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ABSTRACT
This paper focuses on Federated Reinforcement Learning (FedRL)
in black-box settings with heterogeneous agents. Existing studies
mostly assume agent homogeneity and knowability of internal de-
tails. To tackle these issues, we propose Federated Heterogeneous
Policy Distillation (FedHPD). FedHPD uses action probability distri-
butions as a medium for knowledge sharing among heterogeneous
agents. Extensive experiments show that FedHPD achieves signifi-
cant improvements across various benchmark tasks.
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1 INTRODUCTION
Reinforcement Learning (RL) faces low sample efficiency [19] and
privacy leakage [13] in real-world applications. Federated Learn-
ing (FL) [12] enables clients to collaboratively improve training
efficiency while preserving data privacy, which has led to the emer-
gence of Federated Reinforcement Learning (FedRL) [14]. This fu-
sion offers a promising approach for intelligent decision-making
in distributed environments [1]. Recognizing its potential, the re-
search community has extensively explored FedRL under various
settings [6, 9, 11, 15, 17, 20].

Despite its promise, most typical FedRL frameworks [3, 5, 8]
operate under the assumption of agent homogeneity (i.e., identical
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policy networks and training configurations), which significantly
limits effective training in resource-constrained environments [18].
In addition, existing FedRL frameworks typically operate under a
white-box paradigm, where internal details could be shared with the
server. However, in certain business-oriented domains, the disclo-
sure of internal details is prohibited due to commercial sensitivities
and regulatory compliance [10]. These practical constraints lead us
to formulate a more challenging question: How can we effectively
perform FedRL when each agent employs a unique model that
remains a black box to the server?

In light of the above question, we propose Federated Hetero-
geneous Policy Distillation (FedHPD). Compared to FedHQL [4], a
pivotal feature of FedHPD is its elimination of reliance on the server-
side MDP during training. Unlike traditional policy distillation [16],
FedHPD periodically extracts knowledge from local policies to form
a global consensus, which ensures the continuity and stability of
local training and helps to improve policy generalization. Through
distillation, we achieve collaborative training among heterogeneous
agents. Through the alternating process of multiple rounds of local
training and periodic collaborative training, FedHPD could balance
communication overhead and training efficacy 1.

2 PROBLEM FORMULATION
Assuming the system contains a set of 𝐾 heterogeneous and mutu-
ally black-box agents, where agent 𝑘 interacts in a separate copy
of the MDPM according to policy 𝜋𝑘 , generating their own local
private data 𝐷𝑘 ≜ {(𝑠, 𝑎, 𝑠′, 𝑟 )𝑖 } |𝐷𝑘 |

𝑖=1 . The policy 𝜋𝑘 (𝑎 |𝜙𝑘 (𝑠;𝜃𝑘 )) is
composed of a nonlinear function 𝜙𝑘 (𝑠 ;𝜃𝑘 ) that predicts the proba-
bility of taking action 𝑎 given the state 𝑠 . The nonlinear function
𝜙𝑘 (𝑠 ;𝜃𝑘 ) is parameterized by a set of parameters 𝜃𝑘 and is learned
using private experience data 𝐷𝑘 .

Agent heterogeneity 2 is often manifested in the differences in
neural network architectures and training configurations [4]. We
aim to develop a new FedRL framework that allows heterogeneous
agents to share their knowledge from local policies in a black-box

1For an extended version of this paper, refer to [7].
2In this paper, “agent heterogeneity” indicates that policy networks and training
configurations of agents in FedRL are heterogeneous [4].
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manner, without being constrained by the server-side MDP process
as in FedHQL [4]. The objective functions of the problem can be
formulated as follows:

Assuming that all agents are trained synchronously, given the
number of training rounds𝑇 , let𝜓 ′

𝑘
and𝜓𝑘 represent the training per-

formance of agent 𝑘 under the FedRL framework and its performance
when trained independently, respectively. We have:
Under the same training rounds,

for system:

𝐾∑︁
𝑘=1
𝜓 ′
𝑘
≥

𝐾∑︁
𝑘=1
𝜓𝑘 ; (1)

for agent 𝑘, 𝑘 ∈ {1, 2, . . . , 𝐾}:

