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ABSTRACT

In multiagent environments with individual learning agents, social
structure, defined through shared rewards, has been shown to signif-
icantly impact how agents learn. However, defining reward-sharing
parameters within a social structure that best support learning
remains a challenging, domain-dependent problem. We address
this challenge with a decentralized framework inspired by meta-
reinforcement learning where independent reinforcement learning
(RL) agents dynamically learn reward-sharing hyperparameters us-
ing a secondary RL policy. Agents’ secondary RL policies shape the
reward function and guide the learning process for their primary
behavioral policies acting within a multiagent RL (MARL) environ-
ment. We show that our process enhances individual learning and
population-level outcomes for overall reward and equality com-
pared to agents without this secondary reward function shaping
policy. Furthermore, we show that our framework learns highly
effective heterogeneous reward-sharing parameters.
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1 INTRODUCTION

The study of cooperation is a crucial component for future artificial
intelligence (AI) systems and is often explored in reinforcement
learning (RL) and multiagent systems [3, 4]. Individual agents that
learn to cooperate can enhance their capabilities beyond those of a
single agent; however, agents often encounter mixed motive sce-
narios where RL is known to develop non-cooperative behavior [6].
Fully cooperative systems have typically been used as a benchmark
with which to compare coordination abilities; however, recent work
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has highlighted limitations of fully cooperative systems while em-
phasizing some benefits of mixed incentives for learning efficient
behavior [5, 10, 11].

These studies typically assume some underlying structure to
the population in the form of teams or groups [8, 9] and mixed
incentives are explored using exhaustive or heuristic search [7].
Mixed incentives can be implemented by either defining some pop-
ulation structure and modifying agents’ social dependencies within
this structure (through sharing reward among groups) or defining
inter-agent social dependencies among groups and changing the
underlying population structure. We present an agent architecture
that learns to navigate the space of inter-agent dependencies using
RL, autonomously adapting within an environment with under-
lying social structure among other learning agents. We assume
populations of individual learning agents with some defined social
structure through teams, sub-groups of agents that may have some
degree of common interest where T,, € 7; represents a team that
any agent i belongs to. Agents must belong to at least one team;
however, our architecture allows agents to modify how much re-
ward they choose to keep to themselves, share with any team, or
share with the entire system, expanding the credo model [9].

We focus on the prescriptive agenda of multiagent RL (MARL),
studying the behaviors and performance of agents during learn-
ing [1]. Our agent architecture utilizes two internal RL policies,
behavioral and reward-sharing, that operate at different timescales.
This interaction is similar to problems in meta-RL, where the be-
havioral policy represents the “inner-loop” and the reward-sharing
policy represents the “outer-loop” [2, 12] to learn hyperparameters
of the reward function that best support the overall learning objec-
tive. With this framework, we show how populations autonomously
converge to heterogeneous reward-sharing schemes while gener-
ating 34.2% more reward than a population of agents that do not
update their reward sharing behavior. We also show that these
learned reward-sharing schemes are highly effective in terms of
global reward and equality when used for new agent populations,
overcoming the need for exhaustive or heuristic search.

2 METHODOLOGY

We propose a decentralized framework that dynamically updates
reward-sharing parameters in MARL environments using meta-RL.
Agents learn to update their reward-sharing configurations while
they learn to behave in the environment. Each agent maintains a
reward-sharing configuration, called credo [9], cr; = (i, (;5?", ;).
Credo defines a reward-sharing configuration of how much reward
an agent shares among each group, where ¥/ is the credo parameter
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Figure 1: Overview of our agent architecture.

for i’s individual reward IR;, ngIT" is the credo parameter for a team-

based reward TRZ.T" from team Ty, and w; is the credo parameter
for the system-based reward of the entire system SR. The credo
parameters within cr; always sum to one.

Figure 1 shows our proposed agent architecture, in which we
define agents as tuning credo agents. Each agent i is composed of
two internal policies, i = (r;, irl.">. Agent i’s low-level behavioral
policy (purple solid box), denoted 7;, operates within a multiagent
environment, observing states and taking actions in the context
of other learning agents. Agent i’s high-level credo policy (orange
dashed box), denoted 77", operates at a longer timescale in the space
of the behavioral policy’s reward function, a meta-environment, by
observing how the behavioral policy shares reward among different
groups in the population and taking actions to update the credo
parameters of the agent’s reward function.

