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ABSTRACT
This work addresses a specific instance of Goal Recognition (GR),

termed time-sensitive GR, where a malicious actor (the attacker)
seeks to reach and damage one of several sensitive targets, while

the observer (the defender) must identify the attacker’s target and

allocate limited resources to protect it. Focusing on real-world

physical and cyber security scenarios, the defender faces a trade-

off between acting early, with limited information, or waiting for

more data but risking insufficient time to defend. Our contributions

include introducing a game-theoretic formulation of this instance of

GR, which captures the time-sensitive nature of these scenarios, and

providing an efficient method to compute Nash equilibria using the

fictitious play learning scheme. Experimental results confirm that

our method equips the defender with robust policies, outperforming

less adaptable strategies.
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1 INTRODUCTION
Goal recognition (GR) refers to the problem where an agent, known

as the observer, monitors the actions of another agent, the actor,

to infer its final goal. Since its inception as a subproblem of plan

recognition [37], GR has been extensively studied [21, 40] due to

its applications in various fields (e.g. [15, 19, 23, 24, 35]).

In this work, we study a new variant of GR, which we refer to

as time-sensitive GR (TSGR), where the actor is a malicious agent -

referred to as the attacker - that navigates an environment to reach

and damage one of several sensitive targets. The observer, termed

the defender, aims to identify the attacker’s intended target as early

as possible by analyzing its actions, allowing the defender to re-

inforce the target’s defense. We focus on real-world physical and

cyber security scenarios where the defender has limited resources

to protect targets and must relocate those resources from an initial
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position to the selected target. Amilitary example is a defendermov-

ing troops from a base to a threatened location (e.g., [36]). Because

moving resources takes time, delayed action by the defender may

result in failure to secure the target before the attacker reaches it.

Depending on the environment’s layout and agents’ behaviors, the

defender must eventually make an irrevocable decision on which

target to protect. Procrastination risks leaving the defender unable

to mount a sufficient defense.

In many cases, the defender will need to choose a target after

observing only a portion of the attacker’s trajectory. Early decisions

give the defender more time to reposition resources while the at-

tacker is still distant from the target. However, premature decisions

risk inaccuracies, as the observed portion of the attacker’s path

might still be consistent with multiple potential targets. On the

other hand, waiting for more information would allow the defender

to make better predictions but could leave insufficient time to act.

The defender’s challenge, therefore, is to choose the right moment

to commit resources—when confidence is high enough to ensure

the correct target is chosen while there is still time to defend it.

To address this trade-off and support timely decision-making, af-

ter defining the TSGR problem formally, we model it as a two-player
zero-sum game. We introduce a protection success probability for

each target, which depends on the distance between the target and

the attacker’s current position. This probability is factored into the

agents’ rewards. We construct defender policies that map prefixes of

the attacker’s observed paths to specific targets. In our formulation,

the attacker’s strategy is to choose a path to a target, while the

defender’s strategy is to determine a prefix of each possible path

and assign a target to it.

By playing multiple iterations of this game, both the attacker

and defender refine their strategies to maximize their rewards. The

existence of Nash equilibria [25] in this game follows directly from

classical min-max theorems, although computing these equilibria

is challenging due to the large action sets available to both players.

To overcome this, we provide a combinatorial characterization of

the players’ best response sets and show that computing the de-

fender’s best responses is equivalent to solving an optimal stopping
time problem [7]. We then apply the fictitious play learning scheme
[33], which converges asymptotically to a Nash equilibrium. Our

experimental results demonstrate that this approach outperforms

less flexible strategies.

As we will explore in the next section, our work stands apart

from existing GR literature by focusing on time-critical scenarios,

where the defender must make decisions within stringent time

constraints. It also differs from traditional attacker-defender games,

where the defender lacks the ability to observe the attacker’s behav-

ior over time. Therefore, our key contributions lie in introducing
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a novel instance of GR in time-sensitive domains, which captures

the demands of critical real-world security challenges, offering a

game-theoretic formulation of it and developing an efficient method

for finding Nash equilibria, empowering the defender with robust

policies to counter the attacker.

2 RELATEDWORK
Game theory offers a sound mathematical approach to modeling

various problems acrossmany disciplines. In the security field, game

theory is popular [3, 11, 41] because it allows us to reason on how

to deploy limited security resources to maximize their effectiveness.

