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ABSTRACT
Bad actors in the maritime industry engage in illegal behaviors

after disabling their vessel’s automatic identification system (AIS)

- which makes finding such vessels difficult for analysts. Machine

learning approaches only succeed in identifying the locations of

these “dark vessels” in the immediate future. This work leverages

ideas from the literature on abductive inference applied to locating

adversarial agents to solve the problem. Specifically, we combine

concepts from abduction, logic programming, and rule learning to

create an efficient method that approaches full recall of dark vessels

while requiring less search area than machine learning methods.

We provide a logic-based paradigm for reasoning about maritime

vessels, an abductive inference query method, an automatically

extracted rule-based behavior model methodology, and a thorough

suite of experiments.
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1 INTRODUCTION
Maritime vessels are equipped with an automatic identification

system (AIS) to track their position on the globe [28]. However,

malicious actors often disable this system - becoming “dark” when

conducting illegal activities. Understanding these “dark vessels”

has implications for security [29], maritime analysis [20, 35], plan-

ning [3], and forecasting [47]. Recently, with the support of the

U.S. Treasury and European Union in enforcing maritime services

prohibitions for seaborne Russian oil [44], industry efforts have

targeted real-world issues such as illegal fishing, human trafficking,

border protection, and sanction violations [42, 45], highlighting
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the increasing need for efficient dark vessel detection. Recent ma-

chine learning (ML) approaches are limited to trajectory prediction

with a time horizon of less than an hour [13, 18, 23, 24] or rely

on satellite data susceptible to weather conditions [1, 7, 12]. Other

approaches require expert intervention using the radio frequency

Doppler shift [42]. These approaches are not data-efficient and

cannot explain why they determined a given result. We note that

from a practical perspective, the limited forward-prediction value

of ML approaches is significant - but the ability to find the dark

vessel locations degrades with increased search area and resources.

Meanwhile, recent work on generating faux trajectories for human

movement suggests that abductive inference can address some of

these difficulties [5] - although that work does not predict real tra-

jectories and was not applied to the maritime domain. In this paper,

we combine ideas from abductive inference, logic programming,

and rule learning to identify the locations of dark vessels based

on partial trajectories. We show that we are able to approach full

recall of dark vessel trajectories requiring less than half of the area

coverage required by our machine learning baselines. Further, we

found that the recall performance of the abduction-based approach

increases with search area and resources - unlike the degradation

experienced with ML. We also demonstrate data efficiency, efficient

inference calculations, and describe our ongoing efforts to deploy

this technology in an operational platform. After a review of back-

ground material (Section 2) we make the following contributions:

(1) We provide a formalism for reasoning about maritime ves-

sels including a logical language to express maritime vessel

trajectories (Section 3.1) and the framing of an abduction

problem (Section 3.2) that include a top-𝑘 approximation

that we explore empirically in this paper.

(2) We provide a simple but effective rule-learning approach to

agent behavior modeling (Section 3.3) that not only allows

for data-driven (and data-efficient) abduction but also affords

explainability of the results.

(3) We provide a suite of experimental results (Section 4) that

demonstrate how the abduction approach is area-efficient

by saturating with 157% higher recall than baselines for an

area of 30𝑘𝑚2
, provides long-term predictions where ML

methods fail, and provides improved performance of 476%

in recall with additional resources.

(4) We also show that the approach is efficient in both terms of

runtime and data as it can be instantiated with very little
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data - even a single training trajectory (providing comparable

performance of 0.62 precision to the use of all historical data -

where we show ML catastrophically fails), as well as provide

various ablation studies.

(5) We describe our efforts to deploy this system on an opera-

tional platform to support real-world analysts in the discov-

ery of dark vessels (Section 5).

2 BACKGROUND
Dark Vessel Analytics. Maritime vessels employ deceptive ship-

ping practices to benefit from violating international law, con-

ducting illicit operations, violating environmental protections, and

avoiding sanctions. In the 18th century, vessels disguised their Jolly

Roger flags to deceive prospective victims before attacking them.

Currently, vessels manipulate their AIS to avoid being monitored

while performing illicit activities. On a monthly average, 800, 000

dark activity events were detected in 2020− 2022 [45]. Lately, in the

aftermath of the Russia-Ukraine war, sanctions on maritime trade

have evolved [44], and monthly dark activity rose by 216% [46].

More recently, in 2024, there has been a 340% rise in dark activ-

ity [25] much of which focused on the Black Sea (the area used

in our experiments in Section 4). Such activities when gone unde-

tected, can have realistic detrimental impacts on ecosystems, safety,

trade, and security. To monitor and control such behavior, efforts

from government agencies [1, 44], and industry [7, 22, 42, 45], have

invested in various efforts that began in earnest with the DARPA

PANDA program over a decade ago [15]. These programs have led

to a line of research that we describe in the next subsection.

Related Work. Earlier work on maritime vessel trajectory predic-

tion relied on Markov models [26, 49], and extensions have also

been applied to make efficient predictions. However, we find Hid-

den Markov Model to run out of memory (exceeding 200GB) during

hidden-state extraction due to the trajectory size, a common step

in traditional Markov approaches [27, 30]. In contrast, our method

efficiently handles a similar step - extracting region types without

running out of memory. Markov models are known to result in

reduced performance as the trajectory size increases [48]. Also,

Markov models work well for simple finite parameters but are un-

able to capture complex patterns and this led to the later use of

deep learning techniques for the problem - further enabled by the

availability of large datasets of maritime trajectories. To address

the complexities of spatio-temporal interactions, [10] provides a

sequence-to-sequence RNN to predict future maritime trajectories.

