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ABSTRACT
This paper proposes a new reinforcement learning method that
learns from failure under sparse reward environments. While tra-
ditional approaches rely on costly expert demonstrations to guide
learning in sparse reward environments, this method uses readily
available failures. The method trains a discriminator to measure
the dissimilarity between the agent’s behaviors and failures, gen-
erating dense rewards. The method then uses this information to
guide policy learning. Experimental results show this failure-based
learning approach performs competitively with existing methods.
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1 INTRODUCTION
This work tackles the sparse reward problem in reinforcement learn-
ing [6, 8, 10, 11] with a novel approach using failed experiences
rather than expert demonstrations. While traditional methods rely
on expert demonstrations to guide learning [4, 5], which is expen-
sive and resource-intensive [7]. Instead, this work proposes using
readily available failed experiences to guide exploration through a
GAN-based architecture [1] and reward densification method. The
system works by training a discriminator to measure the dissimi-
larity between the agent’s behaviors and failures, generating dense
rewards from sparse ones. This approach differs from previous
failure-based methods like BIRL [2, 7] which still required expert
data. Experiments across multiple environments show this pure
failure-based approach can match or exceed methods using expert
demonstrations, while being much more practical to implement due
to the easy availability of failure data. Our contributions are sum-
marized as follows. First, we develop a GAN-based algorithm where
the discriminator measures how different the agent’s behaviors are
from failures, while the generator generates contrasting actions.
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Second, we introduce a new approach to densify the sparse rewards
by promoting exploration away from failed behaviors. Third, our
experiments across multiple environments prove that learning from
failures alone can be as effective as, or better than, using expert
demonstrations.

2 PRELIMINARY
In this paper, we consider a Markov Decision Process (MDP) de-
fined by (S,A, 𝑃, 𝑅,𝛾), where the RL agent takes an action 𝑎 ∈ A,
receives a reward 𝑟 from 𝑅(𝑠, 𝑎), and moves to the next state 𝑠′
determined by 𝑃 (𝑠′ |𝑠, 𝑎). The goal is to learn a policy 𝜋 to max-
imize the expected cumulative rewards with a discounted factor
𝛾 ∈ [0, 1), which is formulated as 𝜋∗ = argmax𝜋 E𝜋

[∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡
]
,

where 𝜋∗ denotes the optimal policy 𝜋 , 𝑟𝑡 is the reward received at
time step 𝑡 and 𝑇 is the time horizon.

Standard reinforcement learning struggles with exploration un-
der sparse reward environments due to the infrequently occurred
rewards. While expert demonstrations can guide exploration [12],
they show expensive to obtain. Our approach instead uses easily
accessible failed experiences. We introduce an augmented reward
function with a discriminator that measures dissimilarity to failures,
allowing the agent to maximize rewards while avoiding known fail-
ure behaviors.

3 TECHNICAL APPROACH
Our approach builds on the GAN framework [1], where the gen-
erator learns actions opposite to failures, while the discriminator
differentiates between generated actions and failures. The objective
function is formulated as

min
𝜃

max
𝜔

𝐿 = −E𝜋𝜃 [𝑟𝑑 (𝑠, 𝑎)] − 𝜆1 (E𝜋𝜃 [log(𝐷𝜔 (𝑠, 𝑎))]

+ E𝜋𝑓
[log(1 − 𝐷𝜔 (𝑠, 𝑎))]) − 𝜆2𝐻 (𝜋𝜃 ), (1)

where E denotes the expectation operator, 𝑟𝑑 is the densified re-
ward, 𝐷𝜔 measures dissimilarity from failures, and 𝐻 (𝜋𝜃 ) is an
entropy regularizer [13] to prevent overfitting. The weights 𝜆1 and
𝜆2 balance the GAN objective and entropy. The proposed objective
function optimizes policy parameters 𝜃 and discriminator param-
eters 𝜔 to maximize rewards while avoiding behaviors similar to
failures. In sparse reward environments where 𝑟 (𝑠, 𝑎) is limited, we
propose a densification technique using failed experiences and the
discriminator to create a new dense reward,

𝑟𝑑 (𝑠, 𝑎) = 𝑟 ′ (𝑠, 𝑎) + 𝜆3
1

1 + 𝑒−𝐴′ (𝑠,𝑎)
, (2)
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Environment Empirical Return
TRPO PPO GAIL

HalfCheetah 24.03 ± 2.35 1696.59 ± 371.39 66.99 ± 136.04
Hopper 17.72 ± 4.26 2412.90 ± 360.03 3570.98 ± 57.75

Humanoid 5.56 ± 0.23 559.42 ± 35.28 651.79 ± 65.86
Walker2D 13.88 ± 2.65 3122.98 ± 469.62 3038.60 ± 396.58

HumanoidStandup 30.35 ± 7.49 125178.96 ± 9202.7 93213.95 ± 2985.37
Pendulum −177.31 ± 30.83 −1267.22 ± 351.57 −879.35 ± 217.79

