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ABSTRACT
Goal-Conditioned Reinforcement Learning (GCRL) enables learning
unified controllers but its trial-and-error process poses risks in
real-world applications. We propose a method that allows agents
to explore while avoiding harmful mistakes. Since environment
dynamics are often uniform in space, a policy trained for safety
without exploration purposes can still be exploited globally. Our
approach has two phases: first, pretraining a safety policy using
safe reinforcement learning and distributional techniques; second,
ensuring safe exploration by selecting the action to perform on the
environment either from the safety policy or from the learning goal-
conditioned (GC) policy, depending on current state. In simulated
environments, we show that it covers most of the goal-space while
minimizing mistakes during exploration, unlike traditional GCRL.
We also perform an ablation study and failure analysis, providing
insights for future research.
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1 INTRODUCTION
Goal-conditioned reinforcement learning (GCRL) enables a sin-
gle controller to handle diverse tasks and adapt [3–6, 16, 17, 19],
but often relies heavily on primitives for exploration and safety.
Safe exploration methods fall into two categories [14]: auxiliary
reward-based [8, 12, 15] and human knowledge-based approaches
[9, 11, 18, 21], the latter relying on strong assumptions like emer-
gency stops [22] or linearized models [7]. We propose a safe ex-
ploration framework1 at the intersection, inspired by viability the-
ory [23], requiring fewer assumptions and focusing on empirically
showing that an agent can explore safely without mistakes, at
the cost of theoretical guarantees. The agent alternates between a
safety policy that maintains viability and a goal-conditioned policy
1See the full version of this paper for more details: https://arxiv.org/abs/2502.13801
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Figure 1: Action selection mechanism to guarantee safe
exploration. 𝜋𝜙𝑆

(.|𝑠) is the parameterized safety policy,
𝜋𝜙𝐺𝐶

(.|𝑠, 𝑔) is the goal-conditioned policy, and 𝜎𝜋𝜙𝑆 the func-
tion estimating the level of confidence in the safety policy’s
ability to avoid potential future errors. If it is too low, the
safe action 𝑎𝑆 is executed to keep the system safe. Otherwise,
𝑎𝐺𝐶 is executed, allowing the agent to explore.

that explores and reaches new goals, with a risk measure guiding
the switches (Figure 1). Our contributions are threefold. (1) a dis-
tributional safe RL framework to pretrain a safety policy, (2) an
action selection mechanism ensuring safe exploration, (3) analyzing
key components of the method and failure modes to orient future
research.

2 METHOD
The safe exploration problem can be seen as the combination of
a CMDP (S,A, 𝑝, 𝑝0, 𝑟𝑆 , ℎ) [1], solved by the safety policy, and a
multi-goal MDP (S × G,A, 𝑝, 𝑝0, 𝑝G, 𝑟G) [19], solved by the GC
policy. The safety reward 𝑟𝑆 is 1 within a set 𝑁0 around an equi-
librium point and 0 elsewhere, enabling the safety policy’s critics
to estimate the steps needed to reach this set from any given state.
We use thresholds on this estimate to guide action selection, as
safety decreases with step count. Due to neural networks continu-
ity, terminal states may appear safe if near a safe state. To address
this, we assume the agent receives a cost at each step, defined by a
continuous constraint function ℎ that verifies ℎ(𝑠) > 0 for terminal
states [24]. Safety pretraining is inspired by TQC [13] and incor-
porate a regularization term based on reachability like RCRL [24].
Using quantiles allows to prevent overestimation and to compute
a risk measure (Figure 1). During the safe exploration phase, the
safety policy and critics are fixed, and a randomly initialized GC
policy is trained. The replay buffer starts empty and is filled during
safe exploration with transitions from both policies. SAC-N [2], a
variant of SAC [10], is used to train the GC policy while preventing
overestimation bias in the critic. To decide when to switch, we use
the mean of the worst 10% of safety critic quantiles.
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(a) CartPoleGC
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(b) SkydioX2GC

Figure 2: Comparison between our safe explorationmethod and the baseline (SAC+HER) in terms of safety during exploration
and coverage on CartPoleGC (a) and SkydioX2GC (b) environments. To avoid cherry picking, we used multiple seeds both for
pretraining and safe exploration: 4 of pretraining times 3 of safe exploration for CartPoleGC, 3 times 3 for SkydioX2GC.

Figure 3: Occurrence of
mistakes obtained during
safe exploration for dif-
ferent pre-trained policies
with the CartPoleGC envi-
ronment.
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Figure 4: Critic disagreement in 𝐿1 norm between the quan-
tile critics along a failed episode of the CartPoleGC environ-
ment. Dots are green when the GC policy is active and blue
when the safety policy is active.

3 EXPERIMENTS
We conducted experiments on a custom goal-based version of the
gymnasium CartPole environment [20] with continuous actions
that we call CartPoleGC, and a goal environment based on the
Skydio X2 drone from the Mujoco menagerie [25] that we call Sky-
dioX2GC. We performed an ablation study to validate our design
choices and compared our approach with a classical GC method
combining SAC and HER, with 80% of relabelling and future strat-
egy [3]. As our general objective is zero error during exploration,

we also analyze the causes of the few mistakes we obtained during
safe exploration using our method. In terms of coverage, the base-
line obtains a better success rate, around 98% on average against
70% for CartPoleGC (Figure 2a) while on SkydioX2GC safe explo-
ration offers almost the same performance but with higher variance
(Figure 2b). However, our approach considerably reduces the num-
ber of mistakes during exploration in comparison to the baseline
which does not take safety into account (Figure 2). On CartPoleGC
we obtained at most 27 mistakes, and 7 mistakes at most on Sky-
dioX2GC, but for some runs, we obtained 0 mistakes for the whole
training. These differences, within the same environment, stem
from the strong reliance of safe exploration on the pretrained safety
policy, and consequently, on the quality of the pretraining (Figure
3). This dependence on the safety policy is further confirmed, and
even more clearly demonstrated, in Figure 4 that shows disagree-
ment between quantile critics along a failed episode of CartPoleGC.
Disagreement between critics is large before the mistake occurs,
indicating insufficient training of the safety policy on those states
and actions. This suggests two research directions: incorporating
disagreement into the switching mechanism and fine-tuning the
safety policy during safe exploration.

4 CONCLUSION
Our experiments show that our safe exploration framework effec-
tively trains a goal-conditioned policy while preventing most of
the mistakes. Failures mainly stem from insufficient safety policy
pretraining, which could be improved by leveraging critic disagree-
ment or fine-tuning during exploration. Beyond trusting the safety
policy, gaining a deeper understanding of its limitations will be key
to refining our approach and guiding future improvements in safe
exploration.
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