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ABSTRACT
In this paper, we propose a new kernel-based method for compen-

sating latent nonlinear dynamics for consensus control in multi-

agent systems. Although kernel regression is a well-known and

thoroughly studied technique, recent research has shown its sig-

nificant non-asymptotic potential. Under general conditions, we

show the convergence of the proposed approach by stability anal-

ysis and show that applying kernel regression compensation for

consensus control leads to synchronization of the agents within

high probability error bounds.
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1 INTRODUCTION
Multi-agent systems (MAS) have received considerable attention

in recent years, particularly due to their potential for solving tasks

that are beyond the scope of a single agent [12]. The distributed

nature of MAS requires, however, dedicated techniques to work

efficiently.

In the field of MAS, there are many problems of interest, such

as formation control, where the task for the group of agents is to

achieve or maintain some desired state [8], and distributed estima-

tion, in which agents are used to model some unknown phenome-

non based on noisy observations [1, 13].

In this paper, we consider the leader-follower consensus problem,

one of the most common tracking problems related to multi-agent

systems. In this setting, we distinguish an individual (physical or

virtual) leader and its followers, whose goal is to track the leader’s

behavior. Nevertheless, only a fraction of all followers can observe
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the leader’s state directly. Hence, it is necessary to implement a

collaborative control policy. In the literature, one can find papers

raising various issues related to leader-follower consensus. For

instance, in [9], the problem of agent synchronisation is considered

when the network topology changes over time. In [5], the authors

discuss the coordination problem in the presence of time delays

in the communication between the agents. One may also consider

numerous assumptions regarding the dynamics of agents, such as

the influence of nonlinear components, time-invariant [6] or time-

varying [15] leader states, and continuous [7] or discrete [10] time

settings.

Our work focuses on achieving practical consensus, which may

differ from the final (asymptotic) consensus by not more than a

given small (known) value, cf. [2]. We consider the scenario where

the follower dynamics are unknown and influence the behavior of

the agents. Similar work has been presented in [14], where Gaussian

processes were used for estimation.

2 PROBLEM FORMULATION
We consider a network of𝑀 homogeneous followers and a single

independent leader. The 𝑖-th follower dynamics is assumed to be

¤𝑥𝑖 = 𝑓 (𝑥𝑖 ) + 𝑢𝑖 , 𝑖 = 1, 2, . . . , 𝑀 , where 𝑥𝑖 = [𝑥𝑖1, . . . , 𝑥𝑖𝑑 ]⊺ ∈ X ⊂
R𝑑 denotes the state vector, the mapping 𝑓 : X → R𝑑 characterizes

the latent dynamics of the follower, and 𝑢𝑖 is the control input.

The leader dynamics is given by ¤𝑥𝑙 = 𝑓𝑙 (𝑥𝑙 , 𝑡) , where 𝑥𝑙 =

[𝑥𝑙1, . . . , 𝑥𝑙𝑑 ]⊺ ∈ X is the state vector, and 𝑓𝑙 : X × R → R𝑑 .

Assumption 1. The follower’s latent dynamics 𝑓 : X → R𝑑 is a
Lipschitz continuous mapping, with a known constant 0 ≤ 𝐿 < ∞.

Assumption 2. The leader’s nonlinear dynamics 𝑓𝑙 (𝑥𝑙 , 𝑡) is a con-
tinuous and bounded function, i.e., there exists a positive constant ¯𝑓𝑙 ,
for which ∥ 𝑓𝑙 (𝑥𝑙 , 𝑡)∥ < ¯𝑓𝑙 , for all 𝑥𝑙 and 𝑡 .

Wemodel the connections between the followers as an adjacency

matrix 𝐴 =
{
𝑎𝑖 𝑗

}
, where 𝑎𝑖 𝑗 = 1 if the 𝑖-th and 𝑗-th followers can

share their states, and 0 otherwise. To describe their connections

with the leader, we use the diagonal matrix 𝐵 = diag{𝑏11, 𝑏22, . . . ,

𝑏𝑀𝑀 }, where 𝑏𝑖𝑖 = 1 if the leader can share its state with the 𝑖-th

follower, and 0 otherwise.

