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ABSTRACT

With increasing unmanned aerial vehicle (UAV) applications, the
airspace is expected to be crowded with heterogeneous (quadrotors,
fixed wings and hybrid UAVs) UAVs sharing a dense airspace. In
this complex airspace, efficient collision avoidance techniques that
respect right-of-way rules are essential. Further, UAVs may have
different priorities depending on their tasks e.g. medical, logistics,
etc. Due to this coupling of right-of-way with priority, collision
avoidance in dense airspace becomes challenging. In this paper,
we propose PANDA, a novel potential-field based approach that ad-
dresses these constraints in a unified way. Simulations show that
PANDA achieves 21% faster completion time for the highest priority
UAVs over a no priority baseline and a 60% faster completion time
over the lowest priority UAVs.
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The utilization of UAVs in urban regions has increased significantly
with applications in logistics [10], surveillance and security systems
[16], medical emergency, healthcare [6], delivering of products [7],
motion and traffic analysis, and various other research purposes
[18, 21]. With the increasing applications leading to a significant
increase in the number of UAVs operating in a shared, highly dense
airspace, it is crucial to manage flight paths and operational tasks
in an efficient manner. Consider a situation where a logistic UAV, a
food delivery UAV and a medical emergency UAV are on collision
course. Drawing a parallel inference to terrestrial traffic norms,
where passenger and commercial vehicles make their way for an
ambulance, we expect the medical emergency UAV to get right of
way. In this case, assigning priorities to the UAVs might be useful.
These priorities help in coordinating the movements of diverse
UAVs while maintaining orderly and safe airspace for all agents.
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In order to navigate effectively in this complex environment,
priority-based collision avoidance systems with deterministic be-
havior are essential. These systems provide distinct UAVs different
priority levels so that aerial vehicles performing urgent and time-
sensitive tasks, like emergency response or medical delivery, obtain
higher priority over other vehicles to reach the destination directly.

Several collision avoidance algorithms for aerial vehicles have
been developed over the years [1, 8, 20, 26]. These algorithms can be
broadly classified based on the techniques employed - (i) geometric
[4] (ii) field-based which include potential fields [5, 9, 23], (iii) navi-
gation function [3, 22], vector field [15, 17, 25], (iv) guidance-based
[13, 14] (v) control theoretic-based [11, 12, 19] and (vi) negotiation-
based [2, 24]. All the above algorithms assume that the agents are (a)
homogeneous and (b) reactive. Directly extending them to include
priority and determinism is challenging.

In order to consider priorities and determinism, we develop a
novel priority-based collision avoidance framework using potential
field-based approach called as PANDA. We use tangential potential
fields to mitigate local minima and achieve determinism by rotating
in the same direction. Further, to consider priority, we dynami-
cally scale the repulsion potential field as a function of the vehicle
priorities. The vehicle with higher priority will have greater repul-
sion radius and hence the lower priority vehicle will change its
course resulting in minimal course change for the higher priority
vehicle. This simple approach of using tangential scalable potential
fields achieves both priority and determinism essential for shared
unmanned airspace. As PANDA generates prescribed velocity and
heading angle for each vehicle, and hence PANDA can be used for
any type of vehicle - fixed-wing/multi-copter directly.

1 PANDA FRAMEWORK

Assume, there are n different UAVs in the shared airspace. Each
vehicle uy has velocity v; and is at location s = (xg, yx), with
heading 4 and is moving towards its goal position gi. Each UAV uy
is assigned a priority pi based on its mission. A higher p; implies
the criticality of the UAV mission in the airspace. All UAVs are
assumed to have an ADS-B like system to relay their position and
velocities to other UAVs. Each UAV also has a maximum operable
speed 0} along with minimum speed 0 for multi-rotors and > 0 for
fixed wing vehicles. While traversing towards the goal, PANDA will
prescribe new velocity |vx| < ;. for each vehicle.

PANDA framework is structured into several distinct phases - (a)
predict potential collisions between various vehicles (b) determine
the attractive and repulsive forces acting on each vehicle if they
are on collision course and (c) limit the maximum velocity to v.
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Figure 1: Effect on mission completion time and mean mini-
mum distance due to priority and number of vehicles.

Potential collision between vehicles is determined using the time
of closest distance of approach t;; between u; and uy as tx; =
—%, where, - represents the dot product. If #; ; < 0 then
the UAVs are on a diverging path, while #;; > 0 implies the UAVs
will be closest approach at a distance Sk ;. The approach is computed
as Sy ;= (si=si)- (si=s) +2(si=sk) (0 =0 ) tii+ (05 —0k) - (0 =0 ) .
Assuming S as our safe distance, we need to determine whether
Ski < S in order to determine if a collision will occur and perform
a collision avoidance maneuver.

If u;. needs to avoid n other UAVs, then we need to sum over
the attractive and repulsive forces to obtain the net force Fr =
Fl+ 7 F{ (i) acting on the vehicle. F{ is the attractive force on uy
from its goal and F} (i) is the repulsive force experienced by uy due
tou;(i =1,...n,i # k). Then, one can determine the new desired
velocity for vehicle Uy as vy « vy + ri—kAt, where my is the mass
of the UAV and At is the refresh rate (time step) of its controller.

This formulation lends itself naturally to priority based collision
avoidance. Since the repulsive forces are calculated pairwise, we
need to modify the pairwise repulsive forces to account for prior-
ity and sum over them. We define attractive and repulsive forces

.pa — a _ ballgr—skll? Ik —Sk
as follows: F! =« (l e’allgk =Sk Moc=seTl”
resents the positive attractive gain parameter that influences the

intensity of the attractive field. The repulsive force felt by uy from
u; is F[(i) = I’:—;K’ (e’br”si’skn2 H::z:\l)R’ where k" > 0 is the
repulsive gain parameter to tune the strength of the repulsive force,
b" determines the spread of the repulsive field and R = [0 1; -1 0]
is the rotation matrix which rotates the force vector by 7 to be
tangential to the obstacle. To account for priority in the repulsive
force, there is a scaling factor of £Z.

As the potential field prescribes the desired velocity and heading
angle for the vehicle, we assume that the autopilot of these vehicles
will generate the required speed and control commands to meet

where x* > 0 rep-
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the requirements. Let the net force exerted by the goal and other
agents in the vicinity be Fy which can decomposed in x and y
directions as F and F,f . The mass of the vehicle is my and the

. . . FX FY
corresponding accelerations are given as ai = m—’; and az = m—’;

The total acceleration magnitude is ax = ,/az 24 ai’z. The desired
heading is ¢,‘3 = atanZ(az, af), and the angular velocity is given as
wr = k‘/,(lﬁg — ) where ky, is a control gain. The a; and wy are
the control inputs.

Agents under the influence of the tangential repulsive field ro-
tate in a clockwise direction. This can result in cases where a high
priority UAV u; rotates a low priority UAV uy in the same direc-
tion, effectively dragging uy parallel to itself till it reaches its goal.
To avoid this, u; must slow down enough to let u; pass through.
To achieve this, we set the maximum velocity magnitude of uy, as
O = U W’m, where N is the collision neighbourhood of
ug. This scales down u;’s maximum velocity based on the high-
est priority UAV in its collision neighbourhood. We then clip the
velocity of uy as vx = min (Jog/, 6@% where min (|og|, 0x) is the

magnitude of the velocity and % is the direction vector.

2 RESULTS AND CONCLUSIONS

We evaluate the performance of PANDA using simulations for vary-
ing number of aerial vehicles in the airspace. The priority for each
UAV was drawn from a normal distribution with gy =3 and o = 1,
which is the representative of a real life situation where most of the
UAVs (eg. goods delivery) are of similar priority while a few are of
high priority (eg. medical package) and few are of low priority (eg.
surveillance). These priorities were then binned into five classes
{1,1-2,2—4,4-5,5} with 5 representing the highest priority class
and 1 representing the least priority.

Fig. 1a shows the efficacy of PANDA increases as the number of
UAVs increases. We can see that the high-priority vehicles reach
their destinations much quicker than those without priority. Espe-
cially for the 24 UAV case, priority classes 4 — 5 and 5 respectively
show a 9.3% and 21.84% improvement in completion time over the
no-priority time and a 60% faster completion time than the low-
est priority class. From Fig. 1c, we can see that the lower priority
classes take more time for mission completion; this is due to their
larger path deviation and slowing down to make space for high
priority UAVs. Subsequently, the high priority UAVs take less time
to complete their missions as they have clearer paths. The mean
minimum distance for almost all priority classes’ UAVs improves
as seen in Fig. 1d. We hypothesize this is due to the establishment
of order and right-of-way rules in the path planning of the UAVs.
Since low-priority UAVs are moving away and slowing down, they
make space for high-priority UAVs and the airspace becomes less
dense once the high-priority UAVs pass through.

PANDA can be further extended to include dynamics of the vehicle,
extend in 3D and also include hard constraints like control barrier
function to ensure no vehicle enter the safe of another vehicle.
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