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ABSTRACT
Offline reinforcement learning (RL) is valuable in settings where on-
line interactions with an environment are impractical. While such
settings are often partially-observable, existing offline RL methods
typically focus on fully-observable (FO) Markov decision processes
(MDPs) rather than partially-observable MDPs (POMDPs). To help
close that gap, we present an offline RL algorithm for POMDPs that
leverages expert policies from simpler, fully-observable versions
of environments in an asymmetric learning setting. We provide
theoretical grounding for how overlap betweenMDPs and POMDPs
can be exploited to improve learning in the partially-observable set-
ting, and our experiments empirically demonstrate that our method
significantly improves performance compared to existing state-of-
the-art MDP offline RL algorithms.
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1 INTRODUCTION
Many state-of-the-art offline reinforcement learning (RL) meth-
ods [8–10] are evaluated on fully-observable (FO) Markov decision
process (MDP) data, whereas real-world problems are often char-
acterized by partial observability due to sensor limitations and
noise.
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Figure 1: Simplified HeavenHell environment. An optimal
partially-observable agent must visit an oracle (bottom blue
location) while an optimal fully-observable agent does not.

We approach this challenge through the lens of asymmetric
RL [2, 3, 12], where the agent has access during training to privi-
leged information such as the state and a FO expert policy [11, 13–
15], that may be exploited to train a partially-observable (PO) policy.
To this end, we assume that the offline dataset D contains state
information (as can be gathered, e.g., by a simulator). We propose
Cross-Observability Conservative Q-Learning (CO-CQL), a new of-
fline RL algorithm that exploits asymmetric learning from a FO
expert for PO control.

Related Work. CO-CQL is closely related to Conservative Q-
learning (CQL) [10], Conservative Soft Actor-Critic (CSAC) [10] and
Cross-Observability Soft Imitation Learning (COSIL) [11]. CQL and
CSAC combine value-based and actor-critic methods with a conser-
vative regularizer R(𝑄) � E𝑠∼D [max𝑎 𝑄 (𝑠, 𝑎)] −E𝑠,𝑎∼D [𝑄 (𝑠, 𝑎)]
that minimizes the gap between maximal and in-distribution values.
COSIL augments the RL rewards with divergence-based pseudo-
rewards 𝑅(𝑠𝑡 , 𝑎𝑡 ) − 𝛼𝐷 (𝜇 (𝑠𝑡 ), 𝜋 (ℎ𝑡 )) that promote similarity be-
tween the PO policy and FO expert.

2 CROSS-OBSERVABILITY CONSERVATIVE
Q-LEARNING

CO-CQL exploits the demonstrations of an expert FO policy to help
guide the training of a PO policy.

Consider a simplified variant ofHeavenHell [5] shown in Figure 1.
The agent must identify and reach the good exit while avoiding the
bad exit. As a FO problem, the agent directly observes the identity
of the good exit. As a PO problem, the agent must first visit an
oracle to identify the exits and reduce its state uncertainty, and then
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Figure 2: Mean and standard deviation of learning performance measured over 5 independent runs.

backtrack to reach the good exit. Although the optimal PO policy
and the optimal FO policies differ, there are several history/state
contexts that overlap in terms of optimal behaviors. In these con-
texts, the FO agent is able to provide relevant guidance to the PO
agent.

CO-CQL makes several extensions to vanilla FO CQL, CSAC,
and COSIL: (a) To exploit the FO expert, we add a behavior cloning
auxiliary objective; (b) to adequately handle the PO data, state-based
models are replaced with history-based models (e.g., 𝜋 (𝑠) becomes
𝜋 (ℎ),𝑄 (𝑠, 𝑎) becomes𝑄 (ℎ, 𝑎)), using recurrent networks to process
sequential data; (c) to additionally handle discrete control problems,
we replace the underlying continuous SAC algorithm with discrete
SAC [7]. The critic model is trained on an augmented conservative
loss,

𝐽
𝑄

CO-CQL =
1
2
Eℎ,𝑎,𝑟,𝑜∼D [(𝑦 −𝑄 (ℎ, 𝑎))2] + 𝜆R(𝑄) ,where

𝑦 = 𝑟 + 𝛾 E𝑎′∼𝜋 (ℎ𝑎𝑜 ) [𝑄 (ℎ𝑎𝑜, 𝑎′) − 𝛼 log𝜋 (𝑎′ | ℎ𝑎𝑜)] ,
and the agent policy is trained on an augmented policy loss,

𝐽𝜋CO-CQL = Eℎ,𝑠∼D,𝑎∼𝜋 (ℎ) [𝛼 log𝜋 (𝑎 | ℎ) −𝑄 (ℎ, 𝑎)]
+ 𝛽 Eℎ,𝑠∼D [𝐷 (𝜇 (𝑠) | | 𝜋 (ℎ))] .

The behavior cloning term is interpretable as a form of imitation
learning that projects the FO expert behavior in PO behavior space.
In an online setting such as the one used in COSIL [11], the behavior
cloning term can save exploration time, as the FO expert already
has knowledge about the FO dynamics. In the offline setting of
CO-CQL, this contribution by the FO expert is particularly useful
as exploration of new interactions is not allowed.

3 EVALUATION
We evaluate CO-CQL on discrete and continuous PO control prob-
lems exhibiting a variety of challenges. In discrete environments,
we compare CO-CQL to recurrent CQL [10], recurrent IQL [9],
and naive behavior cloning (BC) [1] from the FO expert policy.

In discrete environments, we additionally compare CO-CQL to
recurrent TD3 + BC [8]. The results in Figure 2 show that the
performance of CO-CQL either exceeds or matches that of other
baselines, demonstrating the efficacy of using state information
in an asymmetric learning setting to inform the training of a PO
policy. These results also demonstrate that CO-CQL generalizes
well across a wide variety of PO tasks. For example, HalfCheetah
and LunarLander [6] require learning to handle complex contin-
uous controls, HeavenHell [5] requires long-term memorization
of the past, whereas MemoryFourRooms, DynamicObstacles, and
KeyDoor [4] require processing discrete image observations with
small fields of view that result in state aliasing. CO-CQL performs
consistently well across environments, whereas the other baselines
exhibit a trade-off by performing well in some environments and
less so in others. In particular, even when BC or CQL perform sub-
optimally, CO-CQL is able to exploit the benefits both approaches
to consistently obtain better performances.

4 CONCLUSION
In this work, we demonstrated that FO expert policies can be used
to address PO offline RL. We created multiple novel PO offline RL
datasets from a variety of challenging environments, implemented
recurrent versions of existing offline RL algorithms, and developed
CO-CQL, a novel algorithm that exploits a FO expert policy by com-
bining RL with behavior cloning component and conservative value
regularization. Our method primarily requires a dataset that also
contains state information, e.g., as provided by a simulator. Access
to a FO expert policy appears as an additional requirement; however,
is in principle obtainable by running FO offline RL methods on the
same dataset. Our approach performs better than state-of-the-art
algorithms across a broad range of PO environments.
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