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ABSTRACT
Optimizing budget allocation is vital for digital advertising, yet
practical algorithms remain scarce due to limited public datasets
and realistic simulation environments. While multi-armed bandit
(MAB) algorithms are well-studied, they struggle in non-stationary
settings requiring rapid adaptation. This paper introduces three key
contributions: (1) a simulation environment that emulates multi-
channel advertising campaigns using logged real-world data; (2) an
enhanced combinatorial bandit strategy with efficient exploration,
and change-point detection to adapt dynamically to market shifts;
and (3) Empirical validation showing superior performance over
baselines in reward and regret metrics across real-world campaigns.
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1 INTRODUCTION
Digital advertising, a rapidly growing field with a market size pro-
jected to exceed $830 billion by 2026 [2], involves managing diverse
campaigns across formats (e.g., Search, Display) and platforms (e.g.,
Google, Meta) [11]. Effective budget allocation is crucial for maxi-
mizing Return on Ad Spend (ROAS) and ensuring ads reach high-
quality traffic [20]. While multi-armed bandit (MAB) strategies
[1, 6, 22] are popular for this task due to their simplicity, they often
fail to adapt effectively in non-stationary environments where rapid
adjustments are important [16]. A major challenge in developing
adaptive algorithms is the lack of open-source datasets and simula-
tion environments, as most business data is proprietary [5, 14, 27].
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Testing algorithms on real traffic is costly and risky [21]. This paper
addresses these gaps with the following contributions:
1. A public [9] simulation environment for multichannel, non-
stationary ad campaigns to enable reproducible research.
2. An enhanced combinatorial bandit strategy with a modified mean
function, targeted exploration, and change-point detection (CPD)
for dynamic adaptation.
3. Theoretical guarantees of sub-linear regret (𝑂 (

√
𝑇 )) and empirical

results showing superior performance over SOTA baselines.

2 RELATEDWORK
Budget allocation across multiple campaigns has been widely stud-
ied [6, 7], with significant contributions from industry players like
Criteo, Netflix, and Lyft [4, 15, 18]. Typically, sub-campaigns are
modeled as arms in a multi-armed bandit (MAB) problem, with
combinatorial optimization used to allocate budgets based on ex-
pected rewards [28]. Parametric models, such as power laws [13]
or sigmoids [11], combined with Thompson Sampling, often strug-
gle in noisy environments, leading to deviations from true reward
functions. Gaussian Process (GP) models [22, 23] offer flexibility
with UCB or Thompson Sampling but lack domain knowledge inte-
gration and are limited to short timeframes, making them less ef-
fective in long-term settings. Addressing non-stationarity in MABs
typically involves passive methods like sliding windows [26] or
discounted rewards [10], which perform poorly in long campaigns
with infrequent changes. Active methods, such as change point de-
tection [3, 19], provide better adaptability, motivating our approach
to incorporate dynamic adjustments.

3 METHODOLOGY
We follow the standard Automatic Budget Allocation (ABA) prob-
lem formulation [22], where an advertising campaignA = 𝐴1, . . . , 𝐴𝑛 ,
comprising 𝑁 sub-campaigns, is managed over a finite time horizon
𝑇 with a budget B. Each day’s budget 𝑏 𝑗,𝑡 for sub-campaign 𝐴 𝑗

must satisfy 𝑏𝑡 ≤ 𝑏 𝑗, 𝑡 ≤ 𝑏𝑡 while maximizing cumulative returns.
The reward function 𝑛 𝑗,𝑡 , mapping cost 𝑥 𝑗,𝑡 to feedback (e.g., clicks),
changes dynamically due to market fluctuations, modeled as piece-
wise constant over phases F𝜙 , separated by breakpoints P. Within
each phase, the reward function remains constant. We assume (1)
reward changes exceed a detectable threshold 𝜏 , (2) breakpoints
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are separated by at least an unknown minimum duration 𝑇𝑝 , and
(3) reward functions are smooth, monotonically increasing, and
exhibit diminishing returns [12, 14].

Pessimistic 0 mean prior Saturate the mean at the best
value of current timestep

(i) (ii)

(iv)(iii)

UCB changes the function at
lower values increasing regret

TUCB changes the
function at higher budget

level targeting quality traffic

Figure 1: GP estimation with saturated mean and targeted
UCB exploration.

Simulation Environment : To study the non-stationary mul-
tichannel budget allocation problem, we developed a simulation
environment mimicking long-running ad campaigns from logged
data of real campaigns. Daily cost consumption, 𝑥 𝑗,𝑡 , is modeled as
a truncated normal distribution, 𝑥 𝑗,𝑡 ∼ N(𝑏 𝑗,𝑡 , 𝜎2), constrained by
0 ≤ 𝑥 𝑗,𝑡 ≤ 2𝑏 𝑗,𝑡 . The cost-to-reward function, 𝑛 𝑗 (𝑥 𝑗,𝑡 ) = 𝛼𝑐𝑥

𝜔𝑐

𝑗,𝑡
+ 𝜖 ,

incorporates noise 𝜖 , with parameters 𝛼𝑐 and 𝜔𝑐 updated daily
using curve fitting on the logged data. Abrupt reward function
changes are modeled by maintaining future parameter estimates
𝛼 𝑓 and the model is updated when |𝛼𝑐 − 𝛼 𝑓 | > 0.2. This approach
models dynamic, non-stationary campaign behavior in simulation.