Our work follows this tradition. In particular, our approach

is related to attacker-defender games [12], which focus on study-

ing strategic interaction between defenders and adversaries via

game theory. Instances of attacker-defender games are infrastruc-
ture/asset protection games, which deal with the allocation of de-

fensive resources among multiple targets and the target selection

decisions that adversaries make after observing the resource alloca-

tion [4, 9, 29, 34]. Typically, governments want to protect vulnerable

assets (e.g., airports, ports, bridges, etc.) that an adversary wants to

take down. These games are played sequentially, with the defender

moving first by allocating resources to targets and the attacker

moving second by deciding which target to damage, and are solved

for Nash equilibria. Patrolling games, on the other hand, typically

focus on the identification of optimal patrol routes, schedules, and

postures [26, 38]. These problems have often been modeled as Stack-

leberg games [1, 14] and deployed in real-world scenarios, e.g., Los

Angeles airport and Port of Boston [41]. A further specialization of

Stackleberg games is represented by security games, which are non-

zero-sum games helpful to model situations in which the defender

and attacker attach different importance to the targets [13, 28, 41].

Our framework fundamentally differs from attacker-defender

games because it focuses on a defender that can observe the at-

tacker’s behavior and modify its strategy based on its inference

of the attacker’s intentions. This element of goal recognition is

not present in attacker-defender games, which focus on the op-

posite protocol, with the defender choosing first and the attacker

responding to this choice.

GR [40] is the other stream of work to which our approach is

inspired. It involves an agent (the observer) inferring another agent

(the actor)’s goal by observing its actions. GR is a sub-problem of

plan recognition (PR), which can be classified into three categories

[6]: keyhole recognition, in which the actor does not change its

behavior because of being observed; intended recognition, whereby

the actor attempts to reveal its real goal to the observer; and adver-
sarial recognition when the actor tries to hide its real goal. Most

work has been performed in keyhole PR and GR, and various ap-

proaches have been developed, from heuristic classical search and

graph theory [2, 10, 27, 31, 32] to machine learning [8, 22, 23, 44].

A few game-theoretic approaches to adversarial PR have been

developed. Braynov [5] offers a conceptual framework that models

the interaction between adversarial planning and adversarial PR

as a two-player zero-sum game over attack graphs representing
the attacker’s possible plans. In Lisy et al. [16], the problem of

adversarial PR is defined as an imperfect information two-player

zero-sum game between an actor and an observer. However, this

method requires that a plan library is provided explicitly.

The literature on game-theoretic solutions to adversarial GR

is very limited. Ang et al. [2] present an approach in which they

model GR as a stochastic game with incomplete information. Their

approach concentrates on the defender identifying targets based

on the current attacker’s position during an online search. We

offer a flexible and scalable solution to TSGR by providing the

defender with a policy calculated offline that allows it to make

timely decisions on which target to protect based on the entire

attacker’s behavior until the time of the decision.

3 PROBLEM STATEMENT
3.1 Preliminaries
We consider directed graphs G = (V, E), whereV is a (finite) set of

nodes and E ⊆ V×V is a set of edges. Awalk in G from a node 𝑣 to

a node𝑤 is any finite sequence of nodes𝛾 = (𝛾0 = 𝑣,𝛾1, . . . , 𝛾𝑙 = 𝑤),
where (𝛾𝑖 , 𝛾𝑖+1) ∈ E for every 𝑖 = 0, . . . , 𝑙 − 1. The symbol 𝐸 (𝛾) = 𝑤

denotes the end node of the walk 𝛾 and 𝑙 (𝛾) its length 𝑙 .
We define a weight matrix𝑊 ∈ RV×V

+ on G such that, for every

(𝑣,𝑤) ∈ E,𝑊𝑣𝑤 > 0. Given a walk 𝛾 , we put𝑊 (𝛾) = ∑𝑙−1

𝑖=0
𝑊𝛾𝑖𝛾𝑖+1

.

