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ABSTRACT
In multiagent environments with individual learning agents, social
structure, defined through shared rewards, has been shown to signif-
icantly impact how agents learn. However, defining reward-sharing
parameters within a social structure that best support learning
remains a challenging, domain-dependent problem. We address
this challenge with a decentralized framework inspired by meta-
reinforcement learning where independent reinforcement learning
(RL) agents dynamically learn reward-sharing hyperparameters us-
ing a secondary RL policy. Agents’ secondary RL policies shape the
reward function and guide the learning process for their primary
behavioral policies acting within a multiagent RL (MARL) environ-
ment. We show that our process enhances individual learning and
population-level outcomes for overall reward and equality com-
pared to agents without this secondary reward function shaping
policy. Furthermore, we show that our framework learns highly
effective heterogeneous reward-sharing parameters.
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1 INTRODUCTION
The study of cooperation is a crucial component for future artificial
intelligence (AI) systems and is often explored in reinforcement
learning (RL) and multiagent systems [3, 4]. Individual agents that
learn to cooperate can enhance their capabilities beyond those of a
single agent; however, agents often encounter mixed motive sce-
narios where RL is known to develop non-cooperative behavior [6].
Fully cooperative systems have typically been used as a benchmark
with which to compare coordination abilities; however, recent work
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has highlighted limitations of fully cooperative systems while em-
phasizing some benefits of mixed incentives for learning efficient
behavior [5, 10, 11].

These studies typically assume some underlying structure to
the population in the form of teams or groups [8, 9] and mixed
incentives are explored using exhaustive or heuristic search [7].
Mixed incentives can be implemented by either defining some pop-
ulation structure and modifying agents’ social dependencies within
this structure (through sharing reward among groups) or defining
inter-agent social dependencies among groups and changing the
underlying population structure. We present an agent architecture
that learns to navigate the space of inter-agent dependencies using
RL, autonomously adapting within an environment with under-
lying social structure among other learning agents. We assume
populations of individual learning agents with some defined social
structure through teams, sub-groups of agents that may have some
degree of common interest where 𝑇𝑛 ∈ T𝑖 represents a team that
any agent 𝑖 belongs to. Agents must belong to at least one team;
however, our architecture allows agents to modify how much re-
ward they choose to keep to themselves, share with any team, or
share with the entire system, expanding the credo model [9].

We focus on the prescriptive agenda of multiagent RL (MARL),
studying the behaviors and performance of agents during learn-
ing [1]. Our agent architecture utilizes two internal RL policies,
behavioral and reward-sharing, that operate at different timescales.
This interaction is similar to problems in meta-RL, where the be-
havioral policy represents the “inner-loop” and the reward-sharing
policy represents the “outer-loop” [2, 12] to learn hyperparameters
of the reward function that best support the overall learning objec-
tive.With this framework, we show how populations autonomously
converge to heterogeneous reward-sharing schemes while gener-
ating 34.2% more reward than a population of agents that do not
update their reward sharing behavior. We also show that these
learned reward-sharing schemes are highly effective in terms of
global reward and equality when used for new agent populations,
overcoming the need for exhaustive or heuristic search.

2 METHODOLOGY
We propose a decentralized framework that dynamically updates
reward-sharing parameters in MARL environments using meta-RL.
Agents learn to update their reward-sharing configurations while
they learn to behave in the environment. Each agent maintains a
reward-sharing configuration, called credo [9], cr𝑖 = ⟨𝜓𝑖 , 𝜙𝑇𝑛𝑖 , 𝜔𝑖 ⟩.
Credo defines a reward-sharing configuration of how much reward
an agent shares among each group, where𝜓 is the credo parameter
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Figure 1: Overview of our agent architecture.

for 𝑖’s individual reward 𝐼𝑅𝑖 , 𝜙𝑇𝑛𝑖 is the credo parameter for a team-
based reward 𝑇𝑅𝑇𝑛

𝑖
from team 𝑇𝑛 , and 𝜔𝑖 is the credo parameter

for the system-based reward of the entire system 𝑆𝑅. The credo
parameters within cr𝑖 always sum to one.

Figure 1 shows our proposed agent architecture, in which we
define agents as tuning credo agents. Each agent 𝑖 is composed of
two internal policies, 𝑖 = ⟨𝜋𝑖 , 𝜋cr𝑖 ⟩. Agent 𝑖’s low-level behavioral
policy (purple solid box), denoted 𝜋𝑖 , operates within a multiagent
environment, observing states and taking actions in the context
of other learning agents. Agent 𝑖’s high-level credo policy (orange
dashed box), denoted 𝜋cr

𝑖
, operates at a longer timescale in the space

of the behavioral policy’s reward function, a meta-environment, by
observing how the behavioral policy shares reward among different
groups in the population and taking actions to update the credo
parameters of the agent’s reward function.

