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ABSTRACT
Efficient exploration remains a challenge in reinforcement learn-
ing (RL), especially in stochastic or complex environments. We
introduce Predictive Improvement through Latent space OpTimisa-
tion (PILOT), an intrinsically motivated RL algorithm that rewards
actions leading to improvements in the agent’s environmental dy-
namics model. PILOT optimizes an intrinsic reward signal based on
epistemic uncertainty reduction, thereby encouraging structured
exploration. Our evaluations against benchmark intrinsic moti-
vation algorithms in challenging environments show that PILOT
achieves superior performance and exhibits robustness to stochastic
distractions.
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1 INTRODUCTION
Exploration in reinforcement learning can be driven by injecting
noise into the action space [5, 7], maximizing state/action entropy
[4, 16], setting intermediate goals, or using intrinsic motivation
[1, 2, 8]. Intrinsically motivated RL augments environmental re-
wards with intrinsic signals to encourage state space exploration,
often leveraging prediction errors from neural networks to quantify
novelty [3]. However, using raw prediction errors alone has limita-
tions [2, 9]. High errors do not always indicate learnable dynamics,
especially in stochastic environments where errors may remain
persistently high despite repeated sampling. This can mislead the
agent into exploring inherently unpredictable regions rather than
learning useful transitions. A more effective approach is to reward
prediction improvement [11, 12]. Instead of rewarding absolute error,
this method incentivizes transitions where the agent’s model im-
proves after sampling, focusing on reducible epistemic uncertainty
rather than stochastic noise. We introduce PILOT, which shapes
intrinsic rewards based on prediction improvements in a latent
space learned via an inverse dynamics model.
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2 BACKGROUND
Exploration in reinforcement learning is essential for discovering
optimal policies, yet it remains a significant challenge. Traditional
exploration strategies, such as epsilon-greedy and entropy-based
approaches, often fail in environments with sparse rewards or
high stochasticity. To address this, intrinsic motivation has been
widely adopted as a mechanism to encourage structured explo-
ration.Intrinsic motivation techniques enhance the agent’s reward
function by incorporating internal signals based on novelty, curios-
ity, or prediction errors. Prediction error-based intrinsic rewards,
in particular, have gained traction, leveraging the observation that
neural networks struggle to generalize to unseen states, resulting
in higher prediction errors. By rewarding the agent for encoun-
tering states with high prediction error, these methods encourage
exploration beyond immediate extrinsic rewards.

However, using prediction error alone as an intrinsic reward
has notable pitfalls. High prediction error does not always indicate
learnable dynamics, especially in stochastic environments where
errors remain persistently high due to randomness rather than
meaningful uncertainty. This can lead to inefficient exploration, as
agents may be incentivized to visit highly unpredictable regions
rather than focusing on acquiring useful knowledge about the en-
vironment. To overcome these issues, prediction improvement has
emerged as a more effective alternative. Instead of rewarding raw
prediction error, this approach incentivizes reductions in predic-
tion error after the model updates, ensuring the agent focuses on
epistemic uncertainty—uncertainty that can be resolved through
further interaction. This framework underpins PILOT, allowing it
to guide exploration towards meaningful state transitions while
avoiding distractions from irreducible stochasticity.

3 METHOD
PILOT generates intrinsic rewards by leveraging improvements
in prediction quality within a structured feature space. Using raw
sensory inputs for intrinsic rewards is suboptimal due to high-
dimensional noise and irrelevant factors [2, 9]. Instead, PILOT em-
ploys an inverse dynamics model to learn a feature representation
that retains action-dependent features while filtering out stochas-
ticity.

The inverse dynamics model predicts actions given consecutive
states:

𝑎𝑡 = 𝑔(𝑠𝑡 , 𝑠𝑡+1;𝜃𝐼 ) (1)
where 𝜃𝐼 is trained to minimize:

min
𝜃𝐼

𝐿𝐼 (𝑎𝑡 , 𝑎𝑡 ) (2)

ensuring the learned feature space, 𝜙 (𝑠𝑡 ), captures controllable en-
vironment aspects [14]. The forward model further refines learning
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by predicting next encoded states:

𝜙 (𝑠𝑡+1) = 𝑓 (𝜙 (𝑠𝑡 ), 𝑎𝑡 ;𝜃𝐹 ) (3)

where 𝜃𝐹 are the parameters of the forward model.
Intrinsic rewards are based on reducing prediction errors, distin-

guishing between:

(1) Learnt Transitions: Transitions that exhibit dynamics the
agent has already learnt. These generate very low prediction
error and do not represent an opportunity for the agent to
improve.

(2) Learnable Transitions: Transitions that exhibit dynamics that
have not yet been learnt by the agent and hence generate
high prediction error. However, these transitions can be said
to be on the border of the agent’s knowledge, and this error
can be reduced through further sampling.

(3) Unlearnable Transitions: Transitions that exhibit dynamics
which, for whatever reason (e.g., too complex or highly sto-
chastic), are not currently learnt by the agent and cannot be
learnt quickly.

We note that as both 2 and 3 exhibit dynamics not yet learned
by the agent, they can both be expected to generate high prediction
error. However, by rewarding improvement in this error term we
induce a preference for sampling 2 as opposed to 3.

