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ABSTRACT
Large Language Models (LLMs) excel at multi-document QA, sum-
marization, code generation, and other language-intensive tasks,
yet they demand substantial memory resources for storing key-
value (KV) caches and processing attention in long-context sce-
narios. These requirements often prohibit on-device or edge de-
ployments in multi-agent systems (MAS), where multiple agents
share or update contextual information and need efficient infer-
ence pipelines. We present CASK (Context-Adaptive Sparse
Key-value), an inference-time strategy that reduces memory usage
while preserving strong performance on extended contexts. CASK
addresses this challenge with two complementary mechanisms:
a dynamic sparse attention module—a lightweight, meta-learned
component—that identifies the most relevant context tokens, and
an adaptive KV-cache compression technique that dynamically
quantizes and prunes less critical key-value pairs based on usage
frequency and recency. These innovations enable near-lossless per-
formance on long-context tasks while cutting memory usage by up
to 40% and boosting inference speed by as much as 20%. Evaluations
on LongBench [2] and multi-agent benchmarks show that CASK
maintains over 95% of baseline accuracywhile allowingmore agents
or extended histories under tight GPU budgets. Integration into a
vision-language agent for collaborative, multimodal contexts under-
scores its practicality for resource-constrained LLM deployments
in MAS.
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1 INTRODUCTION
Large Language Models (LLMs) have dramatically advanced nat-
ural language processing, enabling high performance in few-shot
learning, code synthesis, and long-form text generation [3, 4, 8, 18].
However, these models are challenging to deploy in multi-agent
systems (MAS) with limited computational resources [14, 19, 29].
Each agent may need to maintain an extensive context history or
share contextual knowledge with others, magnifying the problem of
storing large key-value (KV) caches and executing the quadratic at-
tention mechanism in standard Transformers [3, 26]. This restricts
real-time or on-device inference in settings such as IoT networks,
robotic swarms, or other privacy and latency-critical domains.

Figure 1: The Vision Language Agent example for MAS, a
vision-languagemodel integrated with CASK. TheMask Gen-
eration Module (MGM) periodically outputs sparse attention
masks and triggers KV-cache compression.

We introduce CASK (Context-Adaptive Sparse Key-value)—
an inference-time approach that substantially cuts memory us-
age while retaining the core strengths of LLM-based systems in
extended-context tasks. Unlike many existing techniques that re-
quire re-training or architecture modifications [5, 6, 11, 21], CASK
operates on top of pre-trained LLMs. It dynamically generates sparse
attention patterns and aggressively compresses the KV-cache to
accommodate long contexts under strict memory constraints. Criti-
cally, it preserves coherent multi-agent interactions by focusing on
crucial cross-references among agents’ dialogue or sensor data.
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2 APPROACH
CASK introduces two main components (Figure 1). The first is Dy-
namic Sparse Attention, which employs a Mask Generation Module
(MGM), a small vision transformer [10] trained to derive sparse bi-
nary masks that eliminate lower-importance interactions via meta
reinforcement learning from reconstruction [9, 27]. We apply these
sparse masks to the attention logits, allowing the model’s existing
attention pipeline to leverage sparse operations without altering its
underlying architecture. This effectively reduces the attention win-
dow, lowering memory and compute overhead. To handle contexts
longer than the model’s original training window, we include a po-
sitional interpolation scheme (e.g., [16, 17]) that smoothly extends
the receptive field without requiring major retraining.

The second component is Adaptive KV-Cache Compression.
CASK extends post-training weight-quantization methods [13, 22,
25] to dynamic KV-Cache quantization and pruning. By tracking
recency, access frequency, attention allocation, and gradient attri-
bution, it computes saliency metrics for each key-value pair. Guided
by two thresholds—validated via runtime reconstruction loss—pairs
with moderately low salience are dynamically quantized to a lower
bit width, while those below a stricter threshold are pruned. This
reduces cache size as contexts accumulate and is especially benefi-
cial in MAS settings, where large histories often contain irrelevant
or outdated content.

3 EXPERIMENTAL RESULTS
We implement a MAS with Vision Language Agents by integrating
CASK onto a LLaMA 3.2 90B instruct model [8] as shown in Fig-
ure 1, wherein multiple agents communicate both text and visual
embeddings, sharing a global context. To demonstrating CASK’s
stable long-context processing, critical for MAS-focused tasks, we
evaluate on LongBench [2].

