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ABSTRACT
Inmulti-agent reinforcement learning (MARL), the centralized train-
ing with decentralized execution (CTDE) framework has gained
widespread adoption due to its strong performance. However, the
further development of CTDE faces two key challenges. First, agents
struggle to autonomously assess the relevance of input informa-
tion for cooperative tasks, impairing their decision-making abilities.
Second, in communication-limited scenarios with partial observ-
ability, agents are unable to access global information, restricting
their ability to collaborate effectively from a global perspective. To
address these challenges, we introduce a novel cooperative MARL
framework based on information selection and tacit learning. In this
framework, agents gradually develop implicit coordination during
training, enabling them to infer the cooperative behavior of others
in a discrete space without communication, relying solely on local
information. Moreover, we integrate gating and selection mecha-
nisms, allowing agents to adaptively filter information based on
environmental changes, thereby enhancing their decision-making
capabilities. Experiments on popular MARL benchmarks show that
our framework can be seamlessly integrated with state-of-the-art
algorithms, leading to significant performance improvements.
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1 INTRODUCTION
Cooperative Multi-Agent Reinforcement Learning (MARL) has
emerged as a robust framework for addressing practical challenges
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across various domains, including autonomous driving [20], gam-
ing [2], swarm robotics [8, 9], and smart grids [10, 11, 17]. Despite
its success, learning complex cooperative strategies remains a ma-
jor challenge. Firstly, neglecting the influence of other agents on
the system introduces non-stationarity from the perspective of an
individual, potentially leading to environmental instability. Addi-
tionally, as the number of agents increases, the observation space
for joint actions expands exponentially, which may impede the
learning process. To effectively address these challenges, the ap-
proach of Centralized Training andDecentralized Execution (CTDE)
has been proposed and gained popularity in MARL. CTDE utilizes
global information during training while achieving decentralized
decision-making based on local information. It serves as the foun-
dation for several prominent methods, including VDN [14], QMIX
[12], MADDPG [7], QPLEX [16], COMA [3] and FOP [19].

Constrained by cognitive limitations and individual perspec-
tives, humans exhibit selectivity when receiving information. They
process this information based on their knowledge and past experi-
ences, selecting the most relevant details for the present moment. In
collaborative settings, individuals often develop a tacit understand-
ing through specific training, enabling them to accurately predict
and comprehend their peers’ intentions without explicit communi-
cation. Inspired by human information processing and cooperation
patterns, we propose a novel framework called Selective Implicit
Collaboration Algorithm (SICA) for multi-agent systems. SICA is
built upon the QMIX framework and can be extended to various
methods based on CTDE paradigm. The framework comprises three
key blocks: the Selection Block, the Communication Block, and the
Regeneration Block. During training, the Selection Block assists
agents in filtering information relevant to cooperation, which is
then shared with other agents through the Communication Block
to generate true information. Subsequently, the Regeneration Block
utilizes local information to regenerate true information. Through
iterative training, SICA gradually reduces reliance on true informa-
tion, transitioning from a centralized to a decentralized framework.

2 SICA
Selection Block The Selection Block consists of two MLPs and
an S6 layer [4]. Since the time intervals of the inputs in the selec-
tive tasks are variable, a time-varying model is required, so we
integrated the S6 layer into the framework. The two MLPs and
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other components can be modeled as a Gating Unit (GU) [5], which
is responsible for learning long-term dependencies in the input.
Therefore, the entire module can be seen as a dual selection mech-
anism that combines the gating mechanism with the S6 selection
mechanism. Additionally, to empower the Selection Block to thor-
oughly select information, we establish a mini-buffer preceding it.
This mini-buffer preserves the preceding 𝑏 observation-action pairs
of a single agent.

Agent 𝑖’s observation-action pairs from the current time step
and the previous 𝑏 time steps are integrated and passed through a
GU before being fed to the S6 layer. The computation process for
the entire module is outlined as follows:

𝑧𝑡𝑖 = MLP(𝑥𝑡𝑖1)𝜎 (MLP(𝑥𝑡𝑖2)), {𝑥
𝑡
𝑖1, 𝑥

𝑡
𝑖2} = Split(𝑥𝑡𝑖 )

ℎ𝑡𝑖 = 𝐴ℎ𝑡−1
𝑖 + 𝐵𝑧𝑡𝑖

(1)

Communication Block The Communication Block enhances
the Selection Block by allowing agents to integrate global informa-
tion into their decision-making process using attention-weighted
mechanisms [15]. Given the hidden states of agents 𝑖 and 𝑗 as input,
we define two learnable matrices: the self-query matrix 𝑞𝑡

