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ABSTRACT
A wide variety of resource allocation problems operate under re-
source constraints that are managed by a central arbitrator, with
agents who evaluate and communicate preferences over these re-
sources. We formulate this broad class of problems as Distributed
Evaluation, Centralized Allocation (DECA) problems and propose
methods to learn fair and efficient policies in centralized resource
allocation. Our methods are applied to learning long-term fairness
in a novel and general framework for fairness in multi-agent sys-
tems. Our methods outperform existing fair MARL approaches on
multiple resource allocation domains, even when evaluated using
diverse fairness functions, and allow for flexible online trade-offs
between utility and fairness.
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1 INTRODUCTION AND BACKGROUND
We look at a class of problems that we term Distributed Evaluation,
Centralized Allocation (DECA), which involves sequential decision
making with distributed agents evaluating resources and a central
decision maker enforcing constraints and maximizing total utility.
To the best of our knowledge, thus far, researchers have investi-
gated the different problems in this class separately and applied
domain-specific approaches to solve them [3, 4, 8]. In this paper,
we represent them with a unifying DECA formulation and propose
fairness approaches that apply broadly to all DECA problems.

In DECA problems, each agent 𝑖 evaluates the utility of receiving
any resources 𝑎 independently (Distributed Evaluation (DE)). This
may also include some predictor of long-term value 𝑄 (𝑜𝑖 , 𝑎) based
on the current agent observation 𝑜𝑖 , like a value function learned
from experiences [7]. The arbitrator uses these valuations to allocate
a limited set of indivisible resources to the agents to maximize total
utility based on the following ILP (Centralized Allocation (CA)):

max
𝑥𝑖 (𝑎) ∈{0,1}

∑︁
𝑖∈𝛼

∑︁
𝑎∈𝐴𝑖

𝑥𝑖 (𝑎)𝑄 (𝑜𝑖 , 𝑎) (1)
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while satisfying resource and allocation constraints:∑︁
𝑎∈𝐴𝑖 ,𝑥𝑖 (𝑎) ∈{0,1}

𝑥𝑖 (𝑎) = 1, ∀𝑖 ∈ 𝛼, (Action Constraint) (2)∑︁
𝑎∈A

𝑐 (𝑎)𝑘 ≤ R𝑘 , ∀𝑘 ∈ {1, . . . , 𝐾}, (Resource Constraint)

(3)

Here, R ∈ R𝐾 denotes the availability of 𝐾 different types of re-
sources, and 𝑐 (𝑎)𝑘 is the resource consumption function denoting
how many resources of type 𝑘 ∈ {1, 2, . . . , 𝐾} are consumed by
action 𝑎. This is a general formulation that has seen use in domains
ranging from ridesharing [8] to homelessness prevention [3].

Further, we present a framework to also learn to improve fairness
in DECA problems. Previous work in fair multi-agent reinforcement
learning [2, 5, 9, 11] has attempted to train independent agents to
behave fairly in a cooperative setting. However, these approaches
do not model the complexity of enforcing resource constraints and
do not consider flexible utility-fairness trade-offs. When they do
consider constraints (e.g., [5]), the solutions are domain-specific
and myopic. DECAF, our approach for learning fairness in DECA
problems, allows agents to learn long-term fairness, in addition to
being able to trade off utility and fairness during execution.

A longer version of this paper is available on ArXiv [6].

2 METHODS
Formally, we seek to maximize a combined measure of system
utility and fairness, represented as:

max (1 − 𝛽)U𝑇 + 𝛽F𝑇 (4)

where U𝑇 denotes the total utility at time 𝑇 and F𝑇 represents
the fairness measure, weighted by 𝛽 . Our approach to account for
fairness involves updating the value function associated with agent
utilities 𝑄 (𝑜𝑖 , 𝑎) to also capture fairness.

Value functions are often learned from Bellman updates [10],
which capture the error in the predicted value and the actual value
observed in the trajectory. We adapt a version of Double-Deep
Q-Learning [1] modified to suit the DECA framework to learn
using experience replay with centralized training. A transition
𝜏 = ⟨o,A, r𝑢 , r𝑓 , o′⟩ contains utility rewards r𝑢 and fair rewards
r𝑓 for all agents in addition to the previous and next observations
(o, o′) and the central allocation A. Given a replay buffer D, we
want to minimize the loss function 𝐽𝜃 = E𝜏∼D𝐿(𝛿 (𝜏)), where 𝛿 (𝜏)
is the Bellman error of the transition 𝜏 , and 𝐿 is the MSE loss.

We propose three approaches for integrating fairness:
• JointOptimization (JO):A single estimator optimizes aweighted
combination of fairness and utility.