4 EXPERIMENTAL SETUP
We evaluate PILOT in Gymnasium and DeepMind Control Suite,
two standard RL benchmarks. Gymnasium offers diverse tasks,
while DeepMind Control Suite focuses on physics-based continu-
ous control. However, both lack real-world perceptual challenges,
such as visual distractions. To address this, we introduce noisy
environments to assess PILOT’s robustness against task-irrelevant
stochasticity, comparing its performance with other intrinsic moti-
vation methods.

Evaluating intrinsically motivated agents requires distinguish-
ing between epistemic uncertainty (knowledge gaps) and aleatoric
uncertainty (uncontrollable randomness). Effective agents should
focus on learnable dynamics while ignoring stochastic noise. To test
this, we modify standard RL environments by adding five purely
stochastic noise dimensions to the state space, which do not affect
dynamics or rewards. This setup assesses whether PILOT priori-
tizes meaningful exploration over task-irrelevant stochasticity, a
key factor for real-world applicability.

Each agent is trained for 1 million timesteps across five inde-
pendent trials with different random seeds to ensure robustness.
Performance is evaluated every 50,000 timesteps over 10 episodes,
averaging results to track learning progress. Final results are aggre-
gated across seeds, with the best evaluation score serving as the
primary performance metric. We use the Proximal Policy Optimiza-
tion (PPO) [13] implementation from Stable-Baselines3 [10].

5 RESULTS
The scores of the best-performing policy for each agent (aggregated
over 10 environment episodes) are presented in Table 1. Our re-
sults demonstrate significant improvements of PILOT over several
benchmark intrinsically motivated agents.

Environment PILOT ICM RE3 RND L2 Baseline

BipedalWalker-v3 311.019 304.539 303.405 301.351 61.687 310.062
BipedalWalkerHardcore-v3 -11.067 -18.134 -24.224 -27.473 -35.119 -11.071
LunarLanderContinuous-v2 273.54 272.065 263.274 267.89 261.983 282.58
MountainCarContinuous-v0 97.171 0.0 98.768 97.899 97.486 0.0
Pendulum-v1 -69.406 -48.719 -71.283 -48.906 -46.676 -73.521
hopper_hop 58.219 25.907 4.288 9.224 7.456 2.913
hopper_stand 397.055 144.715 105.653 86.328 124.08 363.261
manipulator_bring_ball 17.904 9.805 13.907 5.567 14.912 3.838
point_mass_hard 596.154 345.088 56.984 345.943 544.251 150.051
reacher_easy 957.8 960.0 987.4 962.4 506.2 968.2
walker_stand 398.037 535.443 572.018 562.938 411.578 397.475
walker_walk 403.359 390.891 280.981 440.523 245.207 342.308

Table 1: Performance comparison across standard environ-
ments

Environment (with Noise) PILOT ICM RE3 RND L2 Baseline

LunarLanderContinuous-v2 270.396 211.982 246.971 265.003 210.121 262.845
MountainCarContinuous-v0 -0.041 -0.109 -1.77 -0.082 -1.708 -0.011
Pendulum-v1 -52.969 -665.965 -115.139 -545.236 -103.708 -338.459
reacher_easy 399.8 509.8 441.8 458.8 278.4 491.0
walker_stand 380.562 430.163 530.45 442.514 395.793 390.367
walker_walk 294.153 249.099 243.292 291.248 251.867 240.683

Table 2: Performance comparison across distractor environ-
ments

In standard environments, PILOT outperforms all other agents
in 6 out of 12 tasks, with the next best agent, RE3, leading in only
3. Notably, PILOT is the only agent matching or exceeding base-
line performance in complex environments like BipedalWalker-v3
and BipedalWalkerHardcore-v3, supporting our hypothesis that
reducing epistemic uncertainty mitigates distractions from intrinsic
rewards. To test robustness, we introduced stochastic noise dimen-
sions as distractions for environments in which PILOT was not
the best performing agent. Table 2 shows PILOT achieved the best
performance in 3 of the 6 environments after noise was added. Un-
like ICM and RE3, which suffered substantial performance drops,
PILOT maintained or improved its standing, as seen in Pendulum-
v1, LunarLanderContinuous-v2, and walker walk. These results
highlight PILOT’s resilience to task-irrelevant noise, demonstrating
its ability to focus on meaningful state-space components.

6 CONCLUSION
Our experimental results demonstrate that PILOT outperforms sev-
eral competitive baselines, particularly in stochastic settings, by
effectively ignoring irrelevant noise dimensions and focusing on
meaningful state representations. Notably, PILOT showed signifi-
cant improvement over other agents when tested on environments
with added stochastic dimensions, further highlighting its ability
to focus on reducing actionable uncertainty. Future research could
expand upon the findings of this work by applying PILOT to more
complex and visually rich datasets, such as the Kinetics dataset
[6] or the Continuous Distraction Suite [15]. These datasets pro-
vide challenging benchmarks for assessing robustness to noise and
distractions, which are crucial for scaling reinforcement learning
methods to real-world scenarios.
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