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ABSTRACT
Electric vehicle (EV) adoption depends heavily on the availabil-
ity and accessibility of charging infrastructure. In this work, we
propose a multi-agent framework for optimizing the placement of
gas and charging stations. The multi-agent system models drivers’
behavior with varying goals and constraints, interacting in a shared
environment. Preliminary results using a baseline genetic algorithm
demonstrate the feasibility of our approach and provide insights
into optimal station distributions. This framework can be extended
to incorporate more sophisticated evolutionary algorithms or real-
world datasets.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms; Multi-
agent systems; Interactive simulation; • Applied computing→
Multi-criterion optimization and decision-making.
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1 INTRODUCTION
The Electric Vehicle (EV) market has grown significantly in the
last five years, with 5% of all vehicles sold in 2020 being electric.
This growth has transformed interactions between drivers, energy
companies, car sellers, and other stakeholders. Multi-agent systems
(MAS) are essential for simulating and analyzing these interactions.
For instance, studying how the placement and number of charging
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stations influence EV adoption can guide the optimization of station
topologies to boost market growth or company profits.

This paper proposes using Evolutionary Algorithms (EAs) to
optimize simulation parameters. Company agents can create and
configure charging stations in our MAS to maximize benefits. Un-
like previous works focusing solely on station allocation [2, 11], our
approach incorporates interactions between agents. We introduce
domain-specific heuristics to avoid full simulations and the com-
putational challenges of calculating fitness functions, significantly
reducing computation time. We demonstrate that combining EAs
with fitness estimations enables effective parameter optimization.

2 RELATEDWORK
Building an efficient network of electric stations is crucial for in-
creasing EV adoption. Most studies use a top-down approach, lever-
aging data like economic and geographic information with opti-
mization algorithms. For instance, Erbaş et al. [3] rank sites in
Ankara using a fuzzy analytical hierarchy process, while Zhao and
Li [14] apply a fuzzy Delphi method in Tianjin. Genetic algorithms
(GA) are also widely used; Jaramillo et al. [5] showed GA’s advan-
tages in facility location problems, influencing works like Tu et al.
[11], who optimize spatial-temporal demand for electric taxis in
Shenzhen, and Dimitrios Efthymiou and Aifantopoulou [1], who
evaluate station demand near Thessaloniki.

Multi-agent approaches are less explored. Jordán et al. [6] use
agents for tasks like data collection and GA-based station location
in Valencia, while Miranda et al. [8] develop virtual agents for elec-
tricity allocation in charging stations. However, these systems lack
representation of real-world EV market actors and their interac-
tions. This is tackled in the work by Kangur et al. [7] that uses the
consumer model to simulate market diffusion.

Our work introduces a bottom-up multi-agent system in which
agents represent EV market stakeholders. Supplier agents use GA
to optimize station locations and configurations, enabling analysis
of network changes in the market ecosystem.

3 THE MULTI-AGENT ARCHITECTURE
Our model provides a framework to simulate interactions among
electric vehicle (EV) and energy sector agents. It models urban envi-
ronments, populations, and service stations, capturing how people
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travel, refuel, and decide on vehicle purchases. All trips occur within
the environment, with no external inflow or outflow. The frame-
work assesses the long-term effects of policy decisions on energy
company profitability, analyzing how infrastructure investments
impact EV adoption and market dynamics.

The Multi-agent simulation includes key agents representing
EV market stakeholders. Vehicles simulate energy consumption,
deterioration, and breakdowns, influencing consumer satisfaction
and decisions. Consumers maximize their satisfaction by deciding
where to refuel, which vehicle to purchase, and when to travel or
refuel. Service stationsmanage queues, service delivery, expenses,
and revenue, while energy companies optimize station configura-
tions and locations using Genetic Algorithms (GA) to maximize
profits. The energymarket reflects dynamic energy price changes
driven by market rules, and the environment provides spatial and
demographic data that influence agent decisions. This allows the
simulation of the complex dynamics of the EV market.

The system operates synchronously with discrete daily time
steps, combining decentralized and hierarchical structures[9, 12, 13].
Service stations implement policies set by their parent energy com-
panies while maintaining operational independence. Energy com-
panies respond to market-driven energy prices and adjust station
configurations. Vehicles and consumers act autonomously, making
decisions based on observed features and individual goals. This
mixed structure allows reactive agents, like vehicles, to interact
with deliberative agents, such as energy companies, which possess
advanced decision-making and optimization capabilities.