Since 7" updates i’s own reward-sharing parameters, differ-
ent agents can develop heterogeneous parameters for the same
group. Allowing for these heterogeneous reward-sharing distribu-
tions between agents, we define the team-based reward channel
for any team T;, as: TRIT" = DljeT, ¢JT”Rj(S, Aj,S), and define the
system-based reward channel as: SR; = }’ jc 4 @jR; (S,A},S). Let
IR; represent the agent’s normal individual exogenous reward they
receive from the environment for observing the state and taking
individual actions. Given our definitions of IR;, TRI.T", and SR;, we
define each agent’s credo-based reward function R;" for their be-
havioral policy, 7;, to be:

R?r = l//i -IR; + ZTnG’];

Tn
Wi

Tn
TR." + SNy

ety ¢jT" i
Note that the team and system-based reward channels depend
on both the reward and credo parameters of all agents on that
respective team or in the system. Furthermore, our allocation of
team and system-based reward among several agents based on their
ratio of credo parameters maintains the budget balance principle.
Agents’ credo policies, 7;", learn using RL to optimize the mean
credo-based reward of their behavioral policy over E episodes.

- SR;.

3 RESULTS

We empirically evaluate our framework and compare with various
static (i.e., non-tuning) populations using the Cleanup Gridworld
Game (Cleanup) [14] as the environment for the behavioral poli-
cies. Cleanup presents a social dilemma where agents have the
short term incentive to act selfishly but gain higher global rewards
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Figure 2: Mean population reward (top) and Inverse Gini
index (bottom) across tuning and post-tuning experiments.

through cooperation. Agents’ low-level behavior policies, 7;, learn
using PPO [13, 16]. Agents’ high-level credo policies, 7;", modifies
how much reward they allocate to themselves, their teams, or the
overall system, thereby influencing their long-term behavior in the
low-level environment. The credo policy takes actions in the meta-
environment that we define to be a discretized space of possible
credo parameters. The credo policy for each agent is implemented
with Q-Learning with e-greedy exploration (e = 20%) [15]. Exper-
iments consist of 3.4 x 108 environmental timesteps (episodes of
1,000 timesteps). We define three disjoint teams of two agents each
from a population of six agents. In all tuning experiments, the credo
policy takes actions every E = 96 episodes.

Figures 2a shows mean population reward (top) and Inverse Gini
index (bottom) for various experiments with 95% confidence inter-
vals. The green solid line represents agents utilizing our meta-RL
architecture that are first instantiated as fully cooperative agents
(i.e., system-focused; all agents share rewards). We contrast these
results with static self-focused agents (yellow dashed; individual
RL), static system-focused agents (red solid; fully cooperative), and
static team-focused agents (blue dashed; shares reward with team
Ty, current best result) that do not update their reward functions.
Our results show that credo-tuning agents update their joint behav-
ior to achieve 34.2% more reward than the system-focused setting
they are instantiated with (red line). Furthermore, credo-tuning
populations develop noticeably more reward equality than the static
team-focused setting that achieves slightly more population reward.

In our next experiment, we instantiate new behavioral policies
with fixed heterogeneous credo parameters learned during the pre-
vious credo-tuning experiment. Figure 2b shows the results of this
population (purple solid) contrasted with the previous tuning exper-
iment (green dashed) and static team-focused (blue dashed) popula-
tions. Utilizing these learned credo parameters in these new agents
achieves the highest observed mean population reward in Cleanup,
slightly higher than previously best-observed setting (static team-
focused), while achieving significantly higher reward equality.

Takeaways. Our approach demonstrates the viability of agents
autonomously adapting in MARL environments, improving coop-
eration and learning outcomes without manual tuning of reward-
sharing schemes within a social structure. These agents simultane-
ously explore the space of reward-sharing parameters and develop
heterogeneous schemes which would be infeasible using previous
methods.
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