
Requirements-based Explainability for Multi-Agent Systems
Extended Abstract

Sebastian Rodriguez
RMIT University

Melbourne, Australia
sebastian.rodriguez@rmit.edu.au

John Thangarajah
RMIT University

Melbourne, Australia
john.thangarajah@rmit.edu.au

Michael Winikoff
Victoria University of Wellington

Welington, New Zealand
michael.winikoff@vuw.ac.nz

ABSTRACT
Explainability is essential for building trust in intelligent and au-
tonomous systems. However, existing techniques for explainability
focus on the behaviour of the system, but do not go back to the
system’s requirements. We provide fully traceable explanations that
link back to requirements, expressed as User and System stories, by
extending previous work on explainable agents (XAg) that uses an
agent design pattern. Our implementation leverages industry-grade
mainstream monitoring tools.

KEYWORDS
Explainable Agents (XAg); requirements; Verification; Monitoring

ACM Reference Format:
Sebastian Rodriguez, John Thangarajah, andMichaelWinikoff. 2025. Require-
ments-based Explainability for Multi-Agent Systems: Extended Abstract. In
Proc. of the 24th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025,
IFAAMAS, 3 pages.

1 INTRODUCTION
Explainability is critical to the development of appropriate levels of
trust [2, 5–7, 10, 14], and plays an important role in enabling trans-
parency of intelligent and autonomous systems [3, 4]. However,
existing approaches to generating explanations such as “why did
you do 𝑋?” only provide an explanation in terms of the behaviour
of the implemented system. What they do not do is go further back
to the system’s requirements and use those for explanation. This is
a significant limitation since clearly a system’s behaviour may not
match its requirements perfectly.

In this paper we propose a combination of an approach for ex-
planation (using the TriQPAN XAg design pattern [11]) with an
approach for specifying requirements in order to give end-to-end
explanations, from behaviour to requirements.

To represent requirements we build on recent work [12] which
presented an agile approach to capturing requirements in agent sys-
tems via user and system stories (USS). These present the behavioural
requirements from the user’s and system’s perspective, respectively.
A user story [1] is an informal, natural language template-based
description of software requirements, often used in Agile devel-
opment to represent end-user needs (e.g. Scenario 1, lines 1-3). A

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems
(www.ifaamas.org).

system story refines user stories by considering the system’s per-
spective [12]. Each story is accompanied by a set of acceptance
criteria which identify the scenarios under which the system be-
haviour is acceptable by the users or stakeholders (e.g. Scenario 1,
lines 5-16).

Scenario 1: System Story for the top level “GetCoffee” goal
1 Feature: GetCoffee
2 As a researcher, I want to GetCoffee
3 so I can finish my paper's experiments
4
5 Scenario: plan-kitchencoffee
6 Given I believe staffCardAvailable is true
7 When I adopt the GetCoffee goal
8 Then plan KitchenCoffee is applicable
9 Scenario: plan-officecoffee
10 Given I believe annInOffice is true
11 When I adopt the GetCoffee goal
12 Then plan OfficeCoffee is applicable
13 Scenario: plan-shopcoffee
14 Given I believe haveMoney is true
15 When I adopt the GetCoffee goal
16 Then plan ShopCoffee is applicable

Our approach has been implemented1. It uses a range of industry-
grade state-of-the-art tools and approaches. Specifically, we used
OpenTelemetry2, also known as OTel, a vendor-neutral open source
Observability framework for instrumenting, generating, collecting,
and exporting telemetry data (“signals”) such as traces, metrics, and
logs. It is the de facto standard to instrument, generate, collect, and
export telemetry data.

This provides a number of benefits. Firstly, we are able to provide
a high-quality solution to developers that is robust, efficient, usable,
well documented, and scalable to handle (e.g.) many events. The
tools also have a rich set of features and a large user community, and
hence good support. Secondly, because we use mainstream software
engineering approaches and tools, we facilitate the adoption of
agent technology by mainstream developers. Finally, using these
tools allows for integration with other systems and tools.

We implemented an agent system with SARL [9], a popular
open-source agent-oriented programming language designed for
building multi-agent systems [8], using the recent extension with
goal-oriented behaviours [12, 13] to implement the get-coffee ex-
ample as used in [11, 15]. We evaluated the system, showing that
it is able to detect a range of seeded errors, and that it generates
explanations that link back to requirements.
1https://github.com/srodriguez-research/xag-monitoring-prototype
2https://opentelemetry.io

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2726

https://orcid.org/0000-0002-0514-9221
https://orcid.org/0000-0002-7699-6444
https://orcid.org/0000-0002-5545-7003
https://orcid.org/0000-0002-0514-9221
https://orcid.org/0000-0002-7699-6444
https://orcid.org/0000-0002-5545-7003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/srodriguez-research/xag-monitoring-prototype
https://opentelemetry.io

Figure 1: System architecture overview

2 EXPLAINING DECISIONS VIA
REQUIREMENTS

In order to explain the agent’s decisions based on the original re-
quirements captured, a number of tools and techniques and more
importantly, a set of practices and development standards are re-
quired. The main steps are as follows:

(1) Requirements are captured using User and System Stories by
domain experts and developers working together.

(2) At the development stage, a USS will be selected to be im-
plemented by a developer.

(3) The implementation needs to ensure that explainability is
built into the system design. We use the TriQPAN XAg de-
sign pattern, where an XAg Process Event captures all the
information required to understand a decision at that mo-
ment in time. This will include the trigger of the decision; the
mental state queried; the process and criteria used to make
the decision and finally the actions taken.

(4) The agent system is then deployed. During execution, each
decision process (e.g a plan selection) generates an XAg Process
Event that is sent to a Traces Store.

(5) Developers and Domain experts will then utilise Explain-
ability and Monitoring Systems to understand and verify the
correct behaviours of the agent system.

The key modules of the architecture that enables our explana-
tion generation are presented in Figure 1. Once the agent system
is executing, it will use OpenTelemetry libraries to send traces
with TriQPAN information to the Traces Store3. This requires a
set of semantic conventions, which we have developed based on
the TriQPAN design pattern.

The observabilitymodule includes, in addition to the TriQPAN in-
formation, additional information gathered by OpenTelemetry, in-
cluding CPU and memory usage, thread executions, and more;
giving the user a comprehensive view of the system’s performance.
3For the Traces Store we chose to use Grafana Tempo (https://grafana.com/oss/tempo/)
for their powerful querying language TraceQL, which other modules can use to query
for traces that meet specific conditions

Why did you select KitchenCoffee?
In that moment, I believed that haveMoney was False;
staffCardAvailable was True; and annInOffice was false And I
applied the following criteria (see Scenario 1)

Figure 2: Explanations generated from USS specifications

In addition to considering explanations that are generated on
demand from the user, we also continuously monitor the system’s
execution to proactively detect when the system behaves inappro-
priately. This is done by the Monitoring and Verification module.

The Explanation Generator module queries the traces store to
retrieve information to explain agent decisions to the user. We now
briefly describe how this is done.

As discussed, each agent decision process will be recorded as a
trace containing TriQPAN information in the traces store. Among
the TriQPAN information, agents have to record the criteria used
during the process to make the decision. In our approach that
criteria is specified using a System Story. To link the two elements
(requirement and decision), we include in the captured information
an attribute criteria that points to the requirement-id.

To illustrate the process, assume the user asks the Explanation
generator, “Why did you select KitchenCoffee?” The module will then
follow the steps below (refer to Figure 1):

(1) Query the Traces Store using TraceQL to retrieve the trace
of the decision at that point in time.

(2) Parse the trace to find the requirement-id defined in the cri-
teria attribute used to make the decision (i.e., "getcoffee/plan-
rating" - stored as a trace attribute)

(3) Query the Requirements database to find the User and System
Story matching this requirement-id.

(4) Query the Verification Reports DB to confirm this decision
complies with the requirements.

(5) Generate an explanation using all the above information.
Figure 2 shows the answer to the question "Why did you
select KitchenCoffee?". It gives its reasoning and explicitly
refers to Scenario 1.

The explanation generation depends on the question being asked,
with a range of question types being possible [11, 15], e.g.: Why
did the agent have a certain belief at a certain point in time? Why
it chose a particular way to achieve a goal? Why did it update a
belief? (e.g. concluding from battery_charge = 20% that batter_level
is LOW) Why did it choose to suspend or abandon a goal?

These processes may be chained together (e.g., a belief update
triggers a goal adoption and then a plan selection); or structured
as a sub-process of a larger decision (e.g., for the plan selection to
complete it must first trigger the applicability decisions for each of
the relevant plans.)

ACKNOWLEDGMENTS
This research is partially supported by the C2IMPRESS project
funded by the EU.

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2727

https://grafana.com/oss/tempo/

REFERENCES
[1] Mike Cohn. 2004. User Stories Applied: For Agile Software Development. Addison

Wesley Longman Publishing Co., Inc., USA.
[2] Virginia Dignum. 2019. Responsible Artificial Intelligence: How to Develop and Use

AI in a Responsible Way. Springer. https://doi.org/10.1007/978-3-030-30371-6
[3] High-Level Expert Group on AI. 2019. Ethics guidelines for trustworthy AI. https:

//digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
[4] IEEE. 2022. IEEE Standard for Transparency of Autonomous Systems. IEEE Std

7001-2021. , 54 pages. https://doi.org/10.1109/IEEESTD.2022.9726144
[5] Pat Langley, Ben Meadows, Mohan Sridharan, and Dongkyu Choi. 2017. Ex-

plainable Agency for Intelligent Autonomous Systems. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA, Satinder Singh and Shaul Markovitch (Eds.). AAAI
Press, 4762–4764. https://doi.org/10.1609/aaai.v31i2.19108

[6] P Jonathon Phillips, Carina A Hahn, Peter C Fontana, Amy N Yates, Kristen
Greene, David A Broniatowski, and Mark A Przybocki. 2021. Four Principles
of Explainable Artificial Intelligence. Technical Report NIST IR 8312. National
Institute of Standards and Technology (U.S.), Gaithersburg, MD. NIST IR 8312
pages. https://doi.org/10.6028/NIST.IR.8312

[7] Paul Robinette, Wenchen Li, Robert Allen, Ayanna M. Howard, and Alan R.
Wagner. 2016. Overtrust of Robots in Emergency Evacuation Scenarios. In The
Eleventh ACM/IEEE International Conference on Human Robot Interation, HRI
2016, Christchurch, New Zealand, March 7-10, 2016, Christoph Bartneck, Yukie
Nagai, Ana Paiva, and Selma Sabanovic (Eds.). IEEE/ACM, 101–108. https:
//doi.org/10.1109/HRI.2016.7451740

[8] Sebastian Rodriguez, Stephane Galland, and Nicolas Gaud. 2024. Ten Years of
SARL: What’s Next?. In The 21st European Conference on Multi-Agent Systems.
Dublin, Ireland.

[9] Sebastian Rodriguez, Nicolas Gaud, and Stéphane Galland. 2014. SARL: A General-
Purpose Agent-Oriented Programming Language. In The 2014 IEEE/WIC/ACM

International Conference on Intelligent Agent Technology, Vol. 3. IEEE Computer
Society Press,Warsaw, Poland, 103–110. https://doi.org/10.1109/WI-IAT.2014.156

[10] Sebastian Rodriguez and John Thangarajah. 2024. Explainable Agents (XAg)
by Design. In Proceedings of the 2024 International Conference on Autonomous
Agents and Multiagent Systems (Blue Sky) (AAMAS ’24). Auckland, New Zeland,
2712–2716. https://dl.acm.org/doi/10.5555/3635637.3663263

[11] Sebastian Rodriguez, John Thangarajah, and Andrew Davey. 2024. Design Pat-
terns for Explainable Agents (XAg). In Proceedings of the 2024 International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS ’24). Auckland,
New Zeland, 1621–1629. https://dl.acm.org/doi/10.5555/3635637.3663023

[12] Sebastian Rodriguez, John Thangarajah, and Michael Winikoff. 2021. User and
System Stories: An Agile Approach for Managing Requirements in AOSE. In
Proceedings of the 20th International Conference on Autonomous Agents andMultiA-
gent Systems (AAMAS ’21). International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 1064–1072. https://doi.org/10.5555/3461017.
3461136

[13] Sebastian Rodriguez, John Thangarajah, andMichaelWinikoff. 2023. A Behaviour-
Driven Approach for Testing Requirements via User and System Stories in Agent
Systems. In Proceedings of the 2023 International Conference on Autonomous Agents
and Multiagent Systems (AAMAS ’23). International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 1182–1190. https://doi.org/10.
5555/3545946.3598761

[14] Michael Winikoff. 2017. Towards Trusting Autonomous Systems. In Engineer-
ing Multi-Agent Systems - 5th International Workshop, EMAS 2017, Sao Paulo,
Brazil, May 8-9, 2017, Revised Selected Papers (LNCS, Vol. 10738), Amal El Fal-
lah Seghrouchni, Alessandro Ricci, and Tran Cao Son (Eds.). Springer, 3–20.
https://doi.org/10.1007/978-3-319-91899-0_1

[15] Michael Winikoff, Galina Sidorenko, Virginia Dignum, and Frank Dignum. 2021.
Why Bad Coffee? Explaining BDI Agent Behaviour with Valuings. Artificial
Intelligence 300 (Nov. 2021), 103554. https://doi.org/10.1016/j.artint.2021.103554

Extended Abstract AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

2728

https://doi.org/10.1007/978-3-030-30371-6
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://doi.org/10.1109/IEEESTD.2022.9726144
https://doi.org/10.1609/aaai.v31i2.19108
https://doi.org/10.6028/NIST.IR.8312
https://doi.org/10.1109/HRI.2016.7451740
https://doi.org/10.1109/HRI.2016.7451740
https://doi.org/10.1109/WI-IAT.2014.156
https://dl.acm.org/doi/10.5555/3635637.3663263
https://dl.acm.org/doi/10.5555/3635637.3663023
https://doi.org/10.5555/3461017.3461136
https://doi.org/10.5555/3461017.3461136
https://doi.org/10.5555/3545946.3598761
https://doi.org/10.5555/3545946.3598761
https://doi.org/10.1007/978-3-319-91899-0_1
https://doi.org/10.1016/j.artint.2021.103554

	Abstract
	1 Introduction
	2 Explaining decisions via requirements
	Acknowledgments
	References