𝜓 ′
𝑘
≥ 𝜓𝑘 . (2)

3 FEDHPD
Firstly, we set up a simulated environment on the server and train
a virtual agent within it. Although optimal performance is not
required, reasonable parameterization is needed to ensure stable
operation in the environment. For example, in autonomous driving,
the simulated environment can be based on an existing simulation
platform (such as CARLA [2]), where the virtual agent undergoes
preliminary training to learn basic driving strategies. Next, we
conduct multiple tests with different initial state inputs to simulate
the diverse scenarios that the agent may encounter. In each test,
the virtual agent generates a series of states, from which a subset
of states is randomly selected to form the public state set S𝑝 .

Notably, the synthetic state set S𝑝 generated by the virtual agent
is independent of local training and serves solely for KD. Of course,
for tasks like autonomous driving, robot control, and games, there
is an abundance of available experience data that can directly serve
as the public state set S𝑝 . In conclusion, obtaining the public state
set is reasonable and convenient in real-world. For communication
considerations, S𝑝 is distributed to each local agent before the start
of training, so that the communication only involves the upload
and distribution of the knowledge.

To handle tasks both in discrete and continuous action spaces, we
use action probability distribution as a bridge for communication.
Agent𝑘 generates its private experience data𝐷𝑘 by interacting with
the environment for local training. During the collaborative training
process, action probability distribution is distilled from the policies
of heterogeneous agents using the public state setS𝑝 . Subsequently,
agents digest knowledge by comparing the distributions output by
themselves with the global consensus. In other words, local agents
use public state set S𝑝 and private data 𝐷𝑘 to train and improve
their policy 𝜙𝑘 , surpassing individual efforts. Our framework is
illustrated in Fig.1. The process for FedHPD is described as follows:

(1) Local Training: In each training round, all local agents must
interact with the environment, using the generated data 𝐷𝑘 to
update their own policy parameters 𝜃𝑖

𝑘
, resulting in 𝜃𝑖+1

𝑘
. Note that

no collaboration is required at this stage.
(2) Collaborative Training: In the collaborative training phase

(conducted every 𝑑 training rounds), agents share their knowledge
based on the output distributions under the public state set S𝑝 . The
detailed steps are as follows:

Figure 1: Illustration of FedHPD.

Figure 2: Comparisons of system performance under differ-
ent distillation intervals (𝑑 = 5, 10, 20).

• Get Probability Distributions: Each local agent obtains the action
distributions P𝑖+1

𝑘
under state set S𝑝 based on its own parame-

terized policy 𝜋 (𝜃𝑖+1
𝑘

), and uploads P𝑖+1
𝑘

to server;
• Knowledge Aggregation: Server aggregates the uploaded proba-
bility distributions to obtain global consensus P𝑖+1 and sends
P𝑖+1 to local agents;

• Knowledge Digestion: Local agents calculate the KL divergence
between their predicted distributions P𝑖+1

𝑘
and global distribu-

tions P𝑖+1 to update their policy parameters 𝜃𝑖+1
𝑘

.

4 EMPIRICAL EVALUATION
We set up 10 heterogeneous agents to validate the effectiveness of
FedHPD in the system performance improvement. For the entire sys-
tem, we focus on the average performance of all agents, comparing
the system performance under independent local training (NoFed)
and FedHPD with different distillation intervals (𝑑 = 5, 10, 20). As
presented in Fig. 2, we conduct experiments on the CartPole with
a discrete action space and the InvertedPendulum with a continu-
ous action space. It is evident that, compared to NoFed, FedHPD
achieves superior results across both tasks. For Cartpole, the sys-
tem typically needs around 1200 local training rounds to achieve a
reward above 300 under NoFed, whereas with FedHPD, it requires
only about 700 training rounds on average. For InvertedPendulum,
NoFed can only obtain a reward of approximately 400, but the sys-
tem consistently achieves rewards exceeding 600 with FedHPD, .
The complete experiment settings and results could be found in [7].
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