POfD Ours (TRPO) Ours (PPO)
HalfCheetah 376.73 ± 292.10 1308.80 ± 124.39 1349.89 ± 111.08

Hopper 3378.17 ± 184.31 3441.69 ± 69.09 3488.19 ± 38.12
Humanoid 3017.90 ± 239.83 5578.16 ± 305.97 5594.70 ± 299.51
Walker2D 3365.82 ± 552.39 4838.83 ± 197.25 4943.86 ± 72.16

HumanoidStandup 92882.74 ± 3085.48 98273.71 ± 7067.30 94600.99 ± 4783.22
Pendulum −959.84 ± 211.41 −443.06 ± 493.10 −1007.57 ± 560.31
Table 1: Empirical return comparison among different algorithms.

where

𝑟 ′ (𝑠, 𝑎) =


𝑟 (𝑠, 𝑎) + 𝜆1 log(𝐷𝜔𝑖
(𝑠, 𝑎)), if 𝑟 (𝑠, 𝑎) is available

𝜆1 log(𝐷𝜔𝑖
(𝑠, 𝑎)), otherwise

(3)

is the sparse densification term. 𝐷𝜔𝑖
measures dissimilarity from

failures at timestep 𝑖 , 𝐴′ (𝑠, 𝑎) is the advantage function computed
using 𝑟 ′ (𝑠, 𝑎) with weight 𝜆3 [3]. The term 1

1+𝑒−𝐴′ (𝑠,𝑎) in (2) is the
sigmoid-transformed [3] 𝐴′ (𝑠, 𝑎) to match the discriminator’s out-
put dimension. This reward densification guides the agent away
from failures while exploring promising actions. The pseudo code
of the proposed approach can be found in Algorithm 1.

4 EXPERIMENTS AND RESULTS
We evaluate ourmethod across six environments, namely, HalfChee-
tah, Hopper, Humanoid, Walker2D, HumanoidStandup, and Pendu-
lum [9], using failed experiences collected from a random policy
and evaluated by users with basic environment understanding.

Our method uses TRPO and PPO for generator updating, com-
paring against baseline TRPO, PPO, GAIL, and POfD which uses
GAN structure for expert demonstration learning. We conducted
10 runs per algorithm with different random seeds. Table 1 shows
that ‘Ours (TRPO)’ and ‘Ours (PPO)’ outperform GAIL and POfD in
most environments, except in Hopper, where GAIL peroformances
the best among all methods, and in Pendulum, where TRPO or PPO
outperform others with dense rewards. The performance of the pro-
posed approach is lower in simpler environments like Pendulum,
where dense rewards provide better learning signals.

Based on the experiments, our approach has three main limita-
tions. First, failure definition can be subjective, varying between
human evaluators. This could be addressed through crowdsourc-
ing to obtain more objective assessments. Second, the quality of
failure data depends on human factors like fatigue and expertise,
suggesting a need for noise-resistant learning methods. Finally, our
approach is less effective in simple environments where failures
provide limited information, similar to how humans learn less from
failures in straightforward tasks.

Algorithm 1 Policy Optimization with Failure
Require: failed experiences, initial generator and discriminator
parameters 𝜃0 and 𝜔0, discriminator’s weight 𝜆1, reward densi-
fication parameters 𝜆1 and 𝜆2, the weight of advantage-based
reward densification term 𝜆3, total training cycles 𝑇 , learning
rate 𝛼
Collect failed experiences
Initialize generator’s policy 𝜋𝜃0 , discriminator 𝐷𝜔0
for 𝑖=1, 𝑇 do

Sample trajectories 𝜏 from generator
Sample trajectories 𝜏𝑓 from failed experiences
Update discriminator parameter𝜔𝑖+1 ← 𝜔𝑖 with the gradient

−(E𝜏∼𝜋𝜃 [∇𝜔 log(𝐷𝜔 (𝑠, 𝑎))] + E𝜏𝑓 ∼𝜋𝑓
[∇𝜔 log(1 − 𝐷𝜔 (𝑠, 𝑎))])

Update the reward function

𝑟𝑑 (𝑠, 𝑎) = 𝑟 ′ (𝑠, 𝑎) + 𝜆3
1

1 + 𝑒−𝐴′ (𝑠,𝑎)
,

where

𝑟 ′ (𝑠, 𝑎) =


𝑟 (𝑠, 𝑎) + 𝜆1 log(𝐷𝜔𝑖
(𝑠, 𝑎)), if 𝑟 (𝑠, 𝑎) is available

𝜆1 log(𝐷𝜔𝑖
(𝑠, 𝑎)), otherwise

Update the policy of the generator with policy gradient meth-
ods, such as TRPO and PPO

∇𝜃 𝐽 (𝜋𝜃 ) = E𝜋𝜃 [∇𝜃 log(𝜋𝜃 )𝑟𝑑 ] − 𝜆2𝐻 (𝜋𝜃 ), (4)

𝜃𝑖+1 ← 𝜃𝑖 + 𝛼∇𝜃𝑖 𝐽 (𝜋𝜃𝑖 )
end for
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