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ABSTRACT
Human-in-the-loop Reinforcement Learning (RL) often suffers from
suboptimal human teaching signals. Yet, how humans perceive and
interpret RL agent’s learning behavior is largely unknown. In a
bottom-up approach with two experiments, this work provides a
data-driven understanding of the factors in RL agents’ behavior
that influence the understanding of the agent’s learning process
for human observers. In two consecutive experiments with two
different RL agents (a tabular and function approximation agent in a
navigation and a manipulation task), human observations of agent
learning behavior was assessed and systematically analyzed. Four
common emerging themes were observed: Agent Goals, Knowledge,
Decision Making and Learning Mechanisms, each with specific
subclusters, offering insights for transparency in RL and HRI.
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1 INTRODUCTION
In Human-in-the-loop Reinforcement Learning (RL), human users
use teaching signals (i.e. [1, 7, 12]) to collaborate with AI agents
towards achieving a joint outcome that benefits both [2].

While a teacher can provide insight and expert knowledge to a
learning agent [6], human feedback can also be suboptimal, e.g. by
giving delayed [3] or unbalanced feedback [15]. Since feedback is
grounded in the teachers’ interpretation of observed agent learning
behavior, this misalignment in the teacher-learner loop could arise
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from teacher’s misunderstanding of agent learning processes [13].
To improve collaboration, a deeper understanding of how teachers
interpret agent learning processes from observation is essential [5].

However, up to this point, the process of drawing inferences
about the learning process from observations has only been exam-
ined indirectly (i.e. as a function of teacher interaction behavior,
see e.g. [5, 11, 13]) or in simulated settings [10]. More importantly,
all human user studies on this topic employed paradigms in which
teaching signals played an active role, which can lead to expecta-
tions of how the agent should react to the teaching and therefore
a biased interpretation of observations [11, 14]. A neutral, direct
assessment is necessary.

Open questions include the correct setting, time-chunking of
observations, how to even query inferences about an RL agent’s
learning process from human observers, and what aspects of agent
learning processes human observers draw inferences about.

The main Research Question for this study therefore is:What do
human teachers infer about RL agents’ learning processes from ob-
serving the agents’ learning behavior? This work employs a human-
centered approach to investigate how individuals perceive and
interpret the learning process of RL agents. In an exploratory and
a confirmatory experiment, a set of common emergent themes
in teacher inferences regarding agent behavior is identified and
validated across a range of tasks and RL algorithms. Additionally,
a detailed analysis is provided that shows how these themes are
applied to draw inferences about the ongoing learning task.

Figure 1: a) NT: Clean dirt (yellow) without breaking furni-
ture (blue). b) MT: Push "medication" (blue) to target (yellow).
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Figure 2: Themes + Subclusters across time split by task. Letters correspond to subclusters for each theme reported in section 3

2 METHODOLOGY
In two sequential experiments with a newly developed experimental
paradigm,N = 43 participants were presented with video samples of
the beginning, middle and end of the learning process of two types
of RL agents learning two different tasks (see Figure 1): a Q learning
agent with TD update in a Navigation Task (NT) and a DDPG agent
in amanipulation task (MT). For each video, an iteratively developed
modular qualitative questionnaire with 11 question blocks was used
to assess the participants’ observation of agent learning behavior.
After this, a total of 832 participant statements were analyzed and
clustered in an iterative 3-step analysis process based on thematic
analysis [4] and grounded theory [9]. In line with Open Science
Recommendations [8, 16], this experiment was preregistered and
all materials are openly available on the OSF1.

3 RESULTS AND DISCUSSION
The analysis revealed four common emergent themes in partici-
pants’ inferences about the agents’ learning processes, each with
specific subclusters. A detailed analysis of mentions across all three
time points can be found in Figure 2.

Agent Goals: participants infer the agent’s learning process to
be based on a set of goals. Subclusters include Outcome-related (A),
Execution-related (B), Environment-learning (C) and Absence of
(D) goals.

Agent Knowledge: participants infer the agent to have differ-
ent types of knowledge throughout the task. Subclusters include
Outcome (A), Procedural (B), Environment (C) and lack of (D) knowl-
edge.

Agent Decision Making (DM): participants infer different
ways, the agent takes decisions during the learning process. Sub-
clusters include Undirected (A), Experience-based (B), Expected
Outcome-based (C) and Absence of (D) DM.

1https://osf.io/fumd8/?view_only=9cec60dccbd446f08bd818d0b3612705

Agent Learning Mechanisms (LM): participants infer differ-
ent ways, the agent learns during the task. Subclusters include
Exploring (A), Feedback (B), Reasoning (C) and Absence of (D)
Learning.

All in all, the experiments revealed four detailed anthropomor-
phized common themes along which observers organize their infer-
ences about the agent learning process, each with their own set of
subclusters. Being highly conceptually interconnected, they seem
to fit into a larger framework of observer inferences about agent
behavior.

4 CONCLUSION
This work aimed to examine human observer inferences about agent
learning processes in order to better understand in Human-in-the-
loop RL systems. To this end, a new experimental paradigm was
developed, to directly assess observation from a human-centered
perspective and applied across different types or RL algorithms and
tasks. The results showed that the paradigm was able to collect
observer inferences in a reliable way. Furthermore, the experiments
revealed a stable framework of four common themes (Goals, Knowl-
edge, DecisionMaking and LearningMechanisms) with interrelated
subclusters along the lines of which observer inferences about the
agent learning process are organized.

This could be the baseline for designing interaction and commu-
nication methods to align with this framework of agent perception
along the lines of observer inferences to help to make agents even
more explainable and align adaption in order to achieve more collab-
orative synergy. In total, this represents an important step towards
Hybrid intelligence.
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