The tracking error between the 𝑖-th follower and the leader

is defined as 𝑒𝑖 = 𝑥𝑖 − 𝑥𝑙 . Furthermore, due to the distributed

character of the followers, we also define the consensus error 𝜉𝑖 =∑𝑀
𝑗=1

𝑎𝑖 𝑗
(
𝑥𝑖 − 𝑥 𝑗

)
+ 𝑏𝑖𝑖 (𝑥𝑖 − 𝑥𝑙 ) .
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We consider the control input consisting of a proportional con-

sensus error gain 𝑘𝑖 , as commonly used in the control theory for

multi-agent systems [3], and a model of the follower’s nonlinear

dynamics, 𝜇𝑖 (𝑥𝑖 ), which we discuss in the next sections. Thus, we

have 𝑢𝑖 = −𝑘𝑖𝜉𝑖 − 𝜇𝑖 (𝑥𝑖 ) .
Our main goal is to show that utilizing the proposed control

policy results in practical consensus, that is,

lim

𝑡→∞
∥𝑥𝑖 (𝑡) − 𝑥𝑙 (𝑡)∥ ≤ 𝜖 𝑖 = 1, 2, . . . , 𝑀, (1)

where 𝜖 is some prescribed positive constant.

3 KERNEL REGRESSION MODELING
In the considered setting, for every agent 𝑖 we define the training

data set 𝐷𝑖 , which contains 𝑁 corresponding data pairs (𝑥𝑖,𝑛, 𝑦𝑖,𝑛),
where

𝑦𝑖,𝑛 = 𝑓 (𝑥𝑖,𝑛) + 𝜂𝑖,𝑛, 𝑛 = 1, 2, . . . , 𝑁 , (2)

and 𝜂𝑖,𝑛 is additive noise, subject to the following assumption:

Assumption 3. The disturbance {𝜂𝑡 ∈ R𝑑 : 𝑡 ∈ N} is a sub-
Gaussian stochastic process.

Following the training set 𝐷𝑖 , we introduce the kernel regression

estimator𝑦𝑖 (𝜓 ) :=
∑𝑁
𝑛=1

𝐾ℎ (𝜓,𝑥𝑖,𝑛 )
𝜅𝑖,𝑁 (𝜓 ) 𝑦𝑖,𝑛,where𝜅𝑖,𝑁 (𝜓 ) := 𝜅𝑖,𝑁 (𝜓,ℎ)

=
∑⊺
𝑛=1

𝐾ℎ (𝜓, 𝑥𝑖,𝑛), with 𝐾ℎ (𝜓, 𝑥) := 𝐾 (∥𝜓 − 𝑥 ∥/ℎ), and where 𝐾

and ℎ are the kernel function and the bandwidth parameter, respec-

tively.

Assumption 4. The kernel 𝐾 : R → R is such that 0 ≤ 𝐾 (𝑣) ≤ 1

for all 𝑣 ∈ R. Also, 𝐾 (𝑣) = 0 for all |𝑣 | > 1.

To achieve practical consensus, we need to ensure that the mod-

els of the follower’s dynamics are reliable with high probability,

uniformly among all the agents and the domain X. To this end, we

utilise the nonasymptotic bounds for kernel regression proposed

in [13], extended to the multivariate setup in [4].

To establish the uniformity over the state space, firstly, we over-

approximate X with a hypercube Ω with an edge length 𝑟Ω =

max𝑥,𝑥 ′∈X∥𝑥 − 𝑥 ′∥. Furthermore, we introduce a finite set that

𝜌-covers Ω.

Lemma 1. Let Assumptions 1, 2 and 4 be in force and Ω be a
hypercube over-approximation of X ⊂ R𝑑 . Consider the estimator
𝑦𝑖 ∈ R𝑑 , with fixed bandwidth ℎ. Pick a parameter 𝜌 > 0 and
define a finite set ¯X, with cardinality | ¯X|, that 𝜌-covers Ω. Then, with
probability at least 1 − 𝛿 , for all 𝑀 agents, and for all 𝑥 ∈ X, there
exists a 𝑥 ∈ ¯X such that

∥𝑦𝑖 (𝑥) − 𝑓 (𝑥)∥2 ≤ 𝛽𝑖 (𝑥), 𝛽𝑖 (𝑥) := 𝐿(ℎ + 𝜌) + 2𝜎
𝛼𝑖 (𝑥, 𝛿)
𝜅𝑖 (𝑥)

, (3)

𝛼𝑖 (𝑥, 𝛿) :=


√︁

log(𝑀 | ¯X|𝛿−1
2
𝑑/2), for 𝜅𝑖 (𝑥) ≤ 1√︂

𝜅𝑖 (𝑥) log

(
𝑀 | ¯X|𝛿−1

(
1 + 𝜅𝑖 (𝑥)

)𝑑/2

)
, for 𝜅𝑖 (𝑥) > 1.

(4)

Note that, even though the cardinality of a covering set may not

be known a priori, it can be easily upper bounded, cf. [11].
After the statements of Lemma 1, we are in a position to introduce

the model 𝜇𝑖 , for 𝜇𝑖 defined as 𝜇𝑖 (𝑥) = 𝑦𝑖 (𝑥), where 𝑥 corresponds

to the nearest element of 𝑥 from
¯X.

4 LYAPUNOV STABILITY
Denote the global tracking error as 𝒆 =

[
𝑒⊤

1
, . . . 𝑒⊤

𝑀

]⊤
and con-

sider the following Lyapunove candidate𝑉 = 1

2
𝒆⊤ (�̃� ⊗ 𝐼𝑑 )𝒆, where

�̃� = 𝐿 + 𝐵 and 𝐿 is the Laplacian matrix. Next, observe that ¤𝑉 =

𝒆⊤ (�̃� ⊗ 𝐼𝑑 ) ¤𝒆, which can be upper bounded with probability 1 − 𝛿
by ¤𝑉 ≤ − 3

4
𝑘∗𝜆2

min
(�̃�) ∥𝒆∥2 + 𝜐

𝑘∗ , where 𝑘
∗

:= min {𝑘1, . . . , 𝑘𝑀 },
𝜐 =

∑𝑀
𝑖=1

(
𝛽𝑖 + ¯𝑓𝑙

)
2

and 𝜆min denotes the minimal eigenvalue.

Consider the multi-agent system with 𝑀 followers and an in-

dividual leader with dynamics ¤𝑥𝑖 , ¤𝑥𝑙 , where 𝑖 = 1, . . . , 𝑀 . Let As-

sumptions 1–4 be in force and apply the control 𝑢𝑖 . Then, it can be

shown, that for a given 𝛿 ∈ (0, 1), the norm of the global tracking

error, ∥𝒆∥, converges, with probability 1 − 𝛿 , to the ball centered at

the origin with radius

𝑟 ≤ 2

√
𝜐

√
3𝑘∗𝜆min (�̃�)

. (5)

The parameter 𝜐 depends on the model quality and the upper

bound of the leader dynamics. However, the model quality may be

improved by increasing the number of training data samples. Also,

the control gain 𝑘∗ is a crucial user-dependant parameter, which

can significantly improve the bound.

5 NUMERICAL EXPERIMENTS
Let us consider a network of 4 followers and an individual leader

𝑙 . The dynamics of the leader is given by ¤𝑥𝑙1 = sin(0.01𝜋 + 𝑥𝑙2),
¤𝑥𝑙2 = cos(0.01𝜋 + 𝑥𝑙1), whereas the followers have the dynamics

¤𝑥𝑖1 = 1.5𝑥𝑖1 sin(𝑥𝑖2), ¤𝑥𝑖2 = 𝑥𝑖1 cos(𝑥𝑖2), 𝑖 = 1, . . . , 4.

Every agent has access to an individual training data set con-

sisting of 500 measurements randomly distributed on the domains

[−1, 4] and [−2, 2] for 𝑥𝑖1 and 𝑥𝑖2. The training data samples are

perturbed by an additive Gaussian noise N(0, 0.5). The estimates

are calculated on an evenly spaced grid within their domains (grid

density 0.2).

Figure 1: Comparison of the global tracking error for 𝑘∗ = 20.

Applying kernel regression modeling for dynamics compensa-

tion allows to achieve similar results as in the scenario where the

dynamics are completely known and can be fully compensated.

6 CONCLUSIONS
In this paper, we have proposed a new approach for compensating

unknown nonlinear dynamics in consensus control. Due to the

rather mild a priori knowledge required for the applied kernel

regression smoothing method, the modeling process is well suited

for real-world applications.
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