
Transformer Guided Coevolution: Improved Team Formation in
Multiagent Adversarial Games

Extended Abstract

Pranav Rajbhandari
Carnegie Mellon University
Pittsburgh, PA, United States
prajbhan@alumni.cmu.edu

Prithviraj Dasgupta
Naval Research Laboratory

Washington, D.C., United States
prithviraj.dasgupta.civ@us.navy.mil

Donald Sofge
Naval Research Laboratory

Washington, D.C., United States
donald.a.sofge.civ@us.navy.mil

ABSTRACT
With the increasing number of autonomous platforms in everyday
life, forming coordinated teams of agents becomes vital. To solve
this, we propose BERTeam, an algorithm inspired by Natural Lan-
guage Processing. BERTeam trains a transformer-based deep neural
network to select from a population of agents. It can integrate with
coevolutionary deep reinforcement learning, which evolves a di-
verse set of players to choose from.We evaluate BERTeam inMarine
Capture-The-Flag, and find it learns non-trivial team compositions
that outperform unknown opponents. In this setting, we find that
BERTeam outperforms MCAA, another team selection algorithm.

KEYWORDS
Multiagent games; Team selection; Sequence generation
ACM Reference Format:
Pranav Rajbhandari, Prithviraj Dasgupta, and Donald Sofge. 2025. Trans-
former Guided Coevolution: Improved Team Formation in Multiagent Ad-
versarial Games: Extended Abstract. In Proc. of the 24th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2025), Detroit,
Michigan, USA, May 19 – 23, 2025, IFAAMAS, 3 pages.

1 INTRODUCTION
We inspect multiagent adversarial team games, characterized by
an environment with multiple teams of agents, each working to
achieve a team goal. Each episode results in an outcome, a set of
teams that ‘win’. Examples of scenarios that can be formulated in
this way include pursuit-evasion [5, 13, 28, 33], robotic football
[12, 18, 29], and robotic capture-the-flag [23], as well as real-world
applications like search-and-rescue and autonomous surveillance.

A crucial problem in this setting is selecting coordinated teams
from a set of potential members to outperform unknown opponents.
This is challenging since optimal team selection must consider both
intra-team and inter-team interactions. Researchers have addressed
this with various approaches, such as finding Nash Equilibria with
double oracle methods [21] and predicting game outcomes [33].

Additionally, agents often must learn individual policies, increas-
ing the problem’s complexity. For this task, evolutionary algorithms
have been used for decades due to their adaptability and perfor-
mance. Self-play [15, 16], used in adversarial settings, is a central
concept in these algorithms, creating training data against a variety

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

of opponents by using current and past versions of agents as oppo-
nents. Coevolutionary deep reinforcement learning [7, 19], which is
used in multiagent settings, blends an evolutionary approach with
Reinforcement Learning (RL) to optimize a population of agents.

2 TEAM SELECTION IN MULTIAGENT GAMES
Preliminaries: A Markov Decision Process (MDP) is a framework
capturing various optimization tasks, described by state space 𝑆 ,
action space 𝐴, transition function T (𝑆 | 𝑆 ×𝐴), reward function
R : 𝑆×𝐴×𝑆 → R, and discount factor𝛾 ∈ [0, 1). AnMDP agent is de-
scribed by its policy𝜋 (𝐴 | 𝑆). The sequence (𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), . . .
is referred to as a trajectory, where 𝑎𝑖 ∼ 𝜋 (·|𝑠𝑖), 𝑠𝑖 ∼ T (·|𝑠𝑖−1, 𝑎𝑖−1),
and 𝑟𝑡 = R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). An agent’s objective is choosing 𝜋 to maxi-
mize the expected return: E[∑𝑖 𝛾

𝑖𝑟𝑖] over trajectories. RL methods
solve MDPs by sampling trajectories to optimize a policy’s expected
return. Deep RL methods use deep neural networks to do this.

