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ABSTRACT

Leveraging the training-by-pruning paradigm introduced by Zhou
et al. [NeurIPS’19], Isik et al. [ICLR’23] introduced a federated learn-
ing protocol that achieves a 34-fold reduction in communication
cost. We achieve a compression improvements of orders of orders of
magnitude over the state-of-the-art. The central idea of our frame-
work is to encode the network weights ®𝑤 by a the vector of trainable
parameters ®𝑝 , such that ®𝑤 = 𝑄 · ®𝑝 where 𝑄 is a carefully-generate
sparse random matrix (that remains fixed throughout training). In
such framework, the previous work of Zhou et al. [NeurIPS’19] is
retrieved when 𝑄 is diagonal and ®𝑝 has the same dimension of ®𝑤 .

We instead show that ®𝑝 can effectively be chosen much smaller
than ®𝑤 , while retaining the same accuracy at the price of a de-
crease of the sparsity of 𝑄 . Since server and clients only need to
share ®𝑝 , such a trade-off leads to a substantial improvement in com-
munication cost. Moreover, we provide theoretical insight into our
framework and establish a novel link between training-by-sampling
and random convex geometry.
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1 INTRODUCTION

To enable efficient and secure training on mobile devices, federated
learning was introduced [2, 3]. In this approach, multiple agents or
clients train on separate partitions of the data, periodically sharing
learned parameters with a central server. In federated learning,
transmitting binary masks instead of exact parameter values not
only reduces communication cost but also enhances privacy. Addi-
tionally, the sparse network architecture lowers inference costs. Us-
ing such approach, [1] achieved high accuracy in training artificial
neural networks (ANNs) with a 32-fold communication reduction.
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They further applied compression techniques that capitalize on
patterns of consecutive 1s or 0s, yielding a total communication
reduction of 33-34 times. Our paper extends far beyond this 34-
fold reduction in communication cost, achieving a 1024-fold total
reduction.

Our Contribution. We present Zampling (Zonotope Sampling), a
new training-by-sampling framework inspired by convex random
geometry that achieves small reductions in accuracy for state of the
art factors of compression in communication cost in the federated
learning setting. Given a an arbitrary neural network architecture,
Zampling replaces the model’s parameters ®𝑤 with a product of a
probability vector ®𝑝 and a sparse influence matrix 𝑄 , enabling both
training-by-sampling for any model and state of the art compres-
sion in parameter communication costs in the federated setting.
This lowers the communication cost by several orders of magni-
tude in the context of federated learning. Moreover, our work is a
generalisation of Zhou et. al. [4] Concretely, the main result shows
that we can reduce the client communication cost by a factor of
1024 in comparison to the naïve algorithm (and a factor of 32 w.r.t.
the state-of-the-art) while witnessing only a 3% point reduction in
accuracy.

2 METHODOLOGY

We consider the setting of federated learning, where a server and 𝐾
clients jointly train a neural network model. For any neural network
architecture, let𝑚 be the total number of parameters of the model
and let 𝑛 be a number of trainable parameters with 𝑛 ≤ 𝑚. Let
®𝑝 (𝑡) ∈ [0, 1]𝑛 be the vector of these parameter at time 𝑡 and we
refer to it as the probability distribution vector.

Let𝑄 = (𝑞𝑖, 𝑗 )𝑖≤𝑚,𝑗≤𝑛 be a randomly initialised but non-trainable
matrix ∈ R𝑚×𝑛 that describes how each trainable parameter (in
®𝑝) affects each weight, i.e., 𝑞𝑖, 𝑗 describes how the 𝑗th trainable
parameter influences the 𝑖th weight. Let 𝑑 the weight degree (each
weight is influenced by 𝑑 trainable parameters), i.e., the number of
non-zero entries per row. The matrix 𝑄 does not change over time
and will never be sent — we assume that server and clients both
have 𝑄 which can be realised by sharing the same random seed to
generate identical matrices. We assume that the data is distributed
IID among the clients.

Further Notation. Let 𝑓 (𝑥) = max(min(𝑥, 1), 0) be the ReLU func-
tion clipped at 1. Let 𝐷𝑖 be the dataset at agent 𝑖 and 𝐷 =

⋃
𝑖 𝐷𝑖 .

Given a weight vector ®𝑤 , we use 𝑔 ®𝑤 : 𝑋 → 𝑌 to describe the result-
ing network (note that server and clients use the same architecture
and hence the weight vector fully determines the model). We define
the compression factor to be𝑚/𝑛. In our terminology each round has
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up to 100 (training) epochs. Clients and server exchange messages
at the beginning and end of each round.