Table 1: Average Performance on LongBench [2].

Avg. Memory Relative
Model Score Usage Inference

(LongBench) (GB) Time
LLaMA-3.2-90B-128k [8] 63.2 72 1.00x
GPT-3.5-Turbo-16k [15] 44.0 350* 0.85x
Qwen2-VL-72B-Chat [1, 20, 24] 56.4 63 0.92x
Reformer [11] 48.9 88 1.15x
Performer [7] 52.6 43 0.78x
H2O [28] 57.2 40 0.88x
SEA [12] 62.8 68.5 0.82x
BigBird [26] 54.6 68.1 0.82x
StreamingLLMs [23] 37.1 40.8 0.88x
SampleAttention [30] 62.7 67.4 0.81x
CASK (Ours) 61.5 44.5 0.77x
*Estimated usage based on model size.

4 DISCUSSION
Tables 1 and 2 compare our proposed CASKmethod against state-of-
the-art LLM test-time optimizations and the full-attention baseline.
Overall, CASK achieves a strong balance of reduced memory usage,
improved inference speed, andminimal drops in accuracy relative to
the baseline. Specifically, in Table 1, CASK retains 61.5 average score

Table 2: Task-specific performance (LLaMA-3.2-90B-128k [8]
on LongBench [2]).

Technique S-Doc QA M-Doc QA Summ. Few-shot Code Synth.

Full Attention 51.2 60.5 49.6 78.2 76.4 63.0
SEA 47.1 56.7 45.6 74.5 72.6 59.3
BigBird 50.6 56.1 48.6 66.7 68.3 37.1
StreamingLLMs 26.6 40.5 45.6 50.7 55.0 4.4
SampleAttention 49.5 60.4 49.4 78.1 76.3 62.9
CASK (Ours) 49.4 58.9 45.6 76.3 76.1 62.8

while cutting memory usage by 38% relative to the base LLaMA
model [8], accelerating inference by around 23%. This improvement
is consistent across input lengths up to 128k tokens, demonstrating
stable long-context processing.

Looking at the breakdown in Table 2, CASK remains close to
full attention on tasks requiring more intricate or broad context de-
pendencies (e.g., code generation, few-shot, or synthetic tasks). Its
chunked/compressed attention mechanism captures long-range in-
teractions without incurring the quadratic memory cost of standard
attention. By contrast, for narrower tasks (e.g., single-document
QA, summarization), the localized context dependencies are of-
ten well-served by more specialized mechanisms, which can ex-
plain why certain methods such as BigBird (block-sparse) [26] or
StreamingLLMs (step-by-step) [23] may outperform CASK in those
cases. These approaches aggressively reduce attention overhead
for short or more localized sequences, often matching or beating
CASK’s memory usage.

However, on tasks demanding broader ormore complex attention
patterns (e.g., multi-document QA, code generation, and synthetic
benchmarks), simpler or more aggressively sparse methods can
lose critical long-range interactions. Here, CASK’s chunk-based
strategy offers more flexibility in capturing essential dependencies,
allowing it to surpass the more specialized methods. Other tech-
niques like SEA [12] or SampleAttention [30] may track closely to
CASK in some benchmarks, yet they typically incur approximately
30% higher memory usage. Hence, CASK emerges as an attractive
trade-off for real-world deployments where memory constraints
and inference speed are key concerns, while still delivering strong
overall performance across a variety of tasks.

5 CONCLUSION
CASK addresses a central challenge in deploying LLMs for multi-
agent systems with long or evolving contexts under strict resource
budgets. By leveraging dynamic sparse attention and importance-
based KV-cache compression, it (i) maintains robust performance
(over 95% of baseline accuracy) on diverse tasks requiring signifi-
cant context windows, (ii) saves ~40% of GPU memory and reduces
latency (allowing more agents or deeper contexts without out-of-
memory errors), and (iii) integrates into existing LLM inference
stacks with minimal changes—requiring no specialized retraining
or hardware. Future work includes exploring automated threshold
tuning for compression, investigating cross-agent attention shar-
ing, and tailoring the method to specialized edge hardware. Overall,
CASK provides a practical solution for memory-efficient LLM infer-
ence in resource-constrained, collaboration-focused environments.
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