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ABSTRACT
In the context of blockchain, MEV refers to the maximum value

that can be extracted from block production through the inclusion,

exclusion, or reordering of transactions. Searchers often participate

in order flow auctions (OFAs) to obtain exclusive rights to private

transactions, available through entities called matchmakers, also
known as order flow providers (OFPs). Most often, distributing

the revenue generated through such auctions among transaction

creators (TCs) is desirable. In this work, we formally introduce

the matchmaking problem in MEV, its desirable properties, and

associated challenges. Using cooperative game theory, we formal-

ize the notion of fair revenue distribution in matchmaking and

present its potential possibilities and impossibilities. Precisely, we

define a characteristic form game, referred to as RST-Game, for the
TCs. We propose to distribute the revenue using the Shapley value

of RST-Game. We show that the corresponding problem could be

SUBEXP (i.e. 2
𝑜 (𝑛)

, where 𝑛 is the number of transactions). Further,

we propose a randomized algorithm for computing the approximate

Shapley value in RST-Game and empirically demonstrate that the

proposed RSYP estimates Shapley value that is very close to the

actual Shapley value and also distributes the share amongst TCs

fairly. RST-Game
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1 INTRODUCTION
Maximal Extractable Value (MEV) in the blockchain context refers

to “the maximum value that can be extracted from block production

in excess of the standard block reward and gas fees by including,

excluding, and arranging the order of transactions in a particular

way”. Towards generating such MEV, Searchers buy transactions

through order flow providers (OFPs) via an auction mechanism Or-

der Flow Auction (OFA). OFPs, which we call matchmaker, deploy
Matchmaking to distribute the revenue through OFA to TCs in ex-

change for the value that their transactions generate [18]. Though

multiple authors have raised a need for such distribution, as claimed

in [8, 9], designing a matchmaking mechanism is an open prob-

lem. This paper addresses how a matchmaker should distribute the

revenue among TCs in a fair manner. Some transactions add more

value to the system; thus, revenue should be shared proportional to

how much value they add to the system. Naturally, Shapley value

becomes an ideal solution for revenue distribution.

Contributions. (i) We define a cooperative game, RST-Game, over
TCs based on the revenue generated, (ii) we prove that the Shap-

ley value of TCs in the RST-Game is polynomial-time computable

when the searcher valuations are additive, (iii) we motivate that

computing Shapley value in the RST-Game when the searchers are

single-minded bidders is possibly SUBEXP, (iv) we propose a ran-

domized algorithm – Randomized ShapleY Procedure (RSYP) that
closely estimates the exact Shapley value of TCs, (v) we empiri-

cally show the efficacy of RSYP by comparing its outputs with the

brute-force approach.

2 RELATEDWORK
MEV Auctions. [17] study various strategic interactions and auc-

tion setups of block builders with proposers. They evaluate how

access to MEV opportunities and improved relay connectivity im-

pact bidding performance. [12] propose an Ethereum gas auction

model using the First Price Sealed-Bid Auction (FPSBA) between

different bots and miners.

MEV redistributions. [2] model the MEV setting as a dynamical

system and compute a certain fraction of MEV should go to the

miner and remaining to TCs. The goal is to determine what frac-

tion of the miners would ensure equilibrium. [13] discuss rebates

in the context of liquidity providers in constant function market
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makers. [4] propose MEV redistribution as a dynamical system in

which lending and staking portfolios of block proposer are chosen

as a parameter that determines how much of the MEV extracted in

a block is redistributed to staking. None of these talk about methods

to redistribute amongst TCs.

Game Theory and Blockchains Researchers explored vari-

ous game theoretic concepts in blockchains. E.g., the authors of

[5, 6, 15] use concepts from mechanism design to design transac-

tion fee mechanisms and fairness. [3, 11] study scalability issues

in blockchains through game theory.[16] discusses on achieving

fairness for Bitcoin in a transaction fee-only model. [10] studies

the equilibrium behavior of the miners. In this work, we explore

the use of cooperative game theory in matchmaking.

3 PRELIMINARIES
Consider a set of transactions T = {𝑡1, 𝑡2, . . . 𝑡𝑛} that can generate

MEV, and a set of searchers S = {𝑠1, 𝑠2, . . . 𝑠𝑚}, and a matchmaker

𝑀 . 𝑠𝑖 has valuation 𝑣𝑠𝑖 : 2
T → R+. Matchmaking executes in two

steps: (i) the allocation of transactions to searchers. 𝑀 conducts

an auction among the searchers and collects payments 𝑝𝑠𝑖 s from

winning searchers as per the prescribed rule, (ii) the distribution of

revenue generated through OFA,R =
∑
𝑖 𝑝𝑠𝑖 , among the TCs.

Definition 1 (Matchmaking). We definematchmaking as mech-
anism M which takes, (T ,S, (𝑣𝑠𝑖 )𝑠𝑖 ∈S) as inputs, conducts auc-
tion amongst S for T , and outputs rewards Γ𝑗 to 𝑡 𝑗 ∈ T such that∑
𝑡 𝑗 ∈T Γ𝑗 ≤ R.

Searcher-Matchmaker Auctions. The searcher-matchmaker auc-

tion is commonly seen in two forms: (i) the searcher values each

transaction separately and (ii) the searchers bid for a bundle of

transactions. The former can be seen as searchers with additive
valuations and the latter as searchers with single-minded valuations.

4 OUR APPROACH
RST-Game. RST-Game is a cooperative game (T , 𝜈) with the trans-

actions T being the players. 𝜈 (𝑇 ) where 𝑇 ⊆ T is the value of

transactions in 𝑇 . For each 𝑡 𝑗 , its marginal contribution to each

𝑇 ⊆ T \𝑡 𝑗 , requires finding the revenue with𝑇 ∪𝑡 𝑗 and𝑇 . Γ𝑆𝐻𝐴𝑃
𝑗

is

computed as

𝜑 𝑗∑
𝑖∈ [𝑛] 𝜑𝑖

. For e.g., consider RST-Gamewith 3 searchers

and 4 transactions, with (bundle, bid) of searchers as (1,2,10), (3,4,9),

(2,4,8). If𝑀 deploys ICA-SM [1] for searchers, the winners are 𝑠1, 𝑠2

and their payments are (8/
√︁
(2)) ∗

√
2 = 8 each and total revenue

is 16. Γ𝑆𝐻𝐴𝑃
𝑡1

= Γ𝑆𝐻𝐴𝑃
𝑡3

= 0.154, Γ𝑆𝐻𝐴𝑃
𝑡2

= Γ𝑆𝐻𝐴𝑃
𝑡4

= 0.346.

RST-Gamewith Additive Searchers. Each searcher 𝑠𝑖 ∈ S submits

bid 𝑏𝑠𝑖 , where 𝑏𝑠𝑖 ∈ R𝑛
is an 𝑛-tuple where 𝑏𝑠𝑖 [ 𝑗] is 𝑠𝑖 searcher’s

bid for transaction 𝑡 𝑗 . 𝑀 reduces this auction to 𝑛 independent

second-price auctions. For each transaction, 𝑡 𝑗 ∈ T ,𝑀 determines

the searcher with the highest bid for 𝑡 𝑗 as the winner. The winner

pays the amount of the second-highest bid.

Theorem 1. The Shapley value of RST-Game (T , 𝜈)) can be com-
puted in polynomial time if 𝜈 is additive.

RST-Game with Single-Minded Searchers Each searcher 𝑠𝑖 ∈
S submits only a single subset 𝐵𝑠𝑖 ⊆ T in bid {𝐵𝑠𝑖 , 𝑏𝑠𝑖 }, where
𝑠𝑖 ’s valuation 𝑣𝑠𝑖 is single-minded. 𝑀 reduces this auction to a

combinatorial auction with single-minded bidders. For this setting,

we prove the following:

Theorem 2. (Informal) The number of unique marginal contri-
butions in the computation of the Shapley value of TCs in RST-Game

can be Ω(2
√
𝑛).

Conjecture 1. The Shapley value of RST-Game (T , 𝜈)) is SUBEXP
in transaction creators 𝑛 if 𝜈 is single-minded.

Approximating Shapley Value The occurrence of structures that
potentially may lead worst cases to be could be typically rare

1
.

Marginal contributions of many transactions with other subsets

would be zero, leading to unique marginal contributions being just

O(𝑛). Hence, we propose RSYP a randomized algorithm to compute

the approximate Shapley value of each transaction. Algorithm 1

describes RSYP. Π be the set of all permutations of transactions

and Π̄ be set of 𝑘 different permutations sampled from Π. For each
transaction 𝑡 𝑗 , the approximate Shapley value 𝜑 𝑗 is computed using

marginal contribution of 𝑡 𝑗 to each 𝜋 ∈ Π, averaged over 𝑘 . Among

the winning transactions selected via greedy approximation, the

fraction of revenue redistributed to transaction creator 𝑗 is given

by Γ𝑅𝑆𝑌𝑃𝑡 𝑗
=

�̃�𝑡 𝑗
(𝜈 )∑

𝑗 ∈ [𝑛] �̃�𝑡 𝑗
(𝜈 ) using RSYP. We empirically show, for

𝑘 = O(𝑛2), ∀𝑡 𝑗 ∈ T , ΓRSYP𝑡 𝑗
computed via RSYP approaches 𝜑𝑡 𝑗 (𝜈).

Algorithm 1 RSYP

1: Input : Π̄, 𝑛, 𝑘
2: for 𝑗 = 1 to 𝑛 do
3: 𝑀𝐶𝑠𝑢𝑚 = 0

4: for 𝜋 ∈ Π̄ do
5: 𝑀𝐶 = 𝜈 (𝜋 ( 𝑗) ∪ 𝑗) − 𝜈 (𝜋 ( 𝑗))
6: 𝑀𝐶𝑠𝑢𝑚 +=𝑀𝐶

7: end for
8: 𝜑𝑡 𝑗 (𝜈) =

𝑀𝐶𝑠𝑢𝑚

𝑘
9: end for
10: for 𝑗 = 1 to 𝑛 do

11: Γ𝑅𝑆𝑌𝑃𝑡 𝑗
=

�̃�𝑡 𝑗
(𝜈 )∑

𝑗 ∈ [𝑛] �̃�𝑡 𝑗
(𝜈 )

12: end for
13: Output :{ Γ𝑅𝑆𝑌𝑃𝑡 𝑗

} 𝑗∈[𝑛]

We have empirically validated the efficacy of RSYP on simulated

10K instances. We observe, for smaller𝑚 values, where we could

also compute the exact Shapley value, RSYP almost matches with

the exact Shapley value. For space constraints, we skip proofs and

experimental details. Both can be found in full version [14].

5 CONCLUSION
In this work, we explored the problem of matchmaking in MEV. We

defined a cooperative game RST-Game over private transactions and
proved that computing Shapley value for fair revenue distribution

among TCs is SUBEXP. We proposed a randomized algorithm that

approximates the Shapley value very well for O(𝑛2) where 𝑛 is the

number of transactions.

1
We often see some transactions being more lucrative than others to almost all of the

searchers and occasionally, some transactions being relatively highly valued by only a

few (specialized) searchers [7]
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