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ABSTRACT
We focus on the relative over-generalization (RO) issue in fully coop-

erative multi-agent reinforcement learning (MARL). Existing meth-

ods show that endowing agents with reasoning can help mitigate

RO empirically, but there is little theoretical insight. We first prove

that RO is avoided when agents satisfy a consistent reasoning re-

quirement. We then propose a new negotiated reasoning framework

connecting reasoning and ROwith theoretical guarantees. Based on

it, we develop an algorithm called Stein variational negotiated reason-
ing (SVNR), which uses Stein variational gradient descent to form

a negotiation policy that provably bypasses RO under maximum-

entropy policy iteration. SVNR is further parameterized with neural

networks for computational efficiency. Experiments demonstrate

that SVNR significantly outperforms baselines on RO-challenged

tasks, confirming its advantage in achieving better cooperation.
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1 INTRODUCTION
We focus on the fully cooperative setting in Multi-agent reinforce-

ment learning (MARL) [2, 4, 6, 12], where agents optimize team

performance. A crucial challenge here is relative over-generalization
(RO). People and animals can suffer from over-generalization in var-

ious tasks [1, 7, 11], e.g., a “once bitten, twice shy” effect. In MARL,
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RO similarly causes sub-optimal behaviors by over-fitting to partial

exploration from others [8]. For instance, in a Particle Gather envi-

ronment, pairs of agents controlling each dimension of movement

often avoid success due to negative experiences where only one

arrived at the target. Researchers address RO through credit assign-

ment (e.g., lenient learning [9, 10] or shaped values [13, 15, 18]) and

reasoning-based methods [14, 16, 17]. Despite empirical advances,

few works offer solid theoretical guarantees or a formal definition

of RO. We ask: (1) Can methods provably avoid RO? and (2) How to
design a method that meets such guarantees?

We first formalize perceived RO (PRO) and executed RO (ERO),

showing that provably avoiding RO requires consistent reasoning:
agents must model other agents’ behaviors consistently with op-

timal policies, both in training and execution. We then introduce

negotiated reasoning (NR), inspired by negotiation in human cooper-

ation [3, 5]: agents repeatedly refine action beliefs until reaching an

agreement, ensuring consistent reasoning under mild conditions.

Further, we develop a novel Stein variational negotiated reasoning
(SVNR) that applies (MP)SVGD [19] to improve perceived policies.

SVNR leverages maximum-entropy policy iteration to guarantee

convergence to a global optimum in cooperative settings. By an-

nealing the entropy regularization, SVNR yields ERO-free policies

in decentralized execution. Finally, we present a practical imple-

mentation based on neural networks and amortized optimization

to handle continuous state-action spaces. Experiments in challeng-

ing tasks (e.g., differential games and Particle Gather) confirm that

SVNR consistently finds global-optimal cooperation.

2 RELATIVE OVER-GENERALIZATION
We formalize RO under the CTDE (centralized training, decentral-

ized execution) paradigm. Standard definitions view RO as converg-

ing to a sub-optimal equilibrium because each agent’s marginal

policy outperforms the optimal equilibrium policy if opponents

vary unpredictably [16]. We introduce two refined concepts for

training vs. execution:

Definition 2.1 (Executed RO (ERO)). Agent 𝑖 suffers executed RO

if the executed joint policy can be improved by revealing other
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agents’ actions. More formally, if

max

𝜋𝑖

{
𝑈 𝜋𝑖 (𝑢

𝑖 |𝑠,𝒖−𝑖 )
}
> 𝑈

∏
𝑗 𝜋

∗
𝑗 (𝑢 𝑗 |𝒔 )

,

where 𝜋∗
𝑗
is the executed policy for agent 𝑗 .

Definition 2.2 (Perceived RO (PRO)). Agents suffer perceived RO if

there exists an agent 𝑖 whose policy is regretful when not knowing

the optimal opponent policy:

min

𝜋𝑖
𝐷𝐾𝐿 (𝜋𝑖𝜌𝑖 ∥𝜋∗𝛼 ) > min

𝜋𝑖
𝐷𝐾𝐿 (𝜋𝑖𝜋∗𝛼 (𝒖−𝑖 )∥𝜋∗𝛼 ),

where 𝜋∗𝛼 is the optimal joint policy (with entropy factor 𝛼).

We prove that avoiding both PRO at training and ERO at exe-

cution ensures no RO. In practice, we show consistent reasoning
(agents modeling opponents accurately and making deterministic

actions when 𝛼 → 0) leads to RO-free outcomes.

3 NEGOTIATED REASONING FRAMEWORK
Our key idea is to equip each agent with negotiation policies that it-
eratively establish consistent beliefs. Each agent 𝑖 maintains 𝑓𝑖 (𝑢𝑖 |
𝒖𝐶𝑖

, 𝑠), where 𝐶𝑖 indicates whose actions agent 𝑖 observes in nego-

tiation. We show that if negotiation policies converge to identity

maps while the perceived joint policy converges to the optimal

policy, the method is PRO-free. Further, if at execution each agent’s

action is consistent with the negotiation outcome, ERO is avoided.

Theorem 3.1 (PRO-free Negotiated Reasoning). If for any
state 𝑠 , after 𝐾 negotiation steps we have

lim

𝑘→𝐾
𝑝 (𝒖𝑘 | 𝒔) = 𝜋∗ (𝒖 | 𝒔),

then no agent suffers PRO in that state.