Since 𝜋cr
𝑖

updates 𝑖’s own reward-sharing parameters, differ-
ent agents can develop heterogeneous parameters for the same
group. Allowing for these heterogeneous reward-sharing distribu-
tions between agents, we define the team-based reward channel
for any team 𝑇𝑛 as: 𝑇𝑅𝑇𝑛

𝑖
=
∑

𝑗∈𝑇𝑛 𝜙
𝑇𝑛
𝑗
𝑅 𝑗 (𝑆,𝐴 𝑗 , 𝑆), and define the

system-based reward channel as: 𝑆𝑅𝑖 =
∑

𝑗∈N 𝜔 𝑗𝑅 𝑗 (𝑆,𝐴 𝑗 , 𝑆). Let
𝐼𝑅𝑖 represent the agent’s normal individual exogenous reward they
receive from the environment for observing the state and taking
individual actions. Given our definitions of 𝐼𝑅𝑖 , 𝑇𝑅𝑇𝑛𝑖 , and 𝑆𝑅𝑖 , we
define each agent’s credo-based reward function 𝑅cr

𝑖
for their be-

havioral policy, 𝜋𝑖 , to be:

𝑅cr
𝑖

= 𝜓𝑖 · 𝐼𝑅𝑖 +
∑
𝑇𝑛∈T𝑖

𝜙
𝑇𝑛
𝑖∑

𝑗 ∈𝑇𝑛 𝜙
𝑇𝑛
𝑗

·𝑇𝑅𝑇𝑛
𝑖

+ 𝜔𝑖∑
𝑗 ∈N 𝜔 𝑗

· 𝑆𝑅𝑖 .

Note that the team and system-based reward channels depend
on both the reward and credo parameters of all agents on that
respective team or in the system. Furthermore, our allocation of
team and system-based reward among several agents based on their
ratio of credo parameters maintains the budget balance principle.
Agents’ credo policies, 𝜋cr

𝑖
, learn using RL to optimize the mean

credo-based reward of their behavioral policy over 𝐸 episodes.

3 RESULTS
We empirically evaluate our framework and compare with various
static (i.e., non-tuning) populations using the Cleanup Gridworld
Game (Cleanup) [14] as the environment for the behavioral poli-
cies. Cleanup presents a social dilemma where agents have the
short term incentive to act selfishly but gain higher global rewards
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Figure 2: Mean population reward (top) and Inverse Gini
index (bottom) across tuning and post-tuning experiments.

through cooperation. Agents’ low-level behavior policies, 𝜋𝑖 , learn
using PPO [13, 16]. Agents’ high-level credo policies, 𝜋cr

𝑖
, modifies

how much reward they allocate to themselves, their teams, or the
overall system, thereby influencing their long-term behavior in the
low-level environment. The credo policy takes actions in the meta-
environment that we define to be a discretized space of possible
credo parameters. The credo policy for each agent is implemented
with 𝑄-Learning with 𝜖-greedy exploration (𝜖 = 20%) [15]. Exper-
iments consist of 3.4 × 108 environmental timesteps (episodes of
1,000 timesteps). We define three disjoint teams of two agents each
from a population of six agents. In all tuning experiments, the credo
policy takes actions every 𝐸 = 96 episodes.

Figures 2a shows mean population reward (top) and Inverse Gini
index (bottom) for various experiments with 95% confidence inter-
vals. The green solid line represents agents utilizing our meta-RL
architecture that are first instantiated as fully cooperative agents
(i.e., system-focused; all agents share rewards). We contrast these
results with static self-focused agents (yellow dashed; individual
RL), static system-focused agents (red solid; fully cooperative), and
static team-focused agents (blue dashed; shares reward with team
𝑇𝑛 , current best result) that do not update their reward functions.
Our results show that credo-tuning agents update their joint behav-
ior to achieve 34.2% more reward than the system-focused setting
they are instantiated with (red line). Furthermore, credo-tuning
populations develop noticeably more reward equality than the static
team-focused setting that achieves slightly more population reward.

In our next experiment, we instantiate new behavioral policies
with fixed heterogeneous credo parameters learned during the pre-
vious credo-tuning experiment. Figure 2b shows the results of this
population (purple solid) contrasted with the previous tuning exper-
iment (green dashed) and static team-focused (blue dashed) popula-
tions. Utilizing these learned credo parameters in these new agents
achieves the highest observed mean population reward in Cleanup,
slightly higher than previously best-observed setting (static team-
focused), while achieving significantly higher reward equality.

Takeaways. Our approach demonstrates the viability of agents
autonomously adapting in MARL environments, improving coop-
eration and learning outcomes without manual tuning of reward-
sharing schemes within a social structure. These agents simultane-
ously explore the space of reward-sharing parameters and develop
heterogeneous schemes which would be infeasible using previous
methods.
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