Adaptive Budget Allocation (ABA) : The ABA algorithm in-
volves four key steps: (1) estimating reward functions using Gauss-
ian Processes (GP) [25] , (2) predicting rewards for each arm, (3)
allocating budgets using a multi-choice knapsack [17], and (4) de-
tecting change points. A standard GP model with a zero mean can
restrict exploration to higher budget ranges. To address this, we use
a saturating mean function defined as �̂� 𝑗 = �̂� 𝑗max if 𝑏 𝑗,𝑖 > 𝑏 𝑗max,
and �̂� 𝑗 = �̂� 𝑗 otherwise, where �̂� 𝑗 is the GP mean, �̂� 𝑗max is the high-
est observed reward, and 𝑏 𝑗max is the budget level corresponding to
this reward. This ensures exploration focuses on effective regions.

�̃� 𝑗 (·) ← �̂� 𝑗 (·) + {𝛽 ∗ (1 − 𝜃 𝑗 ) ∗ 𝜎 𝑗 }|I𝑏 𝑗,𝑖>𝑏 𝑗,𝑚𝑎𝑥
(1)

We enhance exploration with a modified Upper Confidence
Bound (UCB) (Eq. 1), where �̃� 𝑗 (·) incorporates campaign efficiency
𝜃 𝑗 (e.g., normalized Cost per Click) and an indicator I𝑏 𝑗,𝑖>𝑏 𝑗max to
focus exploration on promising budget levels. This strategy reduces
unnecessary exploration of low-reward regions.

For non-stationarity, two models are maintained:M 𝑗 , trained
on data from the current phase, and M̃ 𝑗 , using recent data. Change
detection calculates the Mean Absolute Error (MAE) between their

predictions as 𝑝𝑟𝑒𝑑𝑑𝑖 𝑓 𝑓 = 1
𝐵

∑𝐵
𝑖=1 |M 𝑗 (𝑏𝑖 ) − M̃(𝑏𝑖 ) |, where 𝐵 is

the set of budgets. The reward model is refreshed when 𝑝𝑟𝑒𝑑𝑑𝑖 𝑓 𝑓
exceedes threshold 𝜏 , enabling dynamic adaptation to reward shifts.

4 EMPIRICAL STUDIES

Clicks Regret CPC Clicks Regret CPC

Clicks Regret CPC Clicks Regret CPC

Attendance Management System (3) 
Platform A, Duration: 12 months

Predictive Analysis Tool (3)
Platform A, Duration: 17 Months

Internet Service Provider (3)
Platform A, Duration: 6 months

Product 15981 (5)
Platform B, Duration: 9 months 

TUCB-MAE
(Ours)

UCB-
MAE

UCB-
NCPD

UCB-
SW

TS -
SW

TS -
DS

Figure 2: Comparison of normalized metrics (Clicks, Regret,
CPC) across products w.r.t baselines

We conduct experiments using real logged campaign data from
two platforms, denoted as Platform A and Platform B. Hyper-
parameters (𝑇𝑝 = 20,𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑒𝑛𝑔𝑡ℎ = 7, budget granularity = 500).
Campaigns are simulated in a long-horizon environment with noise
𝜖 ∼ N(0, 0.1). The proposed algorithm is compared to the following
baselines: (1) UCB-MAE: Combines UCB exploration with MAE-
based CPD [24]. (2) UCB-NCPD: UCB exploration without CPD,
highlighting its importance. (3) UCB-SW: UCBwith a 10-day sliding
window [10]. (4) TS-SW: Thompson Sampling with a 10-day sliding
window [8]. (5) UCB-DS: UCB with a 0.9 discounting factor for past
data [10]. Results (Fig 2) are evaluated on: Clicks - Indicates user
engagement and allocation effectiveness. Regret - Average cumula-
tive regret compared to an oracle optimizer. Cost Per Click (CPC) -
Lower CPC reflects higher ROAS and advertiser efficiency. Experi-
ments span multi-channel campaigns (Display, Search-1, Search-2)
running for over 5 months. Search-1 targets specific keywords;
Search-2 uses broader terms. Results demonstrate the proposed
algorithm’s superior performance in clicks, regret, and CPC.

5 CONCLUSION
This paper explores the deployment of a combinatorial bandit algo-
rithm for managing ad campaign budgets across multiple channels.
We develop a simulation environment for long-horizon, logged data
and propose enhancements like saturating mean, targeted UCB,
and change point detection for better adaptation in non-stationary
environments. Preliminary findings highlight the impact of non-
stationarity and the potential for improved adaptability.
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