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ABSTRACT
Recent RL research has utilized reward shaping–particularly com-
plex shaping rewards such as intrinsic motivation (IM)–to encour-
age agent exploration in sparse-reward environments. While often
effective, “reward hacking” can lead to the shaping reward being
optimized at the expense of the extrinsic reward. Prior techniques
have mitigated this, allowing for implementing IM without altering
optimal policies, but have only thus far been tested in simple envi-
ronments. In this work we show that they are effectively unsuitable
for complex, exploration-heavy environments with long episodes.
To remedy this, we introduceAction-Dependent Optimality Preserv-
ing Shaping (ADOPS), a method of converting arbitrary intrinsic
rewards to an optimality-preserving form that allows agents to
utilize them more effectively in the extremely sparse environment
of Montezuma’s Revenge. We demonstrate significant improvement
over prior SOTA optimality-preserving IM-conversion methods,
and argue that these improvements come from ADOPS’s ability to
preserve ‘action-dependent’ IM terms.
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1 INTRODUCTION
There is growing interest in the Reinforcement Learning (RL) lit-
erature in using reward shaping to train agents in sparse-rewards
environments that would otherwise be intractable [2, 10, 14]; specifi-
cally, interest in Intrinsic Motivation (IM): complex, non-Markovian
reward functions used to encourage general exploration [4, 13].
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It has been noted, however, that both traditional reward shap-
ing [14] and IM [6] can be “hacked," with the agent learning to
optimize the shaping reward at the expense of the actual reward.
Prior methods of mitigating this reward-hacking exist—most no-
tably Potential-Based Intrinsic Motivation (PBIM) [7, 8], Gener-
alized Reward Matching (GRM) [9], and Policy-Invariant Explicit
Shaping (PIES) [1], but each of these methods has only been tested
in simple environments, and not in any environments wherein
training with IM is itself essential in consistently obtaining any
extrinsic rewards. Testing in Montezuma’s Revenge, a benchmark
environment that has been widely acknowledged [6, 11] to require
IM or similar exploration-encouraging incentives, we find that all
of these prior methods, while preserving the optimal policy set,
detract from the agent’s ability to learn to the extent that none of
them can outperform an agent training on RND alone.

Motivated by this, we develop Action-Dependent Optimality-
Preserving Shaping (ADOPS), a method for converting any arbitrary
shaping reward (including IM) to a form that preserves optimality.
ADOPS drops several key assumptions required for priormethods to
ensure optimality, encompasses a provably-wider set of optimality-
preserving functions, and empirically outperforms SOTA methods
in a complex, sparse-reward environment.

2 THEORETICAL RESULTS
To preserve optimality, we want to ensure the optimal policy set
is the same for both the original MDP𝑀 and the shaped MDP𝑀′,
that is:

argmax
𝑎

𝑄∗
𝐸 = argmax

𝑎
(𝑄∗

𝐸 +𝑄∗
𝐼 ) ∀𝑠, 𝑡, 𝜋∗, (1)

where all variables are defined as in a standard MDP, and the sub-
scripted 𝐸 and 𝐼 denote extrinsic and (possibly non-Markovian)
intrinsic rewards, respectively.1 If we now define 𝑎 as any action
not in argmax𝑎 𝑄∗

𝐸
, then Equation 1 becomes equivalent to

𝑉
𝜋∗

1
𝐼𝐸

(𝑠, 𝑡) = 𝑉
𝜋∗

2
𝐼𝐸

(𝑠, 𝑡) ∀𝑠, 𝑡, 𝜋∗1 , 𝜋
∗
2 (2)

𝑄∗
𝐼𝐸 (𝑠, 𝑎, 𝑡) < 𝑉 ∗

𝐼𝐸 (𝑠, 𝑡) ∀𝑠, 𝑎, 𝑡, 𝜋∗ . (3)

Intuitively, the first of these conditions says that every action
that would be optimal without IM must remain optimal after the
1Note the enumeration over all 𝜋∗: this is because, while every optimal policy by
definition has identical 𝑄∗

𝐸
and 𝑉 ∗

𝐸
to every other optimal policy, they may differ

from each other intrinsically, resulting in different𝑄∗
𝐼
and 𝑉 ∗

𝐼
. Note also the direct

𝑡 -dependence, as we’re generally dealing with non-Markovian reward functions.
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addition of IM, while the second says that any suboptimal action
must remain suboptimal with the addition of IM.2

In prior work in optimality-preserving reward shaping, particu-
larly in Potential-Based Reward Shaping (PBRS), the optimal policy
set is provably unchanged due to mathematical guarantees that
𝑄∗
𝐼
is independent of the agent’s actions at a given time step, and

thus drops out of the argmax𝑎 : see for example the Φ(𝑠) of [12],
or the Φ′

𝑡 of [7]. While this is a sufficient condition to ensure that
optimality is preserved (as this term then drops out of the argmax𝑎),
it is not a necessary one. It leaves out a theoretically interesting and
empirically useful subset of optimality-preserving reward shaping
functions: those whose cumulative intrinsic returns are allowed to
depend on the agent’s actions.