Related work looks to predict a point ship location using an LSTM-

transformer combination [16, 50]. These methods differ from our

approach as they only provide accurate predictions up to an hour

in the future, require large amounts of training data, and do not

afford explainability (so the analyst user cannot easily justify the

dark vessel predictions to operational personnel). Maritime trajec-

tory patterns are also studied widely for traffic management [19]

with an unsupervised hierarchical method and safety [32] where

they mine patterns to focus on shipping route characterization and

anomaly detection. These methods are valuable for understanding

typical and atypical trajectory behavior, but they primarily focus

on identifying patterns after the fact. In contrast, our method lever-

ages trajectory behavior through abductive reasoning to infer an

agent’s future locations. This work varies from other maritime ap-

plications of Artificial Intelligence (AI) like vessel detection [31]

where a model generates bounding boxes for the object vessel in

an image or tracking it in a video [21]. This work also differs from

a complementary line of work of patrolling strategies [4, 6, 9] that

generates optimal patrol locations to cover a set of targets as we

focus on generating locations to capture a target at a time horizon

(as opposed to developing patrol plans for a non-adversarial agent).

Trajectory forecasting is a separate line of work, it is focused on

short-time horizon prediction of human or robotic movement as op-

posed to the long-time horizon, global-scale prediction of maritime

vessels. Some notable approaches use deep learning architectures

based on convolutional networks [23], adversarial methods [13],

autoencoders [24], and Markov chains [11, 14].

Abductive inference has provided a natural paradigm for lo-

cating unobserved adversarial agents - requiring much less data

and providing more transparency than ML methods. Early work

in this area offered simple models relating the adversary’s point

location to geospatial phenomenon [41]. Later work took a data-

driven approach to learn a model of the adversarial behavior that

enables abductive inference [34]. None of the aforementioned prior

work on abduction involves trajectories nor does it involve making

predictions of agent behavior over a long time horizon. Comple-

mentary to abduction work is the generation of spatial regions [8],

which aims to maintain meaningful spatial boundaries for trans-

portation services by partitioning an area of interest via region

clustering (we employ similar techniques during pre-processing).

More recentwork on abductive inference has been applied to human

movement [5]. That work is designed to produce faux movement

trajectories and not identify actual future regions. We note that it

relies on a different approach (the use of A*) suitable to create a

movement trajectory that meets constraints but doesn’t provide

regions that allow for multiple future trajectories. In contrast, this

work examines generating regions with a top-𝑘 entailment query

necessitated by the nature of the problem and data at hand.

3 APPROACH
3.1 Logic for Maritime Agents
Logical Language. To define various aspects of the maritime do-

main environment, we use an annotated language [17, 38] with

temporal semantics [2, 5, 40]. The language is defined with a set of

constants that is partitioned into multiple domains (D𝑖 ⊂ C), one
such subset,D𝑙𝑜𝑐 , is a set of all potential locations of the vessel in a

continuous space (“area of interest” or AOI) of dimensions𝑀×𝑁 . As

usual in first-order logic, we define a corresponding set of variables

(V) and a set of predicate symbols (P). Additional sets of constants
include a set D𝑎𝑔𝑡 - a set of agents (in our application, maritime

vessels) andDr - a set of all regions within the AOI (in practice, we

compute this based on historical trends ahead of time). When it is

relevant, we shall subscript such constants with the upper-right and

lower-left locations - e.g. r𝑙1,𝑙2 ∈ Dr is a region with upper-right

corner 𝑙1 and lower-left corner 𝑙2 (𝑙1, 𝑙2 ∈ D𝑙𝑜𝑐 ). We treat r as a set
of all locations enclosed by the region. In addition to the first-order

logic syntax and semantics, we allow for annotation [ℓ,𝑢] (that
are elements of a lower semi-lattice structure L) which is simply

a subset of the unit interval [0, 1] - which generalizes both fuzzy

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

262



and classical logic. We write an annotated literal 𝑎 : [ℓ,𝑢] to mean

that the literal 𝑎 has truth value associated with interval [ℓ,𝑢]. We

refer the reader to [17, 38] for lattice-theory justification of this

approach. We learned our logic programs in a way to treat these

bounds as confidence (see Section 3.3). We follow the extension of

temporal syntax and semantics [2, 5] to form temporally annotated

facts (TAFs) and annotated formulae. For an annotated literal 𝑓 that

is true at time 𝑡 , 𝑓𝑡 is a TAF. Annotated formulae are constructs

formed with operators like AFTER(𝑓 , 𝑓 ′). For annotated literals

𝑓 , 𝑓 ′, AFTER(𝑓 , 𝑓 ′) is interpreted as 𝑓 occurs after 𝑓 ′.
Example 3.1 (Language). In our use-case, we consider an agent

𝑎𝑔𝑡 ∈ D𝑎𝑔𝑡 that travels among 𝑙𝑜𝑐1, 𝑙𝑜𝑐2.. ∈ D𝑙𝑜𝑐 in an AOI. The
agent can be at a location covered by a region r ∈ Dr where r ⊆ D𝑙𝑜𝑐 .
We define domain-specific binary predicate, at, where at(𝑎𝑔𝑡, r) is a
ground atom for an agent, 𝑎𝑔𝑡 , at a location in r indicating that the
agent is within the region of r. We also define domain-specific unary
predicates formed with D𝑎𝑔𝑡 constants: nearport, change-direction,
high-speed, low-speed, hotspot, draught, ais-off and stay (expressing
that the agent is near a port, changed its course sharply, has a high/low
speed compared to an average, at a high-density hotspot, varied its
draught, stopped transmitting AIS signals, and is at an anchor point
by staying put for a long duration).

As per previous work on temporal annotated logic [2, 5, 40],

given the set of all ground literals G, a set of timepoints 𝑇 , an

interpretation 𝐼 is any mapping G × 𝑇 → L. We define a satis-

faction relationship “|=” and rules for temporally annotated exten-

sions [2, 40]. A program Π is a set of TAFs and rules, where each

has an annotated atom in the head and a conjunction of annotated

formulae in the body. An interpretation 𝐼 is said to satisfy Π, if and
only if 𝐼 satisfies every rule and TAF in Π. The minimal model is an

interpretation that can be thought of everything that can be con-

cluded from deductive inference and commonly used for entailment

queries in annotated logic [2, 17, 38, 40] often computed using a

fixpoint operator. In this work, we slightly abuse the notation of

[17] and use Γ∗ (Π) to denote the minimal model of Π.
Initial and Predicted Locations. In our problem, we must repre-

sent the initial conditions of the agent - in other words, the areas

the shipping vessel has traveled in the first part of its voyage be-

fore going dark. We represent this simply with the logic program

consisting of a set of TAFs formed with the predicate at introduced
in Example 3.1. Here, we would expect fine-grain information on

the location of the shipping vessel from information such as AIS

- to extract each region (the second argument associated with the

at-formed TAF). We can think of such an initial logic program, Π𝑖𝑛𝑖𝑡

being complemented by an additional logic program - also created

with TAFs - used to represent the predicted agent’s behavior in the

future - Π𝑝𝑟𝑒𝑑 . Intuitively, the elements of Π𝑝𝑟𝑒𝑑 would resemble

the elements of Π𝑖𝑛𝑖𝑡 except that they would occur after the facts of

Π𝑖𝑛𝑖𝑡 . Further, in practice, we would expect regions associated with

Π𝑝𝑟𝑒𝑑 to be larger than Π𝑖𝑛𝑖𝑡 . We shall refer to these logic programs

Π𝑝𝑟𝑒𝑑 ,Π𝑖𝑛𝑖𝑡 as region set program and provide Example 3.2 of this.

Example 3.2. Consider an agent 𝑎𝑔𝑡 ∈ D𝑎𝑔𝑡 in the Figure 1 that
travels from time 𝑡1 to 𝑡𝑖 -denoted by the solid blue line (we notate
timestamps to be a set of timepoints = {𝑡1, ., 𝑡𝑖 , .., 𝑡 𝑗 , .., 𝑡𝑛} with a
precedence relationship) and then goes dark after 𝑡𝑖 -denoted by the
dashed line, a time horizon 𝑡 𝑗 , then the initial conditions are repre-
sented as follows, Π𝑖𝑛𝑖𝑡 = { at(𝑎𝑔𝑡, r(31.14,46.12),(31.11,46.09) )𝑡1

Figure 1: Abduction model predictions. The solid line is the
input test sample. The dashed line is the ground truth. Black
regions are the generated regions along with confidence and
region types.

, .., at(𝑎𝑔𝑡, r(30.88,46.48),(30.86,46.45) )𝑡𝑖 } and the predictions are repre-
sented as follows, Π𝑝𝑟𝑒𝑑 = {at(𝑎𝑔𝑡, r(30.87,46.51),(30.85,46.48) )𝑡 𝑗 ,
at(𝑎𝑔𝑡, r(30.82,46.51),(30.79,46.48) )𝑡 𝑗 ,at(𝑎𝑔𝑡, r(30.88,46.48),(30.85,46.45) )𝑡 𝑗
,at(𝑎𝑔𝑡, r(30.87,46.50),(30.84,46.47) )𝑡 𝑗 ,at(𝑎𝑔𝑡, r(30.87,46.49),(30.84,46.47) )𝑡 𝑗 }-
denoted by the 5 corresponding black regions in Figure 1.

Behavior Rules. We also envision a logic program of a set of

behavior rules of what the shipping vessel normally does (Π𝑏𝑒ℎ𝑎𝑣 )

with example rules mined from data in Table 1. While it is possible

to make these rules function as hard constraints, we instead make

them soft constraints and measure how well an agent complies

with these rules - enabling us to easily build a parsimony function.

Ground Truth Trajectories. Based on historical data, we assume

we have trajectory data for a given agent that occurs outside ofΠ𝑖𝑛𝑖𝑡 .

For a given agent, such a trajectory is simply a series of location-

time tuples that were observed in the ground-truth data. So for

agent 𝑎𝑔𝑡 , trajectory 𝜏𝐴𝐼𝑆𝑎𝑔𝑡 = ⟨(𝑙𝑜𝑐1, 𝑡1), . . . , (𝑙𝑜𝑐𝑖 , 𝑡𝑖 ), . . . , (𝑙𝑜𝑐𝑛, 𝑡𝑛)⟩,
the ground truth trajectory is 𝜏𝑎𝑔𝑡 = ⟨(𝑙𝑜𝑐𝑖 , 𝑡𝑖 ), . . . , (𝑙𝑜𝑐𝑛, 𝑡𝑛)⟩. We

define the notion of entailment of a trajectory at the syntactic level

(though it is trivial to derive a semantic version) and provide Exam-

ple 3.3 of this. We say the program Π entails an agent’s trajectory

𝜏𝑎𝑔𝑡 if for all (𝑙𝑜𝑐, 𝑡) ∈ 𝜏𝑎𝑔𝑡 there is some TAF at(𝑎𝑔𝑡, r)𝑡 ∈ Π (which

occurs at the same time) such that 𝑙𝑜𝑐 ∈ r.
Example 3.3. Following the notion built in Example 3.2, the tra-

jectory for agent 𝑎𝑔𝑡 is, 𝜏𝐴𝐼𝑆𝑎𝑔𝑡 = ⟨((31.11, 46.00), 𝑡1), .., ((30.87, 46.47)
, 𝑡𝑖 ), ((30.85, 46.48), 𝑡𝑖+1), ((30.81, 46.49), 𝑡𝑖+2), .., ((31.07, 46.00), 𝑡𝑛)⟩,
then Π𝑖𝑛𝑖𝑡

⋃
Π𝑝𝑟𝑒𝑑 |= 𝜏𝐴𝐼𝑆𝑎𝑔𝑡 . Note that tuples of 𝜏

𝐴𝐼𝑆
𝑎𝑔𝑡 , like 𝜏

1, .., 𝜏𝑖 are
entailed by TAFs in Π𝑖𝑛𝑖𝑡 - (31.11, 46.00) ∈ r(31.14,46.12),(31.11,46.09) ,
..,(30.87, 46.47) ∈ r(30.88,46.48),(30.86,46.45) and the others can be en-
tailed from Π𝑝𝑟𝑒𝑑 - (30.85, 46.48) ∈ r(30.87,46.50),(30.84,46.47) , and
(30.81, 46.49) ∈ r(30.82,46.51),(30.79,46.48) - denoted by black regions 2
and 3 in Figure 1, for instance. Similarly, Π𝑝𝑟𝑒𝑑 |= 𝜏𝑎𝑔𝑡 .

3.2 Abducing Agent Trajectories
For a single agent, we can think of finding Π𝑝𝑟𝑒𝑑 as an abduction

problem. In other words, given an agent 𝑎𝑔𝑡 , initial conditions Π𝑖𝑛𝑖𝑡 ,

behavioral rules Π𝑏𝑒ℎ𝑎𝑣 , and ground-truth trajectory 𝜏𝑎𝑔𝑡 we want

to find Π𝑝𝑟𝑒𝑑 such that:
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(1) Π𝑖𝑛𝑖𝑡 ∪Π𝑏𝑒ℎ𝑎𝑣∪Π𝑝𝑟𝑒𝑑 is consistent (i.e., Γ∗ (Π𝑖𝑛𝑖𝑡 ∪Π𝑏𝑒ℎ𝑎𝑣∪
Π𝑝𝑟𝑒𝑑 ) exists).

(2) For each Π𝑝𝑟𝑒𝑑 entails 𝜏𝑎𝑔𝑡

If these criteria are met, we say Π𝑝𝑟𝑒𝑑 is an explanation for

⟨𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ,Π𝑏𝑒ℎ𝑎𝑣, 𝜏𝑎𝑔𝑡 ⟩. In this paper, our goal is to find a function

that, based on historical data, can return an explanation. We define

an explanation function as follows.

Definition 1 (Trajectory Explanation Function). Given
agents 𝑎𝑔𝑡1, . . . , 𝑎𝑔𝑡𝑛 , initial condition programs Π1

𝑖𝑛𝑖𝑡
, . . . ,Π𝑛

𝑖𝑛𝑖𝑡
, be-

havioral rules Π𝑏𝑒ℎ𝑎𝑣 , and trajectories 𝜏𝐴𝐼𝑆1
, . . . , 𝜏𝐴𝐼𝑆𝑛 , we say an ex-

planation function 𝑓𝐸 that takes as arguments an agent and two pro-
grams and returns a region set program such that 𝑓𝐸 (𝑎𝑔𝑡𝑖 ,Π𝑖

𝑖𝑛𝑖𝑡
,Π𝑏𝑒ℎ𝑎𝑣)

is an explanation for ⟨𝑎𝑔𝑡𝑖 ,Π𝑖
𝑖𝑛𝑖𝑡

,Π𝑏𝑒ℎ𝑎𝑣, 𝜏
𝐴𝐼𝑆
𝑖
⟩.

We note that Definition 1 is quite strict as it requires the result

of 𝑓𝐸 to produce a region set that models the entire trajectory for

all agents. At the same time, it does not distinguish among different

explanations. We introduce an approximation,
ˆ𝑓𝐸 that is designed

to meet the entailment requirement for as many agents as possible.

Our solution is to leverage a notion of parsimony, defining
ˆ𝑓𝐸 in

terms of a parsimony function (𝜎) - which maps agents and logic

programs to scalars. The idea is to use 𝜎 to measure the quality of

an explanation so that we can find quality explanations that cover

most of the ground truth trajectories. We provide the following

examples of such a function.