This MAS framework enables detailed simulations of market
dynamics and policy impacts, offering insights into the interplay
between infrastructure, consumer behavior, and EV adoption.

4 OPTIMIZATION USING EAS
Evolutionary algorithms, such as Genetic Algorithms (GAs), are
powerful optimization tools introduced by Holland [4]. GAs mimic
natural selection, making them ideal for exploring large search
spaces handling non-differentiable functions, strong convergence,
and minimal parameter tuning. A GA starts with a population of
solutions, evaluates them using a fitness function, and iteratively
refines them through selection, crossover, and mutation. This pro-
cess continues until a stopping criterion is met. In our work, we
utilize the Differential Evolution algorithm [10] to optimize gas and
electric pump configurations and station locations.

We define three optimization processes tailored to company
needs: (1) redistributing pump types at existing stations; (2) select-
ing optimal locations for new stations using clustering techniques,
with different configurations; and (3) a combined approach optimiz-
ing both station locations and pump distributions. Each solution is
uniquely encoded to reduce redundancy and improve search effi-
ciency. To address computational challenges, we devised a heuristic
that approximates long-term profit by simulating consumer be-
havior over a short period, significantly reducing evaluation times.
Metrics such as total profit, electric pump profitability, and market
impact are analyzed over ten-year simulations.

Experimental results highlight the strengths of informed and
uninformed approaches, comparing baseline configurations with
optimized setups. For pump redistribution, strategies include fixed

percentages or adapting to surrounding car types. Location opti-
mization leverages k-means clustering for station placement, bal-
ancing large centralized stations against distributed smaller ones.
The combined optimization integrates these methods.

Type Settings Total Profit Electric Gain % EVs

baseline 7.49x107 -100% 3.42

D
is
tr
ib
. 50% 7.20x107 -89.40% 5.18

70% 8.22x107 61.45% 4.57
prop 7.94x107 -109.36% 3.35
GA 8.62x107 172.28% 5.02

Lo
ca
ti
on

B|E 7.22x107 78.78% 4.39
B|50% 14.24x107 217.88% 4.24
B|GA 14.99x107 -79.32% 4.02

S|E 6.48x107 -2.42% 5.74
S|50% 13.38x107 194.54% 6.38
S|GA 15.31x107 219.66% 3.99

C
om

bi
ne

d

B|lvq|C 8.87x107 195.02% 4.04
B|lvq|prop 9.20x107 171.96% 4.84
B|kmeans|prop 7.43x107 28.64% 5.39
B|GA 14.15x107 83.42% 5.31

S|lvq|C 15.44x107 137.63% 5.11
S|lvq|prop 15.25x107 107.13% 5.70
S|kmeans|prop 6.92x107 -20.61% 6.75
S|GA 12.71x107 -19.83% 5.99

Table 1: Comparison of Total Profit, Electric Gain, and %
Cars for different configurations in the final simulation step.
Here we use 50% to determine half of pumps of each supply
type, 70% for 30% electric and the rest fuel, E for all electric
and prop for proportional to people nearby. Big stations are
referenced as B and small stations as S. LVQ algorithm uses
lvq abbreviation and K-means uses kmeans. The solutions
regarding the genetic algorithm are called GA.

Table 1 shows that GA optimizations consistently achieve the
highest overall profit, with large stations addressing overall demand
and small ones focusing on local demand. While profit maximiza-
tion sometimes reduces electric gains or EV fleet size, GA still tends
to include EV dispensers, even without explicit optimization. Bench-
mark methods that force all-electric stations to improve electric
gains but reduce profits due to higher maintenance costs. Although
GA struggles with small stations due to a larger search space, all
optimizations outperform the baseline across all metrics.

5 CONCLUSIONS
This study uses multi-agent simulations to evaluate the impact of
optimizing gas and charging station networks on energy company
revenue. Key findings reveal that station quantity, configuration,
and placement significantly influence EV market growth and com-
pany profits. High-density electric station networks foster EV adop-
tion, while small, well-placed mixed-type stations yield the highest
profits, especially in markets transitioning to electric vehicles with
a still-large fuel vehicle presence.
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