Given two walks 𝛾 ′ = (𝛾 ′
0
, 𝛾 ′

1
, . . . , 𝛾 ′

𝑙 ′
) and 𝛾 ′′ = (𝛾 ′′

0
, 𝛾 ′′

1
, . . . , 𝛾 ′′

𝑙 ′′
)

with𝛾 ′
𝑙 ′
= 𝛾 ′′

0
, we indicate their concatenation as𝛾 ′⊥𝛾 ′′ = (𝛾 ′

0
, . . . , 𝛾 ′

𝑙 ′
,

𝛾 ′′
1
, . . . , 𝛾 ′′

𝑙 ′′
). Given a walk 𝛾 = (𝛾0, 𝛾1, . . . , 𝛾𝑙 ) in G and a non nega-

tive integer 𝑘 ≤ 𝑙 , we call 𝛾 (𝑘) = (𝛾0, 𝛾1, . . . , 𝛾𝑘 ) the prefix of 𝛾 of

length 𝑘 and 𝛾 (𝑘+) = (𝛾𝑘 , . . . , 𝛾𝑙 ) the suffix of 𝛾 of length 𝑙 −𝑘 . Note
that 𝛾 = 𝛾 (𝑘)⊥𝛾 (𝑘+) . Given a set of walks P and a non-negative

integer 𝑘 , we denote the set of prefixes of length 𝑘 of all walks in

P having a length not smaller than 𝑘 by P (𝑘)
.

We call LP =
⋃

𝑘≥0
P (𝑘)

the language generated by P, namely

the set of all prefixes of walks inP. Given a prefix𝛼 = (𝛼0, . . . , 𝛼𝑙 ) ∈
LP , we indicate with P+

𝛼 the set of suffixes 𝛾 that start in 𝛼𝑙 and

are possible continuations of 𝛼 , namely 𝛼⊥𝛾 ∈ P. Finally, we put

P𝛼 = {𝛼⊥𝛾 | 𝛾 ∈ P+
𝛼 }.

Given a set 𝐴 and 𝑎 ∈ 𝐴, we denote by 𝛿𝑎 ∈ R𝐴+ the probability

vector that is always 0 except in position 𝑎, where its value is 1.

3.2 Time-Sensitive Goal Recognition
To define our problem, we build on the path-planning goal recog-

nition problem introduced and investigated in depth by Masters

and Sardina [17–20]. Following them, we start considering a path-
planning domain D = ⟨G,𝑊 ⟩, where G is a directed graph and𝑊

is a weight matrix. G models the environment where the agents

move, and the weight matrix represents the cost an agent incurs for

moving along the graph’s edges. A path-planning goal recognition
(PPGR) problem [17] is a tuple R = ⟨D, 𝑠,T ,O, 𝜆⟩, where D is a

path-planning domain, 𝑠 ∈ V is the origin node, T ⊆ V \ {𝑠} is
a set of targets, O = (𝑜1, . . . , 𝑜𝑘 ), where 𝑘 ≥ 0 and 𝑜𝑖 ∈ V , is a se-

quence of observations, with 𝑜1 ≠ 𝑠 , and 𝜆 is an apriori probability

distribution on the set of targets T . We assume that nodes in T
have only incoming edges, the origin 𝑠 has only outgoing edges,

and, for every 𝑑 ∈ T , there exists at least a walk in G from 𝑠 to

𝑑 . The PPGR tuple R has the following interpretation. Two agents

are present in the environment: i) an actor that, starting from the

origin node 𝑠 , moves over the graph G to reach a destination in
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T according to distribution 𝜆, and ii) an observer that monitors

the actor’s movements and aims to establish which target in T the

actor wants to reach based on the gathered observations O. The
solution to a PPGR problem R is a posterior probability distribution

over T given a sequence of observations O: 𝑃𝑟 (T |O).
To model our TSGR problem, we augment PPGR by adding two

new elements, a set of candidate walks P and a protection success
probability 𝑞, obtaining the tuple ⟨R,P, 𝑞⟩, where R is a PPGR

problem, P is a fixed set of walks in G, namely P =
⋃

𝑑∈T P(𝑑),
with P(𝑑) being a set of walks in G from 𝑠 to target 𝑑 ∈ T , and 𝑞

is a function 𝑞 : R+ → [0, 1]. The new tuple can be understood as

follows.

In our setting, the actor is an attacker that moves over the graph

G by choosing one of the walks in P to reach and attack one of the

targets in T . We assume the attacker has a specific resource budget

and generates only walks P within it. The attacker is goal-oriented,

i.e., it has a predefined target in T it wants to attack and will not

change that over time.

