploration. Both allow
for arbitrary numbers of agents 𝑁 and agent actions 𝑢.

Modern MARL benchmark environments. We consider the
sparse reward Robotic Warehouse (RWARE), [9], the Level-based
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(a) LBF.
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(b) RWARE.
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(c) SMAX.

Figure 3: Central controllers offer competitive performance on
the small-scale LBF environment suite, but suffer from low
sample efficiency and high memory requirements on larger
scale suites like RWARE and SMAX.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e7

2000

1000

0

1000

2000

3000

PPO Central [Tabular] IPPO [Tabular]

2 3 4 5 6 7
Number of Agents

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

io
ns

(a) 1 Million

2 3 4 5 6 7
Number of Agents

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

io
ns

(b) 10 Million

2 3 4 5 6 7
Number of Agents

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

io
ns

(c) 20 Million

2 3 4 5 6 7
Number of Agents

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

io
ns

(d) 50 Million

2 3 4 5 6 7
Number of Agents

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

io
ns

(e) 100 Million

2 3 4 5 6 7
Number of Agents

2

3

4

5

6

7

8

Nu
m

be
r o

f A
ct

io
ns

(f) 200 Million

Figure 1: As the training time budget increases, central con-
trollers outperform independent learners and converge to
the true optimal solution.

Foraging (LBF), [3] and The StarCraft Multi-agent Challenge in JAX
(SMAX) environments1 [10].

2.2 Experiment outline
Wefirst test policies on the Climbingmatrix game and bothN-player
array games. Finally we evaluate policies on JAX-based modern
MARL benchmarks and report the per-task peak memory usage
and episode returns aggregated over tasks for each environment
suite.

In all cases we consider proximal policy optimisation (PPO) [11]
as the centralised algorithm and its independent learners (IL) ex-
tension, IPPO [6]. All algorithm baselines were implemented using
the Mava JAX-based research library [5] and follow the evaluation
protocol outlined in [8].

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e7

3000

2000

1000

0

1000

2000

3000

PPO Central [Tabular] IPPO [Tabular] PPO Central [NN] IPPO [NN]

0 2.5 5 7.5 10 12.5 15 17.5 20
Timesteps [Millions]

4
2
0
2
4
6
8

10

M
ea

n 
ep

iso
de

 re
tu

rn

(a) Climbing game.
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(b) Shadowed
equilibrium game.
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(c) Needle-in-a-
haystack game.

Figure 2: Central controllers are able to overcome sub-optimal
solutions in both the climbing game and shadowed equilib-
rium game while independent learners offer comparable ex-
ploration of the joint action space in the needle-in-a-haystack
game.

2.3 Results
We note from Figure 1 that, given ample environment transitions,
centralised controllers indeed converge to better returns than their
IL counterparts. Similarly in Figure 2 we see, as expected, that
for the Climbing game, the centralised controllers escape the non-
global optimum. This extends to the 𝑁 -agent case as illustrated in
Figure 2. Interestingly, tabular IL agents do not overfit as easily as
their neural network counterparts and can explore effectively in
higher dimensions. This could be due to their comparably lower
parameter counts. From Figure 3, we note that for simple tasks with
few agents and agent actions, like those in the LBF environment
suite, centralised controllers offer competitive performance. How-
ever, for more complex tasks with larger agent action spaces like
in the RWARE and SMAX suites, this quickly breaks down. This
is particularly illustrated in the large memory requirements for
centralised learning agents in SMAX due to the much larger action
spaces per agent. Overall, we find that centralised controllers are
indeed only effective in small-scale settings.

3 CONCLUSION
We empirically assessed the trade-offs of fully centralised versus
fully decentralised learning, specifically testing the assumption
that an exponentially growing action space indeed poses a signifi-
cant challenge, even on modern hardware. We first considered sim-
pler array-game settings, showing that as the action space grows,
fully centralised learning is still able to efficiently find the optimal
solution, while decentralised learning fails. However, as we con-
sider more complex, and higher-dimensional settings, this trend no
longer continues. Specifically, to use more compute and train for
longer becomes infeasible to achieve similar successes as in simpler
settings.

Although this finding, that in complex environments, the expo-
nentially growing action space does indeed pose a problem, may be
obvious, especially in the theoretical limit, we hope that having con-
crete empirical evidence supporting its theoretical conclusions even
when using modern hardware and software gives a simple frame-
work for deciding on whether a given multi-agent system problem
should be modelled using centralised or decentralised frameworks.
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