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ABSTRACT
Many real-world problems (e.g., resourcemanagement, autonomous
driving, drug discovery) require optimizing multiple, conflicting
objectives. Multi-objective reinforcement learning (MORL) extends
classic reinforcement learning to handle multiple objectives simul-
taneously, yielding a set of policies that capture various trade-offs.
However, the MORL field lacks complex, realistic environments and
benchmarks. We introduce a water resource (Nile river basin) man-
agement case study and model it as a MORL environment. We then
benchmark existingMORL algorithms on this task. Our results show
that specialized water management methods outperform state-of-
the-art MORL approaches, underscoring the scalability challenges
MORL algorithms face in real-world scenarios.

CCS CONCEPTS
• Theory of computation → Sequential decision making.
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1 INTRODUCTION
Multi-objective reinforcement learning (MORL) extends the clas-
sic reinforcement learning (RL) framework [20] to problems with
multiple, conflicting objectives. Rather than maximizing a single re-
ward, MORL uses a vector of rewards—one per objective—yielding
multiple optimal policies with distinct trade-offs [6]. It has been ap-
plied in water management [3, 16], autonomous driving [9], power
allocation [12, 23], drone navigation [22], and medical treatment
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[8, 10]. Recent advances [1, 2, 24] have expanded MORL’s algo-
rithmic capabilities, yet benchmarking still heavily relies on toy
tasks. As a result, the real-world applicability of state-of-the-art al-
gorithms remains unclear, especially given the additional objective
dimension alongside large state and action spaces.

Water resource management is becoming increasingly complex
due to climate change. A key problem in this domain is about mak-
ing sequential decisions about water releases from dams to balance
multiple, often conflicting objectives, including hydropower gen-
eration, irrigation, water supply, and environmental preservation.
This multi-objective problem has been studied in real-world con-
texts [4, 15, 16, 25] using methods such as dynamic programming
and mathematical optimization [5, 7]. A specialized method, evo-
lutionary multi-objective direct policy search (EMODPS) [3], has
demonstrated strong performance [17, 19]. However, existing mod-
els of the problem remain difficult to access due to proprietary data,
multiple programming languages, and inconsistent code structures.

In this paper, we address the problem of the lack of large-scale,
real-world problems for evaluatingMORL algorithms.We introduce
a real-world case study from the field of water resource manage-
ment and model it in a modular, structured way as a MORL environ-
ment using MO-Gymnasium [2] API. This case study enables MORL
researchers to test their algorithms in realistic, high-impact scenar-
ios. The case study we introduce is Nile river basin management. By
benchmarking state-of-the-art MORL algorithms in this environ-
ment, we evaluate their performance against the specialized water
management algorithm, EMODPS, and explore the effectiveness of
existing MORL methods for real-world application.1

2 BACKGROUND
We formalize aMORL problem as a multi-objective Markov decision
process (MOMDP) ⟨𝑆,𝐴,𝑇 ,𝛾, 𝜇,R⟩, where 𝑆 and 𝐴 are the state and
action spaces,𝑇 is a probabilistic transition function, 𝛾 is a discount
factor, 𝜇 is the initial state distribution, and R is a vector-valued
reward function returning a numeric feedback signal for each of
𝑑 ≥ 2 objectives—the key difference from standard MDPs.

Because the policy value V𝜋 ∈ R𝑑 can only be partially ordered,
either a utility function 𝑢 : R𝑑 → R is used to prioritize objectives
or, if unknown, an entire solution set (multi-policy paradigm) must
be returned. The Pareto set is the set of all pairwise undominated
policies based on Pareto dominance, while the Pareto front (PF) is
1Code: https://github.com/osikazuzanna/wms_morl/
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the corresponding set of value vectors, forming the convex hull
(CH) if 𝑢 is a positively weighted linear sum [13].

3 NILE RIVER BASIN
Background The Nile River, a vital resource for ten northeast
African countries, supports hydropower, agriculture, and munic-
ipal needs but faces ongoing political tensions over water rights,
particularly between Egypt, Sudan, and Ethiopia. Ethiopia’s Grand
Ethiopian Renaissance Dam (GERD), seen as essential for economic
development and expanding electricity access (currently only 27%),
is a major point of contention. Egypt, historically reliant on the
Nile and the High Aswan Dam (HAD) for hydropower and water
security, fears GERD will reduce downstream flows, jeopardizing
food and energy security. Sudan, benefiting from extensive irriga-
tion infrastructure, initially opposed GERD alongside Egypt but
now acknowledges potential flood regulation benefits while still
expressing concerns about water security. Negotiations remain
stalled as the river faces additional challenges, including variable
inflows, droughts, floods, and increasing demand due to population
growth [21]. Our study models the Nile River Basin to capture the
conflicting interests of Ethiopia, Sudan, and Egypt.

Actions The action tuple is four-dimensional, where each dimen-
sion represents the percentage of water to be released from one of
the following dams: GERD, Roseires, Sennar, and HAD. The actions
are taken every month, for 20 years. Thus, the full episode consists
of 240 timesteps.

Observations The state is five-dimensional, with the components
representing the storage of the four reservoirs modeled and the
month of the year the system is in (normalized).

Rewards We consider four objectives; so, the reward is four-
dimensional: Egypt irrigation deficit (ED), Sudan irrigation deficit
(SD), Egypt minimum HAD level, which represents water reliability
in the HAD ensuring that the water level exceeds the minimum
required for power generation (HAD), and Ethiopia hydropower
generation from the GERD power plant (EH).

4 EXPERIMENTS AND RESULTS
Experimental Setup We benchmark three state-of-the-art multi-
policy MORL algorithms, covering both CH and PF-returning meth-
ods: GPI-LS [1], PCN [18] and CAPQL [11]. These algorithms were
chosen specifically as they can handle continuous actions and state
space as well as more than two objectives. These are compared with
EMODPS [3], an advanced optimization approach for designing
efficient control policies in complex water management systems. To
compare the performance of these algorithms we use hypervolume
(region between the solution set and a reference point, which de-
fines the lower bound for each objective) (↑), cardinality (number of
solutions in the final set) ( ↑ ) and sparsity (spread of the solutions
in the solution set) (↓) of the solution set [24]. We trained each
MORL algorithm for 200,000 timesteps and EMODPS for 20,000
NFEs, selecting these values based on observed convergence.

Results Table 1 shows final meanmetrics (over five seeds) and uses
EMODPS hypervolume as the baseline (value=1 indicates matching
performance). GPI-LS achieves the highest MORL hypervolume
(68% of the baseline), while PCN and CapQL remain at 10–11%.

EMODPS outperforms in cardinality, which measures the number
of solutions in the final set. Despite fewer solutions and higher
sparsity, GPI-LS covers diverse trade-offs, whereas PCN and CapQL
concentrate on narrower solution regions.

Algorithm Hypervolume
(% Baseline) ↑

Cardinality
↑

Sparsity
↓

EMODPS (Baseline) 2.21E+08 (100%) 327 3.951
PCN 2.26E+07 (10%) 51 7.754
GPI-LS 1.50E+08 (68%) 41 150.636
CapQL 2.03E+06 (1%) 9 7.719

Table 1: Comparison of MORL and EMODPS algorithms

Figure 1 shows parallel coordinate plots [14] of each algorithm’s
solutions, with the x-axis listing objectives and the y-axis indicat-
ing normalized objective values (higher is better); each polyline
represents a solution, and an ideal one would be a flat line at 1.0.
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Figure 1: Parallel coordinate plots with solution sets achieved
by each algorithm for the Nile environment.

The solution sets for each algorithm were generated by merg-
ing results from multiple seeds and applying Pareto filtering to
retain only non-dominated solutions, with counts shown above
each plot. PCN and GPI-LS produce larger merged sets than their
average cardinality, suggesting distinct regional coverage across
seeds, making exploration an important challenge in this domain.
EMODPS achieves a similar size to its mean cardinality, indicating
comprehensive exploration within each seed.

5 CONCLUSIONS
We emphasize the importance of applying MORL algorithms to real-
world challenges, as current approaches, often tested on theoretical
problems, struggle with practical issues like exploration and scala-
bility. By introducing a complex water management case, we hope
to encourage the MORL field to focus on practical challenges when
developing new algorithms. Our results show that current MORL
algorithms fall short in comparison to the domain-specific water
resource management algorithm, EMODPS. We also highlight two
challenges for MORL approaches: scalability and exploration.
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