The observer is a defender tasked with protecting the targets T .

Its objective is to identify the attacker’s intended target as quickly

as possible, so it can reinforce the defense at that location. Once the

defender gathers enough evidence to confidently infer the attacker’s

target, it reallocates resources to fortify that target. The defender’s

success depends on correctly identifying the attacker’s target before

the attacker reaches it, as well as the distance between the attacker

and the target at the time of the defender’s decision.

More formally, we encode the defender’s capacity to defend

a target as the protection success probability 𝑞 : R+ → [0, 1],
where the value 𝑞(𝑥) is the probability of the defender successfully

defending a target when the attacker is at a distance 𝑥 from it. This

interpretation reflects the fact that we focus on scenarios in which

the defender needs to relocate resources to protect a target, and

its chances of doing so on time depend on how far the attacker is

from it. If the attacker chooses a walk 𝛾 and the defender decides

to protect target 𝑑 after 𝑘 steps, the reward the defender obtains

is 𝑞(𝑊 (𝛾 (𝑘+) )) if it guesses the right target, i.e. 𝑑 = 𝐸 (𝛾), and 0 if

not, i.e. 𝑑 ≠ 𝐸 (𝛾).
We assume that the walks P and the probability distribution 𝜆

are known to both agents and that, while the defender does not

knowwhich specific target the attacker is aiming for, it can precisely

monitor the attacker’s movements. In consequence, observations

O are elements of LP and, from now on, we just refer to the latter.

To define the solution to a TSGR problem, we first introduce the

concept of prefix cut.

Definition 1. A prefix cut for P is any subset C ⊆ LP such
that |C ∩ {𝛾 (𝑘) | 𝑘 = 0, 1, . . . , 𝑙 (𝛾)}| = 1 for each 𝛾 ∈ P.

A solution to a TSGR problem consists of a pair (C,𝑇 ), where C
is a prefix cut of P and 𝑇 is a map such that 𝑇 : C → T . The pair

(C,𝑇 ) has the following interpretation: the defender will protect
target 𝑇 (𝑐) after observing prefix 𝑐 ∈ C of the attacker’s trajectory.

We refer to the map 𝑇 as a deterministic T -estimator.
Given a prefix cut C, the optimality of 𝑇 corresponds to a gener-

alized maximum a-posteriori estimator that considers the distance

to the targets. The challenge is the determination of the prefix cut

C, which comes from trading time for accuracy in the choice of the

defender’s decision time. Both elements C and 𝑇 are dependent on

the form of the probability function 𝑞. A pair (C,𝑇 ) fixes a policy
that, for any walk in P that the attacker can take, establishes how

many observations the observer should make along it before decid-

ing which target to protect. The goal is to maximize the probability

that the defender chooses the right target when it still has sufficient

time to defend it. Note the difference with PPGR, which provides a

mapping from a specific set of observations to the most probable

target but does not compute a policy for any choice of the actor

and does not consider any temporal element in the GR process.

4 A GAME-THEORETIC FORMULATION
To solve the TSGR problem, we cast it as a two-player strategic
game where one player is the attacker, and the other is the de-

fender. Our problem naturally lends itself to being modeled within

a game-theoretic framework because it involves two opponents

with opposite goals. Game theory allows the defender to reason

about how to deploy limited security resources in a timely manner

to maximize their effectiveness.

4.1 An Attacker-Defender Game
An attacker’s strategy consists in choosing a subset Q of P such

that |Q ∩ P(𝑑) | = 1 ∀𝑑 ∈ T , i.e. Q is the set of walks that the

attacker will use to reach one of the possible targets.

A defender’s strategy coincides with a TSGR solution, so it is a

pair (C,𝑇 ), where C is a prefix cut of P and 𝑇 is a deterministic

T -estimator.

Remark 2. A simple defender’s strategy is to make a decision at

time 0 when the attacker is yet to start moving and pick a specific

target 𝑑 (we will discuss which 𝑑 the defender might choose below).

We notice that this corresponds to choosing the prefix cut C𝑜 = {𝑜}
and the deterministic T -estimator 𝑇𝑜 such that 𝑇𝑜 (𝑜) = 𝑑 .

We formalize the game as below.

Definition 3. We consider an adversarial game defined as follows.
The set of the attacker’s strