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ABSTRACT
Adverse weather, especially thunderstorms, disrupts air traffic op-
erations and requires real-time trajectory adjustments to ensure
aircraft safety. Existing methods often rely on centralized or single-
agent approaches, lacking the coordination and robustness needed
for scalable solutions. This paper presents a decentralized multi-
agent method for cooperative trajectory planning, where each air-
craft operates as an autonomous agent. The problem is modeled as
a Decentralized Markov Decision Process (DEC-MDP) and solved
with a proposed Independent Deep Deterministic Policy Gradient
(IDDPG) algorithm. Experimental results show that the proposed
method outperforms the state-of-the-art baselines in maintaining
safe separation and optimizing rerouting efficiency under dynami-
cally evolving thunderstorm cells.
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1 INTRODUCTION
Thunderstorms pose significant challenges to air traffic manage-
ment (ATM), leading to loss of separation between aircraft and
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increased delays [6]. Effective trajectory planning for multiple air-
craft in dynamic thunderstorms is essential to mitigate these risks
and improve operational efficiency [2, 10]. The primary challenge
lies in adjusting trajectories cooperatively in real-time, particularly
in areas with limited air traffic control coverage, such as oceanic
airspace [17], where timely and effective coordination is crucial.

Traditional trajectory planning under thunderstorms has uti-
lized geometry [8], optimization [24], and heuristics methods [19].
Early works [7] emphasized iterative approach, while studies ap-
plied dynamic programming [16] and constrained optimization
[14] for aircraft rerouting. Methods addressing uncertainties, such
as [13, 18, 22], lacked real-time applicability or coordination in
thunderstorm conditions. Optimal control approaches [9, 20, 25]
improved robustness but still faced scalability challenges in com-
plex and evolving environments. Heuristic methods [2, 11] showed
effectiveness in trajectory planning but struggled with dependency
and scalability, limiting large-scale and real-time applications.

Recent advancements in reinforcement learning (RL) have con-
tributed to trajectory planning [27]. Proximal Policy Optimiza-
tion (PPO) [4, 5] has been used for conflict resolution in air traffic.
Deep Deterministic Policy Gradient (DDPG) [[23] has optimized
aircraft vectoring under uncertainties. Models [1, 28] incorporat-
ing physics-based knowledge provide explainable solutions, while
studies [12, 21] validated multi-agent RL models in simulations, em-
phasizing the need for alignment with air traffic control procedures.
Despite these advancements, existing RL approaches still struggle
to ensure coordination and scalability, especially when adapting to
dynamic and unpredictable weather, such as thunderstorms.

This paper proposes a cooperative and scalable multi-agent RL
method for trajectory planning problem under dynamic thunder-
storms. The problem is modeled as a decentralized Markov Decision
Process (DEC-MDP) and solved using the proposed Independent
Deep Deterministic Policy Gradient (IDDPG) algorithm. The ex-
perimental results show that our method outperforms the baseline
algorithms in maintaining safe separation and improving scalability
in diverse evaluation scenarios.
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2 PROBLEM AND METHODS
We model the problem as a Decentralized Markov Decision Process
(DEC-MDP) [3], where each aircraft operates as an independent
agent making decisions to optimize a joint reward while ensur-
ing safe separations. For 𝑛 agents, the DEC-MDP is defined by
the joint state space 𝑆 = 𝑆1 × 𝑆2 × · · · × 𝑆𝑛 , joint action space
𝐴 = 𝐴1×𝐴2×· · ·×𝐴𝑛 , joint reward function𝑅(𝑠1, . . . , 𝑠𝑛, 𝑎1, . . . , 𝑎𝑛),
and state transition probabilities 𝑃 = (𝑃1, 𝑃2, . . . , 𝑃𝑛). The state
space for aircraft agent 𝑖 at 𝑡 includes its position 𝑝𝑖 (𝑡), velocity
𝑣𝑖 (𝑡), thunderstorm cell information𝑂𝑊 (𝑡), and the remaining dis-
tance to the exit waypoint 𝑑𝑖_Exit𝑡 . The action space consists of the
heading change 𝑎𝑖𝑡 = Δℎ𝑖 (𝑡), a continuous variable within [−30, 30]
degrees. The reward function includes separation assurance, dy-
namic thunderstorm avoidance, heading change minimization, and
distance minimization, all of which assign negative rewards for
undesirable actions. The only positive reward is goal reaching. The
total system reward is the weighted sum of these individual com-
ponents, with the weights fine-tuned to reflect task priorities.

To solve the DEC-MDP, we propose an Independent Deep De-
terministic Policy Gradient (IDDPG) method, leveraging a shared
actor-critic architecture within a Centralized Training and Decen-
tralized Execution framework [15]. During training, a centralized
critic network𝑄𝑖 (𝑠𝑡 , 𝑎𝑖𝑡 | 𝜃𝑄𝑖 ) evaluates actions for all agents using
global state information 𝑠𝑡 . This allows the critic to compute value
functions that reflect the joint impact of actions, facilitating coordi-
nation across agents. Each agent maintains a decentralized actor
network 𝜇𝑖 (𝑠𝑖𝑡 | 𝜃𝜇𝑖 ), mapping its local observations 𝑠𝑖𝑡 to actions
𝑎𝑖𝑡 . In execution, each agent independently chooses actions based
on its local state, ensuring scalability and real-time applicability.

3 EXPERIMENTAL RESULTS
Themulti-agent decentralized IDDPGmethod is adapted for aircraft
rerouting under dynamic thunderstorms. Training and evaluations
were conducted in a self-built simulator. Multiple evaluations were
performed to assess the effectiveness and scalability of the proposed
method. Performance metrics include safety (loss of separation
(LOS) rate) and efficiency (goal reach rate and flight distance ratio).

The effectiveness of the proposed method is demonstrated in Fig.
1, where all aircraft trajectories successfully avoid dynamic thunder-
storm cells while maintaining safe separation over time. Scalability
results in Table 1 reveal that as the number of aircraft increases
from 4 to 8, the method’s performance remains robust, with Aircraft
LOS rates consistently below 1% even in high-density scenarios.
Baseline comparisons in Table 2 demonstrate that the proposed ID-
DPG method outperforms the state-of-the-art Fast Marching Tree
(FMT) [11] and DDPG [23] methods with significant improvements,
achieving a 98% goal reach rate compared to 87% for FMT and
90% for DDPG, while maintaining zero Aircraft LOS in contrast to
12% for FMT. These results show that the IDDPG enables superior
coordination and efficiency in dynamic thunderstorm conditions.

4 CONCLUSIONS
This paper presents a decentralized multi-agent RL method for tra-
jectory planning under dynamic thunderstorms. Simulations show
a significant improvement in maintaining safe separation, with a re-
duction in conflict rates by up to 12% compared to baseline methods.

Figure 1: All aircraft successfully avoids dynamic thunder-
storms (evolving contours) and maintains safe separation.
Entry and exit waypoints are marked by solid triangles and
stars, and dashed lines represent rerouted trajectories.

Table 1: Scalability analysis in 100 test scenarios.

Performance metrics Number of aircraft
4 5 6 7 8

Aircraft LOS rate 0 0 0 1% 0
Thunderstorm LOS rate 0 2% 2% 3% 5%
Goal reach rate 100% 98% 98% 96% 95%
Distance ratio (1.08 (1.17 (1.17 (1.16 (1.17
(Mean ± S.D.) ±0.06) ±0.15) ±0.16) ±0.17) ±0.17)

Table 2: Comparisons of state-of-the-art methods in 100 di-
verse test scenarios with six aircraft.

Methods Aircraft Thunderstorm Goal
LOS rate LOS rate reach rate

FMT 12% 1% 87%
DDPG 2% 8% 90%
IDDPG (Ours) 0 2% 98%

The proposed IDDPG enables robust and scalable coordination be-
tween multiple aircraft trajectories during evolving thunderstorms,
providing a promising method for real-time air traffic management
in complex airspace affected by thunderstorms and other dynamic
disruptions, such as space launch failures [26]. In future work, the
method could be expanded to incorporate uncertainties in storm
evolution and trajectory prediction.
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