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ABSTRACT

When planning a trajectory through continuous space, a ratio-

nal agent should consider the information limitations of itself and

its counterparts, and seek out useful observations. While approx-

imate solutions can be found to many such partially observable

multi-agent problems (i.e., through reinforcement learning), do-

ing so online and in continuous spaces is not trivial. The existing

control-theoretic method of model predictive game play (MPGP)

combines continuous, online control with game theoretic rational

play, but does not inherently support partial observability. Our work

addresses this case, presenting a method to generate information-

aware plans with MPGP alongside adjustments required to deploy it

on individual interacting agents. While our method is not real-time,

it allows us to consider what is required to compute solutions from

scratch.We evaluate themethod in variants of a partially observable

pursuit-evasion game, and demonstrate evidence of information

gathering behavior that outperforms passive competitors.
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1 OVERVIEW

Consider a pursuit-evasion scenario between two free-moving

agents, each with a mounted “camera” used to localize the other

which faces the direction of velocity. The pursuer starts randomly

in one of two locations — unknown to the evader between them.

In an ideal plan, the evader first views one location, then executes

the remainder of the trajectory based on what it senses: a desirable
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Blue: Pursuer
Red: Evader
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Figure 1: Illustration of information gathering modalities in

a pursuit-evasion game “Tag”. Cones indicate field of view at

each planned timestep. The pursuer’s initial position (“east”

/ “west”) is random and unknown to the evader.

behavior known as active information gathering. However, if future
observations are not considered while the plan is calculated, the

evader flees from the average pursuer location. Figure 1 visualizes

the distinction. Each column shows a possible pursuer location.

We address the online generation of such continuous, active

information gathering trajectory plans using model predictive game
play (MPGP). Standard MPGP considers only perfect information

games, so we develop a variant for imperfect information games

to permit active information gathering. We present a live planner

for these scenarios which uses a particle representation of the full

joint distribution of observation histories and states.

Our work relates to several overlapping frameworks. We primar-

ily consider partially observable stochastic games (POSGs), 𝑁 -player

extensions of POMDPs [1], [18]. Planning in them is NP-hard [16].

Nevertheless, modern MARL advances have yielded strong strate-

gies in (mostly discrete) POSGs like Stratego [12], Starcraft [15],

and Diplomacy [2]. POSGs are related to tree-based extensive form
games, and the distinction varies [10] [3]. Many relevant MARL

methods are informed by POSGs and/or EFGs, like neural fictitious

self-play [8], deep counterfactual regret minimization [5], and pol-

icy space response oracles [11], but these methods are primarily

offline, and often (as in I-POMDPs [7]) limited by belief order.
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Model predictive game play, on the other hand, is interpretable as

a control-theoretic approach [6] [17]. In MPGP, players solve a per-

fect information game on a rolling horizon (essentially, multi-agent

model predictive control). We merge it with belief space planning
[13], which solves single optimization problems under imperfect
information. Past attempts to unite the two stop at the first order

of belief [14].

2 APPROACH

Consider a POSG G, defined as a tuple with the following elements:

• N := 1..𝑁 , the set of players;

• X,A, andZ, the sets of states 𝑥 , actions 𝑎, and observations

𝑧 (joint across players and time);

• 𝑇 (𝑥𝑡 |𝑥𝑡−1, 𝑎𝑡−1) and 𝑂 (𝑧𝑡 |𝑥𝑡 ), the public transition and ob-

servation models;

• 𝑟 (𝑥𝑡 ), the (simplified) reward functions; and

• 𝑋0 (𝑥0), the joint prior distribution over players’ states. (This

distributes over initial configurations of the game for all play-

ers. These initial states may be correlated between players.)

We index over both players and time: i.e., 𝑥 (𝑖 ) denotes player 𝑖’s
states for all timesteps, 𝑥𝑡 denotes all players’ states at timestep

𝑡 , and undecorated 𝑥 denotes the joint state at all timesteps. We

define player 𝑖’s cost 𝑐 (𝑖 ) (𝑥) := −∑∞
𝑡=1

𝑟 (𝑖 ) (𝑥𝑡 ). We consider only

complete, differentiable POSGs with deterministic strategies.

We encounter two necessities when adapting POSGs for MPGP.

First, rather than planning single trajectories, players map future ob-

servation histories to trajectories. To do this, we consider finite past

and future of lengths 𝑇past and 𝑇future respectively, and represent

mappings from observation histories 𝑧
(𝑖 )
[𝑡 ] := [𝑧 (𝑖 )

𝑡−𝑇past+1
, ..., 𝑧

(𝑖 )
𝑡 ] to

actions 𝑎
(𝑖 )
𝑡 as policies 𝜋 with parameters 𝜃 . Second, players must

account for the past and future observations of other players. There-
fore, players track the joint distribution of observation histories

and states 𝑞𝑡 (𝑥𝑡 , 𝑧 [𝑡 ] )) from 𝑋0 to the planning time 𝑡 , across all

players (including themselves). This distribution is unconditioned

on past observations (with one exception discussed later).