ˆ𝑓1 (𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ,Π𝑏𝑒ℎ𝑎𝑣) = argmax

Π′
𝜎 (𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ∪ Π𝑏𝑒ℎ𝑎𝑣 ∪ Π′)

ˆ𝑓2 (𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ,Π𝑏𝑒ℎ𝑎𝑣) = {argmax

𝜙
𝜎 (𝑎𝑔𝑡,Π𝑖𝑛𝑖𝑡 ∪ Π𝑏𝑒ℎ𝑎𝑣 ∪ {𝜙})}

In these two examples, we note the first has a combinatorial

flavor - finding the best set of regions, while the second identifies

the best singleton set - a notion that we can extend to find the top

𝑘 singletons (which correspond to the top 𝑘 regions formed with

the at). This can be easily solved by multiple entailment problems

for each relevant singleton formed from atoms created with set

Dr (which we assume is known a-priori). We also note that the

computation of
ˆ𝑓2 can be computed in linear time (in the number

of TAFs) which results directly from the prior results on annotated

logic [17, 38] and allows us to leverage existing efficient implemen-

tations [2]. We verify this empirically (Figure 10). In this work, we

examine the top-𝑘 variant of
ˆ𝑓2 and provide empirical evidence that

supports it. In practice, we compute top-k regions - corresponding

to the TAF 𝑎𝑡 (𝑎𝑔𝑡, r) (picking r from Dr) in parallel.

3.3 Rule-Based Agent Behavioral Modeling
As described in Section 3.1 we assume that there exists a set of

rules Π𝑏𝑒ℎ𝑎𝑣 specifying the behavior of the agents. While we could

design Π𝑏𝑒ℎ𝑎𝑣 to allow for hard constraints on consistency (and

while there are good reasons for doing so), we instead leverage the

fuzzy nature of our underlying logic (as described in Section 3.1)

which can then allow us to easily build an explainable parsimony

function 𝜎 . Again, this function takes an agent and a logic program

as arguments (and the logic program, Π, is the union of the initial

conditions Π𝑖𝑛𝑖𝑡 and behavior rules Π𝑏𝑒ℎ𝑎𝑣) and returns a scalar.

As we use the logical paradigm of [17, 38], each logical atom is

associated with a subset of the unit interval - [ℓ,𝑢]. In this work,

define the parsimony function as the aggregate over the lower

bound of the interval, formally:

𝜎𝑡 (𝑎𝑔𝑡,Π) = 𝑙𝑏

(
Γ∗ (Π) (𝑛𝑜𝑟𝑚𝑎𝑙 (𝑎𝑔𝑡)) (𝑡)

)
Intuitively, we have a predicate 𝑛𝑜𝑟𝑚𝑎𝑙 , such that atoms formed

with that predicate are annotated with an interval measuring the

agent’s level of normalcy. Theminimal model of the program, Γ∗ (Π)
provides this annotation for a particular atom - here 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑎𝑔𝑡)
(the normalcy of agent 𝑎𝑔𝑡 ) and time 𝑡 (we can define 𝜎 for a par-

ticular time - in practice we use the maximum time as it allows us

to cover long-term predictions). Finally, 𝑙𝑏 returns the lower bound

of the interval (as we will learn rules in a manner where we set the

upper bound to 1 to easily ensure consistency).

Rule Learning Algorithm. From the training set, a set of rules

is learned to model the normal behavior of the vessels based on

the historical co-occurrences of periodic sequences among similar

types of ships in similar waters. They are learned in a method akin

to rule learning in [5, 37] where we restrict the body to have a

single sequence of movement, refer Algorithm 1. These rules are

population-specific among the vessels. Here, consider 𝜏𝑟 to be a set

of the associated region of the trajectory. We note that Algorithm 1

is quite efficient. It scans all trajectories in a given data. The quantity

of trajectory size in terms of regions can be treated as a constant

as it’s from a data source. Hence, it turns out that Algorithm 1 is

linear in terms of the size of the dataset (number of trajectories).

Algorithm 1 Behavioral Rule Learner

1: Input: A set of trajectories T, atom 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑎𝑔𝑡)
2: Output: A set of rules Π
3: function Rules(𝐵𝑜𝑑𝑦)

4: Π← ∅
5: for all𝑚𝑜𝑣𝑒𝑠 ∈ 𝐵𝑜𝑑𝑦 do
6: if length(𝑚𝑜𝑣𝑒𝑠) = 2 then
7: mov← 𝐵𝑜𝑑𝑦 [𝑚𝑜𝑣𝑒𝑠] [0]
8: Π ← Π

⋃ {𝑛𝑜𝑟𝑚𝑎𝑙 (𝑎𝑔𝑡) : [ 𝐵𝑜𝑑𝑦 [𝑚𝑜𝑣𝑒𝑠 ]
𝐵𝑜𝑑𝑦 [𝑚𝑜𝑣 ] , 1] ←∧

𝑚∈𝑚𝑜𝑣𝑒𝑠𝑚(𝑎𝑔𝑡)}
9: end if
10: end for
11: return Π
12: end function
13: function TrainModel(T)

14: Initialize dictionary 𝐵𝑜𝑑𝑦 ← ∅
15: for all 𝜏𝑟 in T do
16: for 𝑛 ← 1 to length(𝜏𝑟 )-1 do
17: 𝐵𝑜𝑑𝑦 [𝜏𝑟 [𝑛]] ← 𝐵𝑜𝑑𝑦 [𝜏𝑟 [𝑛]] + 1
18: 𝐵𝑜𝑑𝑦 [𝜏𝑟 [𝑛 − 1]] ← 𝐵𝑜𝑑𝑦 [𝜏𝑟 [𝑛 − 1]] + 1
19: 𝐵𝑜𝑑𝑦 [(𝜏𝑟 [𝑛 − 1], 𝜏𝑟 [𝑛])] ← 𝐵𝑜𝑑𝑦 [(𝜏𝑟 [𝑛 −