Initialization. We generate a coefficient matrix 𝑄 ∈ R𝑚×𝑛 . For
each 𝑖 ≤ 𝑚 sample a set of 𝑑 indices I𝑖 ∈ [𝑛]𝑑 without replacement.
Then generate 𝑄 = (𝑞𝑖, 𝑗 )𝑖∈[𝑚], 𝑗∈[𝑛] as follows.

𝑞𝑖, 𝑗 ∼
{
𝑁 (0, 𝜎2

𝑖
) if 𝑗 ∈ I𝑖

0 otherwise
,where 𝜎2

𝑖
= 6

𝑑𝑛ℓ
and 𝑛ℓ is the fan-in

(number of incoming weights) of the target neuron associated to
weight𝑤𝑖 (akin to Kaiming-He initialization).

The initial values of ®𝑝 are drawn from an 𝑛-dimensional uniform
distribution ®𝑝 (0) ∼ 𝑈 (0, 1)𝑛 . The initial values of the weights are
now calculated by setting ®𝑤𝑖𝑛𝑖𝑡 = ®𝑤 (0) = 𝑄 ®𝑝 (0). In Figure 1 we
present an illustration of the training protocol.

2. Sample z⃗(1)(t) ∼ p⃗(t)

3. Compute local gradient

4. Update p⃗
(1)
new(t)
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(1)
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(1)
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[wait for clients]

Figure 1: An illustration of the Federated Zampling algo-

rithm.

3 EXPERIMENTS

The goal of these experiments is to evaluate the performance of
Federated Zampling, as we compress the number of parameters,
forcing the weight sharing scheme defined by the matrix 𝑄 . In all
our experiments we use the MNIST dataset and use the framework
described in Section 2.1 We run each training round for 100 epochs
with early stopping, using 10 epochs of patience and a delta of 10−4.
All our training is run using Adam optimizer, with momentum 0.9
and varying learning rate. Everywhere, we use the standard MNIST
data splits with batches of size 128. The model’s parameter initial-
ization followed a uniform distribution on ®𝑝 and we choose 𝑞𝑖, 𝑗 to
be distributed as to recover Kaiming-He initialisation. The architec-
ture we use,MNISTFC, is exactly as the one in Zhou: two hidden
layers with three hundred and one hundred neurons respectively.

Setup. We ran three simulations with 10 clients and one server.
Each client was trained over a total of 100 rounds. The data was
partitioned with a random split. In this experiment, we tested the
MNISTFC model with training-by-sampling, measuring the accu-
racy on the expected network. The model was initialized with

1The evaluation of basic method was run on a machine with GPU RTX3080 with 12GBs
of VRAM, with AMD Ryzen Threadripper 3960X 24-Core CPU and RAM 256GBs.

𝑛 = 𝑚/𝑖, 𝑖 = 1, 8, 32, where𝑚 = 266610 and a 𝑑 = 10, with ®𝑝 ini-
tialized uniformly and learning rate is 0.1, random seed is 1. We
compute the mean sampled accuracy at each round, together with
the standard deviation out of 100 sampled networks.

Analysis. Results are displayed in Figure 2. Bench-marking against
𝑚/𝑛 = 1, we see that our performance receives virtually no loss
in performance (.22%) for a 8 fold reduction in parameters in the
𝑚/𝑛 = 8 experiment. When 𝑚/𝑛 = 32, the loss in performance
is just 2.55%! In particular, the client savings are 1024x and the
server savings 32x in communicaiton cost, versus 33.69x and 1.05x,
due to arithmetic compression, in [1]; however, their test accuracy
remains close to unchanged, with 0.99 final accuracy.2
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Figure 2: Results of training Federated Zampling in the

federated learning framework with varying levels of 𝑑 .

4 CONCLUSIONS

In this work, we introducedZampling, a novel training-by-sampling
framework inspired by convex random geometry, and demonstrated
its effectiveness in federated learning settings. Our method achieves
an unprecedented 1024-fold reduction in client communication
cost while incurring only a minor accuracy drop compared to the
state-of-the-art. By replacing model parameters with a probability
vector and a structured influence matrix, we enable large-scale com-
pression while maintaining competitive performance. In a more
extensive exposition of this work, we will delve into the underly-
ing mathematical theory of zonotopes that provides a theoretical
foundation for our framework. We will also release the code and
additional empirical results to facilitate further exploration and
replication of our findings. Our approach offers a promising direc-
tion for efficient, scalable, and communication-aware deep learning
in federated environments.
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2Compared to the 1,933,258 parameter ConvNet architecture in Isik et. al. [1], we use
a 266,610 parameter feedforward (about 7 times smaller) architecture. The clusters we
have access to were unable to run their architecture, which is why we only have a test
accuracy of 0.95 (instead of their 0.99) even without compression. We believe that our
results on their architecture would result in even higher accuracies and with higher
compression factors due to their model being much more over-parameterised.
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