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ABSTRACT
In this work, we propose a simple and effective framework (i.e., Lite-
DIO), marking the first attempt to accelerate deep inertial odometry
with knowledge distillation. In Lite-DIO, we first independently
construct the Transformer-based teacher model and a lightweight
student network. Then, adaptive transferring knowledge is enabled
between the teacher model and the student network in a dual-
level contrastive distillation manner. With such design, the distilled
knowledge comes from not only the teacher model’s predictions
but also the latent high-order collaborative semantics preserved in
embeddings. Extensive experiments conducted on three real-world
datasets demonstrate that the proposed Lite-DIO significantly re-
duces model size and inference time compared to existing popular
alternatives, while the compressed model still maintains competi-
tive localization accuracy.
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1 INTRODUCTION
Accurate and efficient odometry with low-cost Inertial Measure-
ment Units (IMUs) is an ideal localization solution of a moving
subject (e.g., robot and pedestrian), playing a crucial role in robot
navigation, augmented reality (AR) [11], pedestrian localization [9]
and autonomous driving.

Recent years have witnessed the great success of deep neural
networks (DNN) in learning latent representations for temporal
data. Inspired by such development, many efforts have introduced
DNN into inertial odometry to avoid IMU integration and mitigate
positioning drifts and shown its power in modeling high-order
nonlinear relationships [1, 4, 6, 7]. Though promising, we notice
that several key problems of deep inertial odometry (DIO) are over-
looked by previous solutions: 1) Increasing the depth and size of
deep neural networks has become a key strategy for enhancing
localization accuracy. 2) The vast number of parameters inevitably
raises computational overhead and inference time, which in turn
can lead to localization delays and tracking loss.

To this end, we propose a dual-level contrastive distillationmodel
compression framework to improve both the effectiveness and ef-
ficiency of DIO, named Lite-DIO. In detail, a Transformer-based
DIO initially serves as the teacher model, transferring knowledge
to a lightweight student model. Then an embedding-invariant rep-
resentation learning based on a bidirectional contrastive loss is
employed to capture higher-order collaborative semantics in the
teacher model’s embeddings. After that, we harness prediction-
invariant representation learning based on teacher-bounded loss
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to align the predictive outputs between the teacher and student
models. With this design, the distilled knowledge is derived not
only from the teacher model’s predictions but also from the latent
higher-order collaborative semantics embedded within the repre-
sentations. Extensive experiments conducted on two real-world
public datasets demonstrate that our method not only matches the
performance of existing state-of-the-art solutions but also achieves
remarkable improvements in inference speed and model efficiency.

2 METHOD

Teacher and Student Model. Inspired by CTIN [4], we design a
Transformer-based DIO initially serves as the teacher model. In
addition, we build two simple student models, i.e., a single-layer
unidirectional LSTM (SL-LSTM) and a pared-down ResNet (PDRes-
Net).

Prediction-invariant Representation Learning. Conventional
knowledge distillation is predominantly designed for classification
tasks [5], where the predictions of the teacher network serve as
a guide for the student model’s learning process. Since the proba-
bility outputs of the teacher model can be intuitively interpreted
and leveraged, the student model can learn more refined decision
boundaries by mimicking these probability distributions.

Unlike distillation for discrete categories, the teacher model’s
outputs in regression tasks are continuous values, lacking a clear in-
terpretative structure. In order to distill knowledge from the teacher
model to the student model in velocity regression task, Lite-DIO
first follows the paradigm of MSE-based prediction-invariant clue
extraction to align the predictive outputs between the teacher and
student models. However, a brute-force alignment of the outputs
from the two models does not necessarily result in effective knowl-
edge transfer. The teacher’s regression outputs can provide very
wrong guidance toward the student model, since the real valued
regression outputs are unbounded. Thus, we extend the teacher-
bounded regression loss [2] by treating the teacher’s predictions as
an upper bound, refraining from adding additional loss when the
student model outperforms the teacher, thereby encouraging the
student to learn more from the guidance of ground truth.