1], 𝜏𝑟 [𝑛])] + 1
20: end for
21: end for
22: Π ←Rules(𝐵𝑜𝑑𝑦)
23: return Π
24: end function

Here, the movement is considered to be among regions represent-

ing features like port regions, density-based historical hotspots,
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Table 1: Example Rules Mined From Historical Data

Rule Natural Language

𝑛𝑜𝑟𝑚𝑎𝑙 (𝐴𝐺𝑇 ) : [0.8, 1] ← 𝑛𝑒𝑎𝑟𝑝𝑜𝑟𝑡 (𝐴𝐺𝑇 ) : [1, 1] ∧ ℎ𝑖𝑔ℎ − ℎ𝑜𝑡𝑠𝑝𝑜𝑡 (𝐴𝐺𝑇 ) :

[1, 1] ∧ AFTER(ℎ𝑖𝑔ℎ − ℎ𝑜𝑡𝑠𝑝𝑜𝑡 (𝐴𝐺𝑇 ), 𝑛𝑒𝑎𝑟𝑝𝑜𝑟𝑡 (𝐴𝐺𝑇 )) : [1, 1]
Example Multi-hop rule. The confidence of a vessel

exhibiting normal behavior is at least 0.8 when the

agent goes from a near port to a high-hotspot region

in more than a single movement.

𝑛𝑜𝑟𝑚𝑎𝑙 (𝐴𝐺𝑇 ) : [0.9, 1] ← 𝑙𝑜𝑤 − 𝑠𝑝𝑒𝑒𝑑 (𝐴𝐺𝑇 ) : [1, 1] ∧ 𝑠ℎ𝑎𝑟𝑝 − 𝑐𝑜𝑢𝑟𝑠𝑒 −
𝑐ℎ𝑎𝑛𝑔𝑒 (𝐴𝐺𝑇 ) : [1, 1]∧AFTER(𝑠ℎ𝑎𝑟𝑝−𝑐𝑜𝑢𝑟𝑠𝑒−𝑐ℎ𝑎𝑛𝑔𝑒 (𝐴𝐺𝑇 ), 𝑙𝑜𝑤−𝑠𝑝𝑒𝑒𝑑 (𝐴𝐺𝑇 )) :
[1, 1]

Example Single-hop rule. The confidence of a vessel
exhibiting normal behavior is at least 0.9 when the

agent changes its course direction after lowering its

speed in a single movement.

anchor points, destinations, and typically observed maritime fea-

tures (speed over ground, course over ground, and heading). The

observed maritime features include the regions where we histori-

cally observe the feature’s spikes in their usual values, for instance,

vessels exhibiting high speeds in specific regions. We define two

kinds of rules based on the movement from the current region. It

could be one (single-hop rules (SH)) or multiple hops (multi-hop

rules (MH)) away to the next region. The intuition is to capture

movements that occur eventually and in the next movement from

the current region. Sample rules that we mined from maritime ves-

sel data are shown in Table 1. The annotations on the head of the

rules note the measure of confidence in the normalcy of the rule.

4 EXPERIMENTAL RESULTS
Setup. We parsed Automatic Identification System (AIS) data of

614 vessels across the Black Sea AOI from January 2022 to March

2023. This involves the trajectory data 𝜏 of each vessel in addition

to its dynamic and statistical information. This data has trajectories

of the length 2 to 165, 000 data points (i.e., the vessel’s latitude,

longitude, timestamp, other features [28]) that span from 1 to 264

days. For all our experiments, we use a high memory compute

node, Dell PowerEdge R6525 with the AMD EPYC 7713 64-Core

Processors and 2TB RAM, along with three A30 GPUs. The region

size is fixed arbitrarily at 0.025° × 0.025° which comes to 5.45𝑘𝑚2

in our AOI for our experiments unless specified. Extending prior

work [18, 33] where similar vessels were grouped, we perform tra-

jectory clustering [43] with DBSCAN to group trajectories into 9

subset and we report average metrics across all clusters for both our

method and our deep learning baseline. As the ground truth data

for dark activity has limited availability, and we aim to generate

regions at a future time, we mask each test trajectory to obtain a

partial trajectory along with the ground truth - adapting from the

setup in the prior work [10, 13, 16, 23, 50]. This strategy involves

using historical data due to the scarcity of external ground truth

dark activity, resulting in generating regions informed by histori-

cal behavior. Furthermore, our approach is data-efficient, enabling

analysts to derive a set of rules even with a limited number of tra-

jectories. Results with available limited ground truth dark activity

can be found in the Appendix at https://arxiv.org/abs/2502.01503.

The masked part is considered the ground truth (𝜏𝑎𝑔𝑡 ) while the

unmasked part is used to set the initial condition (Π𝑖𝑛𝑖𝑡 ). We mask

half the trajectory from its midpoint in all our experiments unless

specified. Given Π𝑖𝑛𝑖𝑡 , the model generates top 𝑘 regions (most

relevant regions till a time horizon 𝑡 ) to identify the dark vessel.

Methods. We examine three methods, described as follows.

Random baseline (RND). The random method randomly generates

regions from the AOI grid. The AOI grid is formed with cells of

the fixed region size. The average performance of three random

generators is reported.

Deep learning baseline (DL). For the DL baseline, we use a sequence-

to-sequence model [10] to predict future trajectories. To perform a

comparable evaluation, the predicted sequence is mapped to regions

in the AOI grid. We also evaluated a deep learning baseline trained

on all the data (DL-ALL), which generally was not performant

beyond 𝑘 = 4 limiting its F1 - we include results from that model

only in experiments where it significantly outperforms DL models

on subsets. We experimented with variants of [10] with alternative

architectures to mimic similar to point-based prediction models [16,

50] but these achieved worse results than DL and DL-ALL.

Abduction (ABD). The abductionmethod uses training data to obtain

a set of regions (which is the subset of the AOI grid), from which it

learns SH rules to obtain Π. Given a test trajectory, it then generates

top 𝑘 regions using
ˆ𝑓𝐸 via abductive inference.

Metrics. We report precision as the fraction of returned regions

that contain points in the ground truth trajectory. Likewise, recall

is the ratio of returned regions containing ground truth points to

all regions containing irredundant points from the ground truth

trajectory. The F1 is the harmonic mean of precision and recall.

4.1 Experiments
We examine the ABD, RND, and DL approaches when applied to

AIS data. We first inspect the area efficiency, which has practical

significance. We then evaluate the methods for long-term reasoning

capabilities. Further, we compare all approaches as a function of 𝑘

in a standard setting. We also provide hyperparameter sensitivity

concerning region size and ablation studies forΠ (based on different

rule types), and the versatility to masking methods of the test

trajectory. Finally, we assess ABD while limiting the training data

before concluding with interpretability of results in ABD.

Area Efficiency. In our application, we wish to identify the greatest
number of locations for dark vessels while searching the smallest

area possible - as identification of dark vessels would require re-

sources such as aerial or satellite imaging. We examine recall as a

function of area in Figure 2a. We found that recall for ABD satu-

rates at 30km
2
- achieving a recall of 0.99, which is 157% higher
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(a) Recall vs. Area

(b) Recall per km2 vs. k

Figure 2: Area Efficiency: (a) Relationship between Recall
and Area, (b) Recall per km2 as a function of 𝑘 .

recall than DL for that area. DL meanwhile saturates at 81.75km2

- achieving recall of only 0.57. This difference suggests that ABD

provides more efficiency per unit area. To further investigate this

efficiency, we examine how it trends as a function of 𝑘 (number of

regions) in Figure 2b. It turns out that the recall per square kilometer

monotonically increases with 𝑘 for ABD while it decreases for the

baselines. This implies that ABD can continue to produce quality

regions. This is significant for practitioners because, when addi-

tional search resources are available, ABD can continue to improve

search efficiency with the addition of more search resources.

Long-term Reasoning. The prior experiments examined perfor-

mance under the assumption of a fixed time horizon. Next, we

examine performance across multiple time horizons and show the

results in Figure 3. Here we examine each approach with different

settings for 𝑘 but find that ABD again consistently outperforms

other methods in terms of F1. We also note that ABD is the only

approach where an increase in 𝑘 improves results (e.g., DL achieves

poorer performance with 𝑘 = 10 vs. 𝑘 = 5). This suggests that our

previously described efficiency results likely hold to the case of

multiple time units while DL converges by leveling off after the first

time horizon. This illustrates that with increasing time horizons,

DL is not able to predict long-term trajectories.

Vessel Recall and Accuracy.We examine ABD, DL (when trained

on the subset datasets individually, as well as on the entire train

set), and RND allowing for different values of 𝑘 (number of regions).

Note that the default DL is DL-Subset. Figure 4a shows that across

all settings of 𝑘 , ABD outperforms all other methods in terms of F1-

and ABD on average provides a 51% increase over DL. For higher

Figure 3: Long-term reasoning. F1@{k=5,k=10} for ABD, DL,
and RND baselines.

values of 𝑘 , DL starts to converge with the random baseline (around

𝑘 = 28) while ABD maintains approximately double the F1 score.

When we examine the precision-recall curve in Figure 4b, we gain

an intuition as to why the F1 flags for the DL approach - and the

answer is that the recall of DL saturates at 0.57- indicating limited

value in adding more regions (increasing 𝑘) where ABD can obtain

a recall approaching 1while increasing 𝑘 , with graceful degradation

of precision. ABD has a 476% increase in the recall by adding more

regions up to 𝑘 = 30. In this experiment, we also recorded the

results of DL-ALL (a single model trained with the whole dataset

instead of the sub-datasets). For 𝑘 = 3, 4, DL-ALL gave the highest

F1 due to larger precision values (as seen in Figure 5b) but the

performance degrades by 56% for a unit increase in 𝑘 , and as 𝑘

increases to 30, it degrades further. Further, as seen in Figure 4b,

similar to DL, DL-ALL also saturates and does not achieve a recall

beyond 0.3, explaining the decrease in F1. DL-ALL performed 50%

lower on F1 when compared to standard DL and the highest F1 for

time horizons close to the present. While this is less relevant for

our current application, it may provide insight for further inquiry

(e.g., a neurosymbolic approach leveraging both abduction and a

model trained with large data).

Region Size Sensitivity. In the aforementioned experiments, we

determined the region size by considering the computational effi-

ciency of rule learning and generating regions with fair coverage-

so that a single region does not end up covering the entirety of the

vessel-search space. We now call that setting LG, while the setting

SM is whenwe reduce the region size by 80%. Note that reducing the

region size (SM) is effective by itself as seen by RND-SM achieving

comparable performance to DL-LG up to a certain extent. However,

ABD outperforms all baselines particularly when the region size

is reduced. The curve is steeper for ABD when the region size is

decreased by 80% from LG to SM depicted in Figure 6, while that of

DL resembles its performance in the earlier experiment. We found

that not only that our results maintain with reduced region size,

but they also led to improved performance in ABD (reducing the

total search area by about 60%) while the reduction in region size

did not meaningfully change the performance of DL.

