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ABSTRACT
Schelling games use a game-theoretic approach to study the phe-

nomenon of residential segregation. We consider four global mea-

sures of diversity, and prove asymptotically tight or almost tight

bounds on the price of anarchy with respect to these measures on

both general graphs and common specific graphs. In addition we

did simulations of our swap games.
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1 INTRODUCTION AND NOTATION
Schelling [15, 16] showed that even small individual and local pref-

erences for neighbours of the same type can lead to global segrega-

tion. In recent years, computer scientists have been studying related

problems in the algorithmic game theory setting: strategic agents

of different types are located at the vertices of a graph, and move

to new positions to improve their own utility. Many variations of

similarity seeking utility functions have been studied [1, 3–6, 11].

Two kinds of games have been considered: in a jump game, an agent

can move to an unoccupied location to improve its utility, and in a

swap game, two agents of different types swap locations if it would

increase the utility of both of them.

Recently, diversity has been promoted as beneficial to society and

institutions [7–9, 13]. This motivates the study of strategic games

with agents that aim to increase the diversity in their neighbour-

hood [2, 10, 14]. Understanding what utility functions contribute to

greater global diversity could help define appropriate incentives for
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businesses and governments. In this paper, we continue the study

of diversity-seeking utility functions in strategic swap games.

The main measure of diversity considered previously is the de-
gree of integration, i.e., the fraction of agents with at least one

neighbour of a different type. In this paper, we introduce three

measures of diversity: the number of colorful edges, the neighbor-
hood variety, which is the average number of types of agents in an

agent’s neighborhood, and evenness, see the definition in 1.1

1.1. Notation, and preliminary results. In this paper 𝐺 = (𝑉 , 𝐸)
denotes a connected graph where 𝑉 , 𝐸 is the set of vertices, edges,

respectively. Let Δ and 𝛿 denote the maximum andminimum degree

of 𝐺 , respectively. Let 𝑁 (𝑣) denote the set of neighbours of vertex
𝑣 ∈ 𝑉 . Let T = {1, 2, . . . , 𝑡} denote a set of types, andX denote a set

of agents that is partitioned into 𝑡 different types. For agent 𝐴 ∈ X,

we use 𝜏 (𝐴) to denote its type. Throughout the paper we assume

|𝑉 | = |X| = 𝑛. Let 𝑘 = ⌊𝑛/𝑡⌋. The partition of agents into types is

called equitable if every type has either 𝑘 or 𝑘 + 1 agents. Clearly,

an equitable partition always exists for every 𝑛 and 𝑡 .

An assignment of agents to vertices in𝐺 is a bijection 𝐿 : X → 𝑉 .

We call 𝑣 = 𝐿(𝐴) the location of agent 𝐴. Under an assignment

𝐿, we call agents 𝐴 and 𝐵 neighbors if (𝐿(𝐴), 𝐿(𝐵)) ∈ 𝐸 (𝐺), the
edge (𝐿(𝐴), 𝐿(𝐵)) is monochromatic if 𝜏 (𝐴) = 𝜏 (𝐵), and colorful
otherwise. We use 𝑁 (𝐴) ⊆ X to denote the set of neighboring

agents of agent 𝐴, and 𝑇 (𝐴) ⊆ T to denote the set of types of

agents in 𝑁 (𝐴). An agent 𝐴 is called segregated if 𝑇 (𝐴) = {𝜏 (𝐴)}.
Given an assignment 𝐿 for a graph 𝐺 , a utility function 𝑈 is a

real-valued function that assigns to an agent its utility based on

the agent’s own type and the types of its neighboring agents. The

swap game under a utility function 𝑈 is defined as follows: Given

an assignment 𝐿, a move in the game is a swap of locations of

two agents 𝐴 and 𝐵 such that both 𝐴 and 𝐵 increase their utility.

An assignment is in an equilibrium with respect to 𝑈 if there is no

move under𝑈 . We use EQ(𝐺,𝑈 ) to denote the set of all equilibrium
assignments for the swap game on 𝐺 under𝑈 .

A game on a graph𝐺 is called a potential game if and only if there
is a non-negative real-valued function Φ on the set of assignments

on 𝐺 such that Φ(𝐿′) < Φ(𝐿) for any pair of assignments 𝐿′ and 𝐿
such that 𝐿′ is obtained from 𝐿 by a move in the game.

We define three utility functions for local diversity.
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• 𝑈𝑏 , called Binary:𝑈𝑏 (𝑥) = 1 if at least one neighbor of 𝑥 is

of a different type than 𝑥 , and is 0 otherwise.

• 𝑈#, called Difference-seeking :𝑈# (𝑥) is the number of neigh-

bors of 𝑥 whose type is different from 𝜏 (𝑥).
• 𝑈𝜏 , called Variety-seeking:𝑈𝜏 (𝑥) is the number of types that

are different from 𝜏 (𝑥) in the neighborhood of 𝑥 .

𝑈𝑏 is the simplest diversity-seeking utility function, while𝑈# and

𝑈𝜏 also consider the structure of types in the neighbourhood. Note

that segregated agents have utility 0 in all three utility functions.

Observation 1. (1) if 𝑡 = 2, then𝑈𝑏 = 𝑈𝜏 ;
(2) every equilibrium assignment under any of 𝑈 ∈ {𝑈𝑏 ,𝑈#,𝑈𝜏 } has
at most one type whose agents are segregated;
(3) EQ(𝐺,𝑈#), EQ(𝐺,𝑈𝜏 ) ⊆ EQ(𝐺,𝑈𝑏 ).

Given an assignment 𝐿, every utility function 𝑈 induces a social
welfare SW(𝐿,𝑈 ) = ∑

𝐴∈X 𝑈 (𝐴). We also consider the following

four global diversity measures.

• Degree of integration: DOI(𝐿) is the fraction of agents𝐴 with

at least one neighbor of a type different from 𝐴.

• Colorful edges: CE(𝐿) is the number of colorful edges in 𝐿.

• Neighborhood variety: NV(𝐿) is the average number of types

in the neighborhood of agents, where we only count types

in the neighborhood that are different from the agent’s type.

• Evenness: EV(𝐿) = 1∑
𝐴∈X ∥Π𝐴 ∥2

2

.

Note that DOI(𝐿) = SW(𝐿,𝑈𝑏 )/𝑛, CE(𝐿) = SW(𝐿,𝑈#)/2, and
NV(𝐿) = SW(𝐿,𝑈𝜏 )/𝑛. The 𝐿2 norm ∥Π𝐴∥22 is used to measure

local evenness of neighbours distribution of agent 𝐴.

The diversity measures above have the following trivial bounds:

(1) DOI(𝐿) ≤ 1, CE(𝐿) ≤ |𝐸 (𝐺) |, NV(𝐿) ≤ min{𝑡 − 1,Δ}; (2) for
𝛿-regular graphs, EV(𝐿) ≤ 𝑡/(𝑛 · 𝛿2), since by the Cauchy-Schwarz

inequality ∥Π𝐴∥22 =
∑𝑡
𝑖=1 Π𝐴 (𝑖)2 ≥ (∑𝑡

𝑖=1 Π𝐴 (𝑖))2/𝑡 = 𝛿2/𝑡 .
Consider a swap game on graph 𝐺 under utility function 𝑈 . Let

𝜇 denote a diversity measure, 𝐿∗ be an assignment that maximizes
𝜇, and 𝐿𝑒 and 𝐿𝑚 be equilibrium assignments that minimize and
maximize 𝜇 respectively. The price of anarchy (PoA) is defined to be

𝑃𝑜𝐴(𝜇,𝑈 ,𝐺) = 𝜇 (𝐿∗)/𝜇 (𝐿𝑒 ), and the price of stability is defined to

be 𝑃𝑜𝑆 (𝜇,𝑈 ,𝐺) = 𝜇 (𝐿∗)/𝜇 (𝐿𝑚)

2 OUR RESULTS
Full proofs of our results are in [12]. Observation 1 and the note

after defining diversity measures imply the following.

Corollary 2.1. (1) If 𝑡 = 2, then 𝑃𝑜𝐴(𝜇,𝑈𝑏 ,𝐺) = 𝑃𝑜𝐴(𝜇,𝑈𝜏 ,𝐺);
(2) 𝑃𝑜𝐴(𝜇,𝑈#,𝐺), 𝑃𝑜𝐴(𝜇,𝑈𝜏 ,𝐺) ≤ 𝑃𝑜𝐴(𝜇,𝑈𝑏 ,𝐺);
(3) 𝑃𝑜𝐴(SW,𝑈𝑏 ,𝐺) = 𝑃𝑜𝐴(DOI,𝑈𝑏 ,𝐺),
𝑃𝑜𝐴(SW,𝑈#,𝐺) = 𝑃𝑜𝐴(CE,𝑈#,𝐺), and
𝑃𝑜𝐴(SW,𝑈𝜏 ,𝐺) = 𝑃𝑜𝐴(NV,𝑈𝜏 ,𝐺).

2.1. Existence of equilibrium. By determining for each utility func-

tion the conditions on when a swap can occur, and the number

of colorful edges that can exist in an equilibrium assignment, we

obtain the following theorem.

Theorem 2.2. On every graph𝐺 , the swap games under𝑈𝑏 ,𝑈𝜏 ,𝑈#

are all potential games that reach their respective equilibria after at
most |𝐸 |/2 moves.

2.2. Efficiency at equilibrium. The theorem below shows that the

simple upper bounds on DOI, NV and EV given above are all tight

for equitable agents.