𝑖
=𝑊𝑞ℎ

𝑡
𝑖

and the cognition matrix 𝑘𝑡
𝑗
=𝑊𝑘ℎ

𝑡
𝑗
, where𝑊𝑞 ,𝑊𝑘 are both learn-

able linear transformations. The calculation of attention weights
proceeds as follows:

𝑐𝑡𝑖, 𝑗 =
(𝑞𝑡

𝑖
)𝑇𝑘𝑡

𝑗√︁
𝑑ℎ

(2)

𝑤𝑡
𝑖, 𝑗 =

exp(𝑐𝑡
𝑖, 𝑗
)∑𝑁

𝑘=1 exp(𝑐𝑡
𝑖,𝑘
)

(3)

Here, 𝑑ℎ represents the dimension of the hidden state. Then the
true information 𝑣𝑡

𝑖
can be calculated as 𝑣𝑡

𝑖
=
∑
𝑖≠𝑗 𝑤𝑖, 𝑗ℎ

𝑡
𝑗
.

Regeneration Block To ensure that decision-making relies
solely on local information, we introduce the Regeneration Block,
comprising the Selection Block and an MLP. The Regeneration
Block allows us to derive the regenerated information 𝑣𝑖 , which
continuously approximates the true information 𝑣𝑖 .

At timestep 𝑡 , we utilize exponential weighted averaging to en-
sure that the regenerated information 𝑣𝑡

𝑖
converges towards the

true information 𝑣𝑡
𝑖
. Then, we compute the cross-information 𝑣𝑡

𝑖
:

𝑣𝑡𝑖 = (1 − 𝛼 (𝑡))𝑣𝑡 + 𝛼 (𝑡)𝑣𝑡𝑖 (4)
Where 𝛼 (𝑡) is dynamic, and to ensure a smoother transition within
the framework, we update it using a method similar to cosine
annealing[6]:

𝛼 (𝑡) = 𝛼𝑠𝑡𝑎𝑟𝑡 + (𝛼 𝑓 𝑖𝑛𝑎𝑙 − 𝛼𝑠𝑡𝑎𝑟𝑡 ) cos( 𝑡

𝑡max
𝜋) . (5)

We set 𝛼𝑠𝑡𝑎𝑟𝑡 to 1 and 𝛼 𝑓 𝑖𝑛𝑎𝑙 to 0.
Learning Objective The overall learning objective of our

method is divided into two parts: the TD loss function[12] and
the minimization of the regeneration information error:

L𝑡𝑜𝑡 (𝝉 , 𝒖, 𝑠, ℎ𝑖 ,𝒉;𝜃 ) = L𝑇𝐷 + 𝜎 (𝑡)L𝐴𝑙𝑖𝑔𝑛 (6)

Here, L𝐴𝑙𝑖𝑔𝑛 represents the MSE[1] loss between 𝑣𝑖 and 𝑣𝑖 , 𝜎 (𝑡) is
a threshold function, which is a hyperparameter.

Figure 1: Performance comparison between SICA and base-
lines on SMAC.

3 EXPERIMENTS
We conducted experiments using the StarCraft II Multi-Agent Chal-
lenge (SMAC) benchmark, where the objective is to control a team
of allied units against an enemy team governed by built-in policies.

The median win rates across different maps are shown in Fig-
ure 1. SICA consistently outperforms the baselines across all maps,
even surpassing explicit communication methods. This highlights
the effectiveness of SICA in information processing and highlights
the robustness of its information regeneration capability. Across
all methods, there is a noticeable decline in win rates as we transi-
tion from hard to super hard maps, which aligns with expectations
given the heightened complexity of the latter scenarios. QTRAN[13]
exhibits suboptimal performance across all maps, potentially attrib-
utable to challenges in credit assignment resulting in the develop-
ment of passive agents. Meanwhile, NDQ[18] demonstrates efficacy
solely on select maps, potentially stemming from instability in its
message passing methodology.

4 CONCLUSION
In this paper, we introduced a novel MARL architecture named
SICA, designed to enhance agents’ information handling capa-
bilities and improve the framework’s generality. By integrating
information selection with communication mechanisms, SICA em-
powers agents to autonomously choose relevant information while
incorporating information from other agents. To accommodate to
communication-limited environments, SICA gradually learns the
tacit understanding between agents, eventually transitioning to
a fully decentralized framework. Experimental results illustrate
SICA’s effectiveness in regenerating global information and signif-
icantly enhancing performance in challenging multi-agent tasks
through information selection.
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