Embedding-invariant Representation Learning. Inspired by
recent contrastive learning algorithms [3], we design a bidirectional
contrastive loss COS-InfoNCE for the transfer of the intermediate
inertial representation layer. It can better mimic the generalization
capability of teacher.

In a training batch, IMUmeasurement windows T = {X𝑖 }, when
encoded by both the teacher and student, yield𝐵 pairs of inertial rep-
resentations. For 𝑘-th teacher’s representation H(𝑡 )

𝑘
, 𝑘-th student’s

representation is its positive H(𝑠 )
𝑘

, while other student’s representa-
tions will be the negatives in this batch. Taking distilled SL-LSTM
as an example, we first reshape H(𝑡 )

𝑖
∈ R𝑤×𝑑 and H(𝑠 )

𝑖
∈ R𝑤×𝑑1

to h(𝑡 )
𝑖

∈ R𝑑2 , h(𝑠 )
𝑖

∈ R𝑑2 through an adaptive layer, which is an
average pooling operation followed by a linear layer. Then, we use
cosine similarity to compute similarity of “teacher” to “student” and
“student” to “teacher”, respectively. Next, we maximize cross-model
contrastive alignment between h(𝑡 )

𝑖
and h(𝑠 )

𝑖
while minimizing the

alignment of non-similar representations.

3 RESULTS

Table 1: Position evaluation (meter) on RIDI dataset. The best
distillation results are highlighted in bold. SL-LSTM2 and
PDResNet2 are the student versions after Lite-DIO distilla-
tion.

Model Params(M) ATE RTE
PDR [8] – 22.76 24.89

RONIN_ResNet [4] 4.63 2.33 2.36
RONIN_TCN [4] 2.03 3.25 2.64
IMUNet [10] 3.66 2.20 2.48
SL-LSTM 0.05 2.81 3.02
PDResNet 0.23 2.78 2.91
SL-LSTM2 0.05 2.15 2.53
PDResNet2 0.23 2.14 2.66

Table 1 summarizes the overall performance of Lite-DIO and
three baselines. From the results we have the following observa-
tions: 1) The deep learning-based inertial odometry outperforms
the traditional PDR model. This improvement is likely due to the
fact that inaccurate step length and heading estimations in PDR
can lead to cumulative drift. 2) the teacher model’s localization
error showed a significant reduction compared to the baselines.
3) By using our proposed Lite-DIO, the knowledge distilled from
the teacher model is adaptively transferred to the student model,
significantly improving the localization accuracy of the student
model. In particular, SL-LSTM2 and PDResNet2 improve an average
ATE on RIDI seen test datasets by 23.49%, 23.02% over SL-LSTM
and PDResNet.

The primary limitation of existing baselines lies in their inability
to effectively capture the spatio-temporal information and inter-
modal correlation dependencies within IMU sequences. Addition-
ally, the extensive number of parameters can result in inference
delays and localization latency. Therefore, the Transformer-based
teacher model can effectively transfer the spatiotemporal infor-
mation and modal dependencies it captures to the student net-
work. Concurrently, our proposed Lite-DIO significantly reduces
the model’s parameters. As shown in Table 1, The localization accu-
racy of the SL-LSTM2 and PDResNet2 can reach a level comparable
to the baselines. Two students not only have the fewest parameters,
but their inference time by GPU during testing are also the lowest
among all the models. This further demonstrates the effectiveness
of our proposed Lite-DIO.

4 CONCLUSION
In this paper, we introduce Lite-DIO, a novel KD method designed
to accelerate DIO. Lite-DIO achieves bi-level distillation through
embedding-invariant representation learning and prediction-invari-
ant representation learning, ensuring the maximization of adaptive
knowledge transfer between the teacher and student models. Our
results have shown that Lite-DIO can improve the student DIO
efficiency and achieve competitive performance. In the future, we
will further extend our method to other relevant fields, e.g., visual-
inertial odometry.
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