Theorem 2.3. (1) For equitable agents, for every𝑈 ∈ {𝑈𝑏 ,𝑈#,𝑈𝜏 },
for every graph 𝐺 , 𝑃𝑜𝐴(DOI,𝑈 ,𝐺), 𝑃𝑜𝐴(SW,𝑈𝑏 ,𝐺) ≲ 𝑡/(𝑡 − 1),
𝑃𝑜𝐴(NV,𝑈 ,𝐺), 𝑃𝑜𝐴(SW,𝑈𝜏 ,𝐺) ≤ 𝑡 , and for every 𝛿-regular graph
𝐺 , 𝑃𝑜𝐴(EV,𝑈 ,𝐺) ≤ 𝑡 .

(2) There exists graph 𝐺∗ such that for equitable agents, and for
every𝑈 ∈ {𝑈𝑏 ,𝑈#,𝑈𝜏 },
𝑃𝑜𝑆 (DOI,𝑈 ,𝐺∗) = 𝑃𝑜𝑆 (NV,𝑈 ,𝐺∗) = 𝑃𝑜𝑆 (EV,𝑈 ,𝐺∗) = 1.

Theorem 2.4. For every graph 𝐺 and equitable agents,
(1) 𝑃𝑜𝐴(CE,𝑈𝑏 ,𝐺) ≲ Δ𝑡/(𝑡 − 1), and there exists graph𝐺∗ on which
this is tight; also 𝑃𝑜𝑆 (CE,𝑈𝑏 ,𝐺∗) = 1.
(2) 𝑃𝑜𝐴(CE,𝑈#,𝐺) = 𝑃𝑜𝐴(SW,𝑈#,𝐺) ≲ 2Δ/𝛿 , furthermore: (i)
𝑃𝑜𝐴(CE,𝑈#,𝐺) → Δ/𝛿 , for 𝑡 ≥ 𝜔 (𝛿 log𝛿), (ii) 𝑃𝑜𝐴(CE,𝑈#,𝐺) ≲
2/(𝛿/Δ + Ω(𝑡2/𝛿Δ − 1/Δ)), for Ω(

√
𝛿) ≤ 𝑡 ≤ 𝑂 (𝛿).

(3) 𝑃𝑜𝐴(CE,𝑈𝜏 ,𝐺) ≲ Δ𝑡/(𝑡 −1), furthermore: (i) 𝑃𝑜𝐴(CE,𝑈𝜏 ,𝐺) →
Δ/𝛿 , for 𝑡 ≥ 𝜔 (𝛿3), (ii) 𝑃𝑜𝐴(CE,𝑈𝜏 ,𝐺) ≤ 𝑂 (Δ/𝑡1/3), for 𝑡 ≤ 𝑂 (𝛿3).
(4) 𝑃𝑜𝑆 (CE,𝑈#,𝐺) = 1 when 𝑡 ≥ Δ + 1.

2.2. Cycles, cylinders, tori. We studied the PoA of SW and CE for

cycles, cylinders, and grids and obtained tight or better bounds than

those implied for general graphs. Table 1 summarizes our results.

Table 1: Except the PoA of CE for 𝑈# on cylinders and tori,
all other bounds are tight. A bold font represents a better
bound than that for general graph,the non-bold matches the
corresponding bounds. The PoA of CE for 𝑈# on 𝑇𝑛 lies in-
between 𝑡/(𝑡 − 1) and min{𝑡/(𝑡 − 13/4), 4𝑡/(3(𝑡 − 1))}.

𝑡 Cycles Cylinders Tori

2

SW

𝑈𝑏 ,𝑈𝜏 4/3 3/2 8/5
𝑈# 3/2 3/2 5/3

CE

𝑈𝑏 ,𝑈𝜏 2 3 4

𝑈# 3/2 3/2 5/3

≥ 3

SW

𝑈𝑏
𝑡

𝑡−1
𝑡

𝑡−1
𝑡

𝑡−1
𝑈#

t
t−1

[ t
t−1 ,

t
t−7/3

]
see caption

𝑈𝜏
2𝑡
𝑡−1 min{𝑡, 3𝑡

𝑡−1 } min{𝑡, 4𝑡
𝑡−1 }

CE

𝑈𝑏
2𝑡
𝑡−1

3𝑡
𝑡−1

4𝑡
𝑡−1

𝑈#

t
t−1

[ t
t−1 ,

t
t−7/3

]
see caption

𝑈𝜏
2t

2t−3 27/10 (𝑡 = 3) 24/7 (𝑡 = 3)

2.3. Experiments. For every 𝑈 ∈ {𝑈𝑏 ,𝑈#,𝑈𝜏 }, and types 𝑡 = 2, . . . , 9,

we ran the swap game on a 4-regular torus with two different ini-

tializations: the random input and the Schelling input, obtained by

running a swap Schelling game using the similarity-seeking utility

function of [1] on the random input. See [12] for detailed experi-

mental results. The main findings are:

(1) Segregation is effectively removed when agents are diversity-

seeking; however, strong diversity such as measured by evenness

is still hard to achieve via 𝑈𝑏 ,𝑈# or𝑈𝜏 .

(2) Regardless of the starting input, the swap game under𝑈# per-

forms better than the game under 𝑈𝜏 for DOI and CE, while𝑈𝜏 is

better for NV and EV.
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