Ablation byRule Type andMasking Sensitivity.As described in
Section 3.3 we developed several methods to learn rules (see Table 1).
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(a) F1@k metric

(b) Precision-Recall curve

Figure 4: Comparison of (a) F1@k metric and (b) Precision-
Recall curve.

(a) Recall@k metric

(b) Precision@k metric

Figure 5: Comparison of ML metrics- (a) Recall@k and (b)
Precision@k.

In Figure 7a, our abduction (ABD) approach still works well for

different kinds of rules like single-hop and multi-hop rules. Note

that single hop has a slightly wider range of F1 scores with respect

Figure 6: Region size sensitivity for different region-sizes (of
LG size = 5.45𝑘𝑚2 and SM size= 1.1 𝑘𝑚2).

to the lower extremes by 0.05while the upper extremes andmedians

are similar. Additionally, we also wanted to examine the impact of

the type of masking on the results - from a practical standpoint

to model applications for detecting deceiving vessels who tamper

with their AIS transmitter. Here, the masking would start from a

point where the AIS is typically tampered with. Different masking

strategies include masking the test trajectory at locations when the

AIS signal is not received (‘AIS-Off’) or the AIS co-ordinates stays

put (‘Stay’) for an unusually long period of time and at the middle of

the trajectory (baseline-‘50’). We found that for alternative masking

strategies, the median F1 scores decrease by no more than 0.07 from

the baseline. This demonstrates the model’s adaptability to various

use cases, including the detection of dark vessels and identifying

vessels that manipulate their AIS to evade sanctions.

(a) Ablation with Rule type (b) Masking Sensitivity

Figure 7: F1 for variousmaskingmethods (AIS-Off, Stay, Base-
line 50) and rules (SH, MH).(a) Rule Type and (b) Masking.

Data Efficiency. The ABD model also works well with limited

training trajectories as seen in Figure 8 while DL-based methods

are more data-driven as seen in Figure 9. Note that for ABD, the

use of a single training trajectory versus all of the historical data

gave the same precision of 0.62 and a 0.13 difference in F1. On the

other hand, as expected, DL has a huge variation with increasing

training trajectories by boosting its performance by 254% as seen

in Figure 9. This gives scope for the application of our model with

expensive or limited available data.

Runtime. In Figure 10 we examine the runtime of ABD as a func-

tion of the number of regions 𝑘 . As expected, the runtime increases

linearly with 𝑘 as this simply involves additional deductive steps.
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Figure 8: Evaluation of ABD with limited training data (tra-
jectories). ABD performed smoothly, with variations in the
number of training trajectories.

Figure 9: Evaluation of ABD and DL with limited training
data. DL achieved a zero F1 with five training trajectories.

Figure 10: Evaluation of runtime in terms of milliseconds of
ABD as a function of 𝑘 .

Further, we note that the deduction itself is efficient (linear in the

size of nodes) as previously reported [2, 38].

Explainability. All regions are symbolic in nature, every inference

can be backtracked to the sequence of historically learned rules,

in addition to its confidence as seen in Figure 1. This gives scope

for domain experts in analyzing false predictions, assess vessel

behavior, and even incorporating domain knowledge into the rules.

5 DEPLOYMENT
We designed a prototype system based on the abduction model with

a live feed of trajectories, where it continuously updates its logic

Figure 11: Deployment of abductionmodel in an online learn-
ing setting with kafka.

program as it generates regions in an online learning setting. This

architecture is depicted in Figure 11. We use a microservices-based

architecture for near real-time detection of maritime dark vessels

that receives input training data delivered by data providers to an

Amazon S3 bucket. The arrival of new data triggers a batch process

that performs data indexing and generates symbolic regions. This

processed data is then fed into a rule-learning microservice, which

is subsequently transformed into a logic program by learning rules

that are staged into the S3 bucket. In the production environment,

live data is streamed via a Kafka feed. We use Apache Kafka to

consume the AIS data stream in near real-time as a streaming

architecture. An attribution processor subscribes to this feed and

enriches the incoming data by tagging it with the necessary regions

and indexing metadata. The enriched data is then integrated into

the logic program (which includes both updated rules and TAFs),

before being fed into the reasoner (Γ∗), which infers 𝑘 regions at a

given time horizon. We then use Quantum Geographic Information

System software to visualize the regions in the AOI for an end-user.

6 CONCLUSION
We identify the locations of dark maritime vessels using a com-

bination of abductive inference and rule learning and provides

explainable long-time horizon prediction - an area where machine

learning approaches fail. These aspects were validated by our ex-

perimental results and we provide our deployment architecture

with a live feed of data. This work can be extended by leverag-

ing environmental knowledge in the logic program, which has a

significant role in the maritime domain where we look to utilize

techniques from neurosymbolic AI [39] that will enable the use

of larger scale models for enhanced near-term precision while re-

taining the long-term reasoning ability of the abduction methods

introduced in this paper. One direction for future work is to exam-

ine the case where an adversary is taking action to reduce it’s ability

of detection by algorithms such as those presented in this paper.

For example, extending our work in the paradigm of adversarial

geospatial abduction [36] can take us in this direction.
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