Inspired by the conditions in Equations 2 and 3, we first introduce
an “ideal” reward-shaping conversion method that actively checks
whether these conditions are satisfied, and if not, modifies the initial
shaping reward just enough to ensure that they are. We prove the
optimal policy remains unchanged by the addition of a reward
𝐹 ′ = 𝐹 + 𝐹 2, where 𝐹 is some arbitrary initial IM, and 𝐹 2 is defined
according to as

𝐹 2 =

{
min(0,𝑉 ∗

𝐸
−𝑄∗

𝐸
+𝑉 ∗

𝐼
−𝛾𝑄∗

𝐼 ,𝑡+1−𝐹−𝜖 ) if 𝑄∗
𝐸
<𝑉 ∗

𝐸

max(0,𝑉 ∗
𝐸
−𝑄∗

𝐸
+𝑉 ∗

𝐼
−𝛾𝑄∗

𝐼 ,𝑡+1−𝐹 ) if 𝑄∗
𝐸
≥𝑉 ∗

𝐸
.

(4)

Here, 𝜖 is an arbitrarily small positive constant, and𝑉 ∗
𝐼
is defined

as the maximum IM achievable while following an extrinsically
optimal policy.

The first case of this equation can be intuitively thought of as
checking to see if Equation 3 is violated, and if so adjusting the
intrinsic reward downwards until it is not. Conversely, the second
case checks to see if Equation 2 is violated, and adjusts the IM
upwards if so until it is not.

While it would be ideal, it is usually not practically feasible to
implement Equation (4), as it requires an accurate estimate of the
optimal value function. Let’s assume instead that we have access
to some critic function that allows us to make approximations of 𝑉
and 𝑄 of a given state-action pair, under the agent’s current policy
𝜋 (rather than a strictly optimal policy). Let us also assume that
this critic handles the extrinsic and intrinsic rewards separately,
such that we can deal with them independently (this is already a
common practice, for example in [5], whose example we follow
in Section 3). We then prove that an intrinsic reward of the form
𝐹 ′ = 𝐹 + 𝐹 2 with 𝐹 2 defined according to Equation 5

Given some initial shaping reward 𝐹 , about which we make no
assumptions, we define the ADOPS reward to be

𝐹 2 =

{
min(0,𝑉 𝜋

𝐸
−𝑄𝜋

𝐸
+𝑉 𝜋

𝐼
−𝛾𝑄𝜋

𝐼,𝑡+1−𝐹−𝜖 ) if 𝑄𝜋
𝐸
<𝑉 𝜋

𝐸

max(0,𝑉 𝜋
𝐸
−𝑄𝜋

𝐸
+𝑉 𝜋

𝐼
−𝛾𝑄𝜋

𝐼,𝑡+1−𝐹 ) if 𝑄𝜋
𝐸
≥𝑉 𝜋

𝐸

(5)

will leave the set of optimal policies unchanged.

3 EMPIRICAL RESULTS
We test ADOPS, as well as prior optimality-preserving reward
shaping methods in Montezuma’s Revenge [3] with RND IM [6].
We find that all prior methods fail to converge to a policy that
outperforms the policy trained on the baseline IM, while all versions

2Implicit in the step fromEquation 1 to Equation 2 is the fact that𝑄∗
𝐸
(𝑎∗ ) = 𝑉 ∗

𝐸
∀𝑎∗ 𝜋∗ .

Figure 1: Comparison of all methods. Error bars are errors
on the mean. Differences between RND and GRM are sta-
tistically significant, with 𝑝 = 0.009 and 𝑝 = 0.031 for norm
and no-norm. ADOPES statistically outperforms RND with
𝑝 = 0.038. ADOPS, ADOPES, and ADOPES w/ 𝐹/2 all statis-
tically outperform PIES, with 𝑝 = 4.4𝑒 − 5, 𝑝 = 2.4𝑒 − 6, and
𝑝 = 6.4𝑒 − 5, respectively. They similarly improve over GRM
and PBIM. 𝑁 = 10 for GRM runs, 𝑁 = 1 for PBIM runs, and
𝑁 = 20 for all others.

of ADOPS achieve higher performance than the baseline policy. We
plot our results in Figure 1.

We find that PBIM with RND, whether normalized or not, fails to
ever obtain nonzero extrinsic rewards in Montezuma’s Revenge. We
find that this is due to the exponential nature of the denominator
in the final reward for an episode under PBIM, combined with this
environments’ long episode lengths, exploding the reward and thus
saturating the agent’s action probability. Other GRMmethods fared
somewhat better,3 but failed to reach the same average cumulative
extrinsic reward as RND. We tested PIES as described in [1] with a
decay rate such that it begins theoretically conserving the optimal
policy at exactly the halfway point in training, as this is the point
wherein it returns an IM of zero. While PIES performs well initially,
it decreases in performance rapidly upon approaching this halfway
point, and never recovers: in other words, its performance worsens
as soon as PIES begins to approach conserving the optimal policy.
PIES thus can either conserve the optimal policy or benefit from
IM, but not both simultaneously.

We test three versions of our method. The first simply imple-
ments Equation (5) using the preexisting network critics’ estima-
tions of the relevant quantities. Noting that these critics’ estima-
tions are much better later on in training than earlier, we also
implement Action Dependent Optimality Preserving Explicit Shap-
ing (ADOPES), which uses a PIES-like 𝑡-dependence to phase in 𝐹 2

as the critics become gradually more accurate. We also test a ver-
sion of ADOPES with the starting IM coefficient halved, in order to
approximately harness the early benefits of PIES’s incidental scan
to a better hyperparameter for this coefficient, while preserving
these gains later in training. All three of our methods consistently
outperform prior optimality-preserving work.

3PBIM is equivalent to a long-time-horizon version of GRM, as noted in [9].
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