In total, at each step, each player 𝑘 ∈ N solves the gameargmin

𝜃 (𝑖 )

∫
𝑥∈X1+𝑇

future

𝑧∈Z𝑇
past

+1+𝑇
future

𝑐 (𝑖 ) (𝑥)𝑝 (𝑥, 𝑧 |𝑥𝑡 , 𝑧 [𝑡 ] )𝑞𝑡 (𝑥𝑡 , 𝑧 [𝑡 ] )
𝑖 (1)

at each horizon (seeking Nash equilibrium across all 𝑖 ∈ N ), where

𝑝 (𝑥, 𝑧 |𝑥𝑡 , 𝑧 [𝑡 ] ) =
𝑡+𝑇future∏
𝑡=𝑡

𝑇 (𝑥𝑡+1 |𝑥𝑡 , 𝜋𝜃 (𝑧 [𝑡 ] )) 𝑂 (𝑧𝑡 |𝑥𝑡 ) (2)

and executes 𝜋
(𝑘 )
𝜃

(𝑧 (𝑖 )[𝑡 ] ), using real observation history 𝑧
(𝑖 )
[𝑡 ] .

Accordingly, our approach is as follows for each player 𝑘 :

(1) At 𝑡 = 0, initialize 𝑞0 (𝑥, 𝑧) as a particle representation of 𝑋0.

(2) Solve the equilibrium problem in Eq. 1: estimate the integral

using Monte Carlo sampling of 𝑞𝑡 and perform gradient play.

(3) Execute 𝜋
(𝑘 )
𝜃

(𝑧 (𝑖 )[𝑡 ] ). Record 𝑧
(𝑘 )
𝑡+1

.

(4) Generate 𝑞𝑡+1
: Step particles in 𝑞𝑡 forward with T and O.

(5) Repeat from (2) with 𝑡 + 1.

We include two particle-updating refinements for (4). First, agents

perform step (2) 𝑁eq times and update each particle with a random

solution to account for potential equilibrium disagreement among

players. Second, with very low probability 𝛾 , a particle is updated

with fixed observation 𝑧
(𝑘 )
𝑡

in (4) and reweighted (like a Bayes

filter), ensuring the planner’s true history is represented.

3 RESULTS

We implemented this approach in the Julia language [4], represent-

ing policies as feedforward neural networks with Flux.jl [9]. We

applied it on a two-dimensional, continuous pursuit-evasion game

Tag, in which agents control their velocity, and their position 𝑥pos
evolves through simple integrator dynamics for 𝑇

future
= 𝑇past = 7

timesteps. The pursuer minimizes | |𝑥 (1)
pos

− 𝑥
(2)
pos

| |2 while the evader

maximizes it at every timestep. Players know their own locations,

and observe the opponent with Gaussian noise proportional to the

opponent’s angular distance outside a fixed field of view in the di-

rection of motion. Initial positions are normally distributed around

the origin. There is no process noise.

We also consider two variants: in TagChain 𝑁 players alter-

nately pursue or evade the next indexed player, and in Hide&Seek

a number of visual and physical obstacles are introduced.

Passive

pursuer(s)

Active

pursuer(s)

T
a
g

Passive evader

12.58 ± 1.44

-12.58 ± 1.44

9.97 ± 1.19

-9.97 ± 1.19

Active evader

13.97 ± 1.92

-13.97 ± 1.92

12.98 ± 1.18

-12.98 ± 1.18

T
a
g
C
h
a
i
n

Passive evaders

17.68 ± 1.39

-25.91 ± 1.54

16.79 ± 1.43

-25.12 ± 1.57

Active evaders

15.79 ± 1.23

-27.48 ± 1.39

15.71 ± 1.26

-27.29 ± 1.41

H
i
d
e
&
S
e
e
k

Passive evader

19.62 ± 1.33

-19.62 ± 1.33

17.93 ± 1.34

-17.93 ± 1.34

Active evader

18.91 ± 1.25

-18.91 ± 1.25

16.75 ± 1.34

-16.75 ± 1.34

Table 1: Costs in passive/active configurations, per scenario

Table 1 summarizes the average costs and standard errors for

each possible configuration in each game over 20 trials and 20

timesteps. (“Active,” as in “active information gathering,” is our

method.) Indeed, in almost all cases, both pursuer cost (blue) and

evader cost (red) decrease when the corresponding player gathers

information actively. (The sole exception is Hide&Seek’s evader,

which intuitively has little incentive to gather information.)

4 CONCLUSION

Thiswork demonstrates the potential for online planning in partially-

observable continuous games via model predictive game play. Im-

provements in handling mixed strategies and finite recall are im-

portant avenues for further development. In our experiments, the

method converged in tens of seconds before any code or hardware

optimizations — placing real-time, imperfect-information planning,

as required for multiple robotics applications, within reach.
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