𝛿 (𝜏) = (1 − 𝛽)r𝑢 + 𝛽r𝑓 + 𝛾𝑄𝜃 (o′) −𝑄𝜃 (o,A) (5)
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Figure 1: Change in system utility and fairness as 𝛽 is increased, with 𝛽 = 0 at the top left 𝛽 = 1 at the bottom-right. For all
domains, we can see that split and joint optimization perform similarly, while learning only fairness can sometimes be slightly
worse. All our methods Pareto-dominate SOTO and FEN. Each point depicts the average performance over five different models
trained at that 𝛽 value, and the lines show the Pareto front for each method.

• Split Optimization (SO): Separate estimators for fairness (𝐹𝜃 (·))
and utility (𝑈𝜃 (·)) allow dynamic adjustment of their trade-off
during policy execution.

𝛿 𝑓 (𝜏) = r𝑓 + 𝛾𝐹𝜃 (o′) − 𝐹𝜃 (o,A) (6)
𝛿𝑢 (𝜏) = r𝑢 + 𝛾𝑈𝜃 (o′) −𝑈𝜃 (o,A) (7)

𝑄 (o,A) = (1 − 𝛽)𝑈𝜃 (o,A) + 𝛽𝐹𝜃 (o,A) (8)

• Fair-Only Optimization (FO): A fairness estimator (𝐹𝜃 (·)) ad-
justs a pre-existing utility function𝑈 ∗ (·) to incorporate fairness,
useful when utility functions are provided externally.

𝛿 𝑓 (𝜏) = r𝑓 (𝑠, 𝑎) + 𝛾𝐹𝜃 (o′) − 𝐹𝜃 (o,A) (9)
𝑄 (o, 𝐴) = (1 − 𝛽)𝑈 ∗ (o,A) + 𝛽𝐹𝜃 (o,A) (10)

The fair rewards r𝑓 are computed based on the difference in
system fairness (based on agents’ accumulated historical utilities)
between the current and next state, decomposed to each agent. One
simple decomposition is to equally divide the change in fairness
across all agents. For our experiments, we use a stronger decompo-
sition for the fairness objective of minimizing variance in agent
utilities, calculated by attributing each agent’s contribution to the
change in variance.

3 RESULTS
We compare our methods to two baselines, FEN [2] and SOTO [11].
These methods rely on policy optimization, and output action proba-
bilities rather than Q-values, and are not designed for environments
with resource constraints. We adapt two variants for a fair com-
parison (1) Using the action probability as Q-values (_ILP suffix),
and (2) Sequential allocation without the ILP by masking resources
claimed by previous agents (_Mask suffix).

We convert some of the environments used by FEN and SOTO
to make them DECA environments by adding resource constraints
and a central decision maker. Our results are shown in Figure 1.
Our methods clearly Pareto-dominate the baselines, in addition
to providing diverse trade-offs based on the 𝛽 value selected. All
three of our methods provide similar results, with FO being slightly
worse at some intermediate 𝛽 values.

SO and FO further provide the additional flexibility of changing
𝛽 online to vary how fair or utilitarian the decisions are. This is

(a) System Utility (b) Variance

Figure 2: Evaluation of SO models trained on 𝛽𝑡𝑟𝑎𝑖𝑛 and eval-
uated on 𝛽𝑡𝑒𝑠𝑡 for the Matthew environment. Brighter colors
indicate better outcomes.

possible because they both use two separate models, only combin-
ing them during inference to compute the fair-efficient Q-value
(Eq. 8,10). This is illustrated for SO for the Matthew domain in
Figure 2. We can see that despite the different 𝛽𝑡𝑟𝑎𝑖𝑛 used, each
model improves fairness as 𝛽𝑡𝑒𝑠𝑡 is increased, and improves utility
as it is decreased. This is a major strength of SO and FO.

JO is useful when a single model is needed given a desired 𝛽 .
For flexibility, SO and FO are preferred, with FO being the better
choice if a utility model is already known or if the utility function
is a black box. SO is the best approach for learning both fairness
and utility together, having the strengths of both JO and FO.

4 CONCLUSION
We proposed DECAF, a framework for learning long-term utility
and fairness estimates in multi-agent resource allocation. DECAF
is among the first approaches to optimize fair resource allocation
under resource constraints, supporting diverse problem settings
by decoupling fairness and utility metrics. Split and Fair-Only op-
timization enable online trade-offs between utility and fairness
without retraining, enhancing interpretability. Our results demon-
strate the flexibility and effectiveness of our approaches across
various scenarios. DECAF is the first general approach for inte-
grating fairness into constrained multi-agent resource allocation
using Q-learning, paving the way for future advancements in fair
AI decision-making.
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