We are concerned with 𝑘v𝑘 adversarial games, which can be
formalized as an MDP for each agent, with the actions of all other
agents considered in T . Agents are partitioned into teams, and an
outcome evaluation decides which teams ‘won’ a specific trajectory.
We expect an agent’s MDP rewards to correlate with its team’s
outcome. This ensures agents with high rewards are likely to be
on winning teams. Within this framework, our goal is to train and
select teams of agents that are strong against a variety of opponents.
BERTeam Algorithm: We first consider team selection from a
fixed set of agents. We view this as sequence generation by assign-
ing each agent a token, and equating a size 𝑘 team to a length 𝑘

token sequence. Thus, we can use a transformer [32], a sequence-
to-sequence deep neural network widely used in Natural Language
Processing (NLP) to create a context-dependent embedding of a
sequence [3, 4, 17, 20]. Transformers are encoder-decoder models
that take an input and target sequence, and return an embedded
vector for each element of the target [1, 6, 30]. A final layer con-
verts each embedding into a probability distribution over tokens,
allowing sequence generation by repeated prediction. BERT [8]
is a technique that trains a transformer with Masked Language
Modeling (MLM) [31]. This teaches the model to predict masked
tokens with bidirectional context, improving robustness [8, 11].

We design BERTeam by adapting BERT’s algorithm for team
selection. BERTeam takes in a partially masked sequence of agents
(and any observations), and predicts agents to fill masked positions.
We train BERTeam to imitate a distribution of ‘good’ teams, au-
tomatically generated from games between teams sampled from
BERTeam.We include winning teams in a replay buffer dataset with
inverse probability weighting [14] to ensure a team’s contribution
is proportional to its success rate against BERTeam’s distribution.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2720

https://orcid.org/0009-0004-4933-5204
https://orcid.org/0000-0003-4601-905X
https://orcid.org/0000-0003-0153-3581
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Figure 1: Training of BERTeam alongside coevolutionary RL

To learn individual agent policies alongside BERTeam, we use a
coevolutionary RL algorithm, trained with sample games used in
BERTeam’s training (Figure 1). We use the algorithm in [7], with
some caveats: To derive individual fitness from team outcomes,
we assign each team a captain, and assume the team is selected
conditional to the captain’s inclusion. We consider each game as
between the captains and use Elo [10] for individual fitness. We also
stochastically replace only a few agents per generation so that most
information BERTeam learns stays relevant between generations.

3 EXPERIMENTS
We empirically validate BERTeam with Aquaticus, a 𝑘v𝑘 Marine
Capture-The-Flag (MCTF) game [23]. In particular, we test on 2v2
games in Pyquaticus, a simulation of Aquaticus [2]. The team size al-
lows easier analysis of the total distributions learned by BERTeam.1
Fixed Policy Agents: We test BERTeam with seven fixed pol-
icy agents included in Pyquaticus: Weak/medium/strong offensive
agents (agents 0, 1, 2) and defensive agents (agents 3, 4, 5), and one
random agent (agent 6). We sample games to estimate team Elos2
of all teams. We compare ranks with the predicted rank from occur-
rence in BERTeam’s total distribution (Table 1). After 15,000 games,
BERTeam correctly learns that the balanced team {2, 5} performs
the best, followed by the offensive {2, 2}. It correctly predicts the top
7 teams, though with mixed ranks. Overall, this indicates BERTeam
can learn non-trivial, diverse, and balanced team compositions.

Team True Rank/Elo BERTeam Rank/Occurrence
{2, 5} 1 1388 1 0.14
{2, 2} 2 1337 2 0.13
{2, 3} 3 1135 7 0.06
{1, 2} 4 1112 4 0.10
{0, 2} 5 1097 3 0.10
{2, 4} 6 1087 5 0.10
{2, 6} 7 1035 6 0.07
{0, 5} 8 975 13 0.03
Table 1: Comparison of true ranks and predicted ranks

Coevolving Agents: We test BERTeam trained alongside a Coevo-
lutionary RL algorithm (Figure 1). Our population is 50 PPO agents
[27], and we sample 25 games per generation. To classify agents as
defensive/aggressive, we define an aggression metric based on an
agent’s behavior in test games against fixed-policy teams. After 8000
1Our implementation, along with experiments, is available at [24–26].
2Distinguished from agent fitnesses, which are individual Elos.

generations, we find a defensive and aggressive cluster in the popu-
lation (Figure 2(a)). With this labeling, BERTeam’s learned total dis-
tribution favors a balanced team, choosing {defensive, aggressive}
73% of the time (Figure 2(b)). We calculate Elos of all possible teams
by sampling against fixed policy teams, and find BERTeam’s output
probability correlates with the Elo of each team (Figure 2(c)). Fi-
nally, the best performing team has Elo ≈ 1017, is the maximizer of
BERTeam’s total distribution, and is stronger than all fixed-policy
teams not containing agent 2.

(a) Agent clustering based
on aggression, with 36
defensive and 14 aggressive

(b) BERTeam team
composition (ordered)

(c) Correlation of BERTeam
total distribution with Elo. Lin-
ear regression yields 𝑅2 ≈ .25.

Figure 2: BERTeam learned distribution on trained agents

Comparison with MCAA: We compare our method with MCAA
[9], another team selection algorithm. MCAA partitions agents
into islands, uses the evolutionary MAP-Elites algorithm on each
island to train agents [22], then learns the proportion each island
should contribute to a team. Since MCAA decouples MAP-Elites
policy optimization from learning team selection, we hybridize this
with BERTeam and coevolution to compare four approaches. We
train each for 4000 generations, sample teams using each respective
team selection method, and use the sampled game outcomes to
estimate performance of a team generated from each algorithm
(the algorithm Elo: A[Elo]). We find that regardless of the policy
optimization method, BERTeam outperforms MCAA in team se-
lection. However, BERTeam is much more computationally costly
than MCAA, as each MCAA update takes insignificant time. This
cost can be justified by the increased performance, and by the fact
that BERTeam can train independent to the policy optimization.

Policy Team
A[Elo] Avg. update time of

Optimizer Selection Agents Team Dist.
Coevolution BERTeam 919 13 s/epoch 46 s/update
Coevolution MCAA 817 13 s/epoch ≈ 0 s/update
MAP-Elites BERTeam 883 36 s/epoch 45 s/update
MAP-Elites MCAA 809 35 s/epoch ≈ 0 s/update

Table 2: Relative performance of hybrid algorithms

4 CONCLUSION
In this paper, we introduce BERTeam, an algorithm for team selec-
tion in multiagent adversarial team games. We evaluate BERTeam
in Pyquaticus, a simulated MCTF game, and find that it effectively
learns strong non-trivial team compositions both in choosing from
fixed policy agents as well as trained alongside individual agent
policies. We find that in this setting, BERTeam outperforms MCAA,
another algorithm designed for team selection. Overall, BERTeam
is a strong team selection algorithm with roots in NLP methods.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2721

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2016. Neural Machine

Translation by Jointly Learning to Align and Translate. arXiv:1409.0473 [cs.CL]
[2] Jordan Beason et al. 2024. Evaluating Collaborative Autonomy in

Opposed Environments using Maritime Capture-the-Flag Competitions.
arXiv:2404.17038 [cs.RO]

[3] Tom Brown et al. 2020. Language models are few-shot learners. In Proceedings of
the 34th International Conference on Neural Information Processing Systems (NIPS
’20). Curran Associates Inc., Article 159, 25 pages.

[4] Wei-Cheng Chang et al. 2020. Taming Pretrained Transformers for ExtremeMulti-
label Text Classification. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’20). Association for
Computing Machinery, 3163–3171.

[5] Mo Chen, Zhengyuan Zhou, and Claire J. Tomlin. 2017. Multiplayer Reach-
Avoid Games via Pairwise Outcomes. IEEE Trans. Automat. Control 62, 3 (2017),
1451–1457.

[6] Kyunghyun Cho et al. 2014. Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, 1724–1734.

[7] David Cotton, Jason Traish, and Zenon Chaczko. 2020. Coevolutionary Deep Rein-
forcement Learning. In 2020 IEEE Symposium Series on Computational Intelligence
(SSCI). Institute of Electrical and Electronics Engineers, 2600–2607.

[8] Jacob Devlin et al. 2019. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. In Proceedings of NAACL-HLT, Vol. 1. Association
for Computational Linguistics, 2.

[9] Gaurav Dixit, Everardo Gonzalez, and Kagan Tumer. 2022. Diversifying behaviors
for learning in asymmetric multiagent systems. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’22). Association for Computing
Machinery, 350–358.

[10] Arpad Elo. 1978. The Rating of Chessplayers, Past and Present. Arco Pub.
[11] William Fedus, Ian J. Goodfellow, and Andrew M. Dai. 2018. MaskGAN: Better

Text Generation via Filling in the _______. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net.

[12] Vanessa Frías-Martínez and Elizabeth Sklar. 2004. A team-based co-evolutionary
approach to multi agent learning. In Proceedings of the 2004 AAMAS Workshop
on Learning and Evolution in Agent Based Systems. Citeseer, Autonomous Agents
and Multiagent Systems.

[13] Eloy Garcia et al. 2020. Optimal Strategies for a Class of Multi-Player Reach-Avoid
Differential Games in 3D Space. IEEE Robotics and Automation Letters 5, 3 (2020),
4257–4264.

[14] Morris H. Hansen andWilliamN. Hurwitz. 1943. On the Theory of Sampling from
Finite Populations. The Annals of Mathematical Statistics 14, 4 (1943), 333–362.

[15] Johannes Heinrich and David Silver. 2016. Deep Reinforcement Learning from
Self-Play in Imperfect-Information Games. arXiv:1603.01121 [cs.LG]

[16] Max Jaderberg et al. 2019. Human-level performance in 3D multiplayer games
with population-based reinforcement learning. Science 364, 6443 (2019), 859–865.

[17] Marcin Junczys-Dowmunt. 2019. Microsoft Translator at WMT 2019: Towards
Large-Scale Document-Level Neural Machine Translation. In Proceedings of the
Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1).
Association for Computational Linguistics, 225–233.

[18] Hiroaki Kitano et al. 1997. The RoboCup synthetic agent challenge 97. In Proceed-
ings of the 15th International Joint Conference on Artifical Intelligence - Volume 1
(IJCAI’97). Morgan Kaufmann Publishers Inc., 24–29.

[19] Daan Klijn and A. E. Eiben. 2021. A coevolutionary approach to deep multi-
agent reinforcement learning. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (GECCO ’21). Association for Computing
Machinery, 283–284.

[20] Xiaodong Liu et al. 2020. Very Deep Transformers for Neural Machine Translation.
arXiv:2008.07772 [cs.CL]

[21] Stephen McAleer et al. 2023. Team-PSRO for Learning Approximate TMECor
in Large Team Games via Cooperative Reinforcement Learning. In Advances in
Neural Information Processing Systems, Vol. 36. Curran Associates, Inc., 45402–
45418.

[22] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv:1504.04909 [cs.AI]

[23] Michael Novitzky et al. 2019. Aquaticus: Publicly Available Datasets from a
Marine Human-Robot Teaming Testbed. In 2019 14th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). Institute of Electrical and Electron-
ics Engineers, 392–400.

[24] Pranav Rajbhandari. 2024. BERTeam. https://github.com/pranavraj575/
BERTeam.

[25] Pranav Rajbhandari. 2024. Transformer based Coevolver. https://github.com/
pranavraj575/coevolution.

[26] Pranav Rajbhandari. 2024. unstable_baselines3. https://github.com/pranavraj575/
unstable_baselines3.

[27] John Schulman et al. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs.LG]

[28] Daigo Shishika et al. 2019. Team Composition for Perimeter Defense with
Patrollers and Defenders. In 2019 IEEE 58th Conference on Decision and Control
(CDC). Institute of Electrical and Electronics Engineers, 7325–7332.

[29] Yan Song et al. 2024. Boosting Studies of Multi-Agent Reinforcement Learning
on Google Research Football Environment: The Past, Present, and Future. In
Proceedings of the 23rd International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS ’24). International Foundation for Autonomous Agents
and Multiagent Systems, 1772–1781.

[30] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning
with neural networks. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 (NIPS’14). MIT Press, 3104–3112.

[31] Wilson Taylor. 2016. "Cloze Procedure": A New Tool For Measuring Readability.
In Journalism Quarterly. Sage Journals, 415–433.

[32] Ashish Vaswani et al. 2017. Attention is all you need. In Proceedings of the
31st International Conference on Neural Information Processing Systems (NIPS’17).
Curran Associates Inc., 6000–6010.

[33] Yue Zhao, Lushan Ju, and Josè Hernández-Orallo. 2024. Team formation through
an assessor: choosing MARL agents in pursuit-evasion games. Complex & Intelli-
gent Systems 10, 3 (2024), 3473–3492.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2722

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2404.17038
https://arxiv.org/abs/1603.01121
https://arxiv.org/abs/2008.07772
https://arxiv.org/abs/1504.04909
https://github.com/pranavraj575/BERTeam
https://github.com/pranavraj575/BERTeam
https://github.com/pranavraj575/coevolution
https://github.com/pranavraj575/coevolution
https://github.com/pranavraj575/unstable_baselines3
https://github.com/pranavraj575/unstable_baselines3
https://arxiv.org/abs/1707.06347

	Abstract
	1 Introduction
	2 Team Selection in Multiagent Games
	3 Experiments
	4 Conclusion
	References

