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ABSTRACT
Planning at execution time has been shown to dramatically improve
performance for AI agents. A well-known family of approaches
to planning at execution time in single-agent settings and two-
player zero-sum games are AlphaZero and its variants, which use
Monte Carlo Tree Search together with a neural network that guides
the search by predicting state values and action probabilities. Alp-
haZero trains these networks by minimizing a planning loss that
makes the value prediction match the episode return, and the policy
prediction at the root of the search tree match the output of the full
tree expansion. AlphaZero has been applied to various single-agent
environments that require careful planning, with great success. In
this paper, we explore an intriguing question: can we outperform
it by directly maximizing the episode score instead of minimizing
this planning loss, while leaving the MCTS algorithm and neural
architecture unchanged? To directly maximize the episode score,
we use evolution strategies, a family of algorithms for zeroth-order
blackbox optimization. Our experiments indicate that, across all the
tested single-agent environments, directly maximizing the episode
score instead of minimizing the planning loss yields a dramatic
improvement in performance.
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1 INTRODUCTION
Lookahead search and reasoning is a central paradigm in artifi-
cial intelligence, and has a long history [1, 3–7]. In many domains,
planning at execution time significantly improves performance. In
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domains like Sokoban, Pacman, and 2048, all state-of-the-art ap-
proaches use some form of planning by the agent. Many planning
approaches use Monte Carlo Tree Search (MCTS), which iteratively
grows a search tree from the current state, and does so asymmet-
rically according to the information seen so far. A prominent sub-
family of approaches in this category are AlphaZero [9] and its
variants, which leverage function approximation via neural net-
works to learn good heuristic predictions of the values and action
distributions at each state, which can be used to guide the tree
search. AlphaZero (and its variants) train this prediction function
by minimizing a planning loss consisting of the sum of a value loss
and a policy loss. In this paper, we set out to explore whether we
can outperform AlphaZero and its variants in such environments
by directly maximizing the episode score instead, while leaving all
other aspects of the agent, MCTS algorithm, and neural architec-
ture unchanged. Since MCTS is not differentiable, to maximize the
episode score, we employ evolution strategies, a family of algo-
rithms for zeroth-order black-box optimization. We call our method
AlphaZeroES.

2 PROPOSED METHOD
We use Gumbel MuZero [2], a variant of AlphaZero and prior state
of the art for this setting. It iteratively constructs a search tree start-
ing from an environment state. The simulation budget is the total
number of iterations, which is the number of times the search tree
is expanded, and therefore the size of the tree. The prediction func-
tion of the agent takes an environment state as input and outputs a
probability distribution over actions and value estimate. In our ex-
periments, we use DeepSets [12], a neural network architecture that
can process sets of inputs in a way that is equivariant or invariant
(depending on the desired type of output) with respect to the inputs.
Our approach keeps exactly the same architecture, hyperparameters,
and MCTS algorithm as AlphaZero, but changes the optimization
objective. Specifically, instead of minimizing the planning loss, we
directly maximize the episode score. The parameters that are opti-
mized are exactly those of AlphaZero, namely, the neural network
parameters of the prediction function. Only the training objective
is different. One way to directly optimize the episode score is to use
policy gradient methods, which yield an estimator of the gradient
of the expected return with respect to the agent’s parameters. These
methods assume that the policy is differentiable—more precisely,
that its output action distribution is differentiable with respect to
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the parameters of the policy. However, our planning policy uses
MCTS as a subroutine, and standard MCTS is not differentiable.
To resolve this, we turn to black-box (i.e., zeroth-order) optimiza-
tion, which uses only function evaluations to optimize a function
with respect to a set of inputs. In our case, the black-box function
maps our policy’s parameters to a sampled episode score. Natural
evolution strategies (NES) [10, 11] represent the population as a
distribution over parameters and maximize its average objective
value using the score function estimator. We use OpenAI-ES [8], an
NES algorithm that is widely used for reinforcement learning.

3 EXPERIMENTS
In this section, we briefly describe our experiments. We use the
following hyperparameters. We use 10 trials per experiment, 1000
episodes per batch (for both training and evaluation at the end of
each epoch), 1000 training batches per epoch, 4 hours of training
time per trial, the Adabelief [13] optimizer, a perturbation scale of
0.1 for OpenAI-ES, an MCTS simulation budget of 8, hidden layers
of size 16, and the ReLU activation function. In our plots, we show
the episode scores attained by AlphaZero (labeled es=0 in each
legend) vs. AlphaZeroES (labeled es=1 in each legend). At any point
along the X axis, AlphaZero and AlphaZeroES have undergone the
same number of episodes of learning. To perform a fair comparison,
since AlphaZero and AlphaZeroES optimize different objectives, we
test both across a wide range of learning rates (labeled lr in each
legend). Solid lines show the mean across trials, and bands show
the standard error of the mean. Our goal is not to develop the best
special-purpose solver for any one of these domains. Rather, we are
interested in a general-purpose approach that can tackle all of these
domains and learn good heuristics on its own. A brief description of
the environments is as follows. Navigation: Reach as many targets
as possible within a given time limit. Sokoban: Push boxes around
to get them to storage locations. Traveling salesman problem
(TSP): Find the shortest tour through a set of cities. Vertex k-
center problem (VKCP): Find a subset of points that minimizes
the maximum distance to the whole set. Maximum diversity
problem (MDP): Find a subset of points that maxinimizes the
minimum distance between distinct points. These environments are
illustrated in Figure 1. Resulting scores over the course of training
are shown in Figure 2. Our method learns significantly faster.

4 CONCLUSION
In this paper, we set out to study whether AlphaZero and its newest
variants can be improved by maximizing the episode score directly
instead of minimizing the standard planning loss. Since MCTS is
not differentiable, we maximize the episode score by using evolu-
tion strategies. We conducted experiments across multiple domains,
including standard combinatorial optimization problems and mo-
tion planning problems from the literature. In each setting, our
approach yielded a dramatic improvement in performance over
planning loss minimization. Our method suggests that maximiz-
ing “self-consistency”, as the standard AlphaZero loss does, is not
necessarily aligned as an objective with performing better in the
environment in terms of score. One reason might be that optimal or
strong performance does not actually require internal consistency,

Figure 1: Example states for each environment. Top–bottom,
left–right: Navigation, Sokoban, TSP, VKCP, MDP.

Figure 2: Scores during training. Top–bottom, left–right: Nav-
igation, Sokoban, TSP, VKCP, MDP.

and achieving good performance might be easier than achieving
internal consistency (of value and action predictions).
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