Theorem 3.2 (ERO-free Negotiated Reasoning). When the
above PRO-free condition holds and we anneal 𝛼 → 0, agents are also
free of ERO by executing their final negotiated actions.

Hence, consistent reasoning emerges if each agent’s negotiation

policy makes them reach agreement identical to the optimal joint

policy and use that in decentralized execution.

4 STEIN VARIATIONAL NEGOTIATED
REASONING

We now propose Stein Variational Negotiated Reasoning (SVNR), the
first MARL method that provably avoids RO.

Negotiation policy derivation. We minimize the KL divergence to

the optimal 𝜋∗𝛼 via a single-agent “perturbation” that fixes others.

This matches the (MP)SVGD [19] approach. We combine local im-

provements under a strict nested negotiation structure to ensure

convergence to the optimal joint policy.

SVNR policy iteration. We integrate negotiation with maximum
entropy policy iteration. By applying repeated soft Bellman backups

and nested negotiation updates, we prove that the perceived joint

policy converges to the global optimum:

Lemma 4.1 (Joint Policy Evaluation). For a mapping 𝑄0
: S ×

U → R, the iteration 𝑄𝑘+1 = Γ𝜋𝑄
𝑘
converges to the joint soft

𝑄-function of 𝜋 for |U | < ∞.

Algorithm 1 SVNR: Stein Variational Negotiated Reasoning

Input: Initial policies 𝑓𝜓𝑖 , critic 𝑄𝜃 , nested sets {𝐶𝑖 }, replay
buffer D, kernel 𝜅𝑖 , etc.

while not converged do
Collect Experience:
Each agent samples noise 𝜉𝑖 , outputs 𝑢𝑖 = 𝑓𝜓𝑖 (𝜉𝑖 ; 𝜉𝐶𝑖

, 𝑠),
executes 𝒖, observes 𝑟, 𝒔′, stores (𝑠, 𝒖, 𝑟 , 𝑠′) in D.

Sample from D:
Update critic 𝜃 by minimizing Bellman error.

Update policies via amortized (MP)SVGD:

𝜕𝐽 (𝜓𝑖 )
𝜕𝜓𝑖

∝ E𝜉
[
Δ𝑓

𝜓

𝑖
(𝜉) · 𝜕𝑓𝜓

𝑖
(𝜉)/𝜕𝜓𝑖

]
.

Lemma 4.2 (Policy Improvement). Under strict nesting, updating

𝜋 with (MP)SVGD toward �̃� ∝ exp

(
1

𝛼𝑄 − 1

𝛼𝑉
)
leads to 𝑄𝜋

′ ≥ 𝑄𝜋 .
Theorem 4.3 (SVNR Policy Iteration). Repeated joint policy

evaluation and improvement converges to 𝜋∗ such that 𝑄𝜋
∗ ≥ 𝑄𝜋

for all 𝜋 ∈ Π.

With 𝛼 annealed down, the execution policy avoids ERO.

5 A PRACTICAL IMPLEMENTATION OF SVNR
To handle continuous spaces and large domains, we amortize the
negotiation process using neural networks. Each agent 𝑖 has a func-

tional mapping 𝑢𝑖 = 𝑓
𝜓𝑖 (𝜉𝑖 ; 𝝃𝐶𝑖

, 𝑠) producing actions from shared

noise. The objective is to match the final negotiated distribution.

We adopt (MP)SVGD to estimate gradients w.r.t.𝜓𝑖 :

Δ𝑓
𝝍
𝑖

= E𝒖∼𝑝𝜓
[
𝑘𝑖 (·)∇𝑢′

𝑖
𝑄𝜃 (𝒖′) + 𝛼𝑖∇𝑢′

𝑖
𝑘𝑖 (·)

]
.

Then we backpropagate to𝜓𝑖 . Combining this with a centralized

soft critic and Bellman error minimization yields SVNR, summarized

in Algorithm 1.

6 EXPERIMENTS
We evaluate SVNR against strong baselines (MADDPG, MASQL,

PR2, ROMMEO, Lenient MADRL) in a differential games (Max

Of Three) and a particle gather task. Our method consistently

escapes local sub-optima and achieves near-optimal final returns
under various difficulty factors (Table 1).

Table 1: Execution performances in testings. The proposed
SVNR achieves the highest returns in all scenarios.

Methods / Scenarios

Max Of Three
(𝑠2 = 3.0)

Max Of Three
(𝑠2 = 2.0)

Max Of Three
(𝑠2 = 1.5)

Particle Gather

SVNR (Ours) 9.60 ± 0.30 9.64 ± 0.17 9.71 ± 0.20 4.76 ± 0.20
MADDPG 2.08 ± 4.63 −0.66 ± 0.67 −0.64 ± 0.43 0.00 ± 0.00

MASQL 8.92 ± 0.37 −0.58 ± 0.24 −0.34 ± 0.12 −0.54 ± 0.20

PR2 4.76 ± 3.64 −0.64 ± 0.45 −0.29 ± 0.10 0.00 ± 0.02

ROMMEO 6.14 ± 4.82 1.59 ± 5.03 −0.59 ± 0.25 −0.87 ± 0.22

L-MADRL 9.54 ± 0.13 1.63 ± 2.51 −0.07 ± 0.04 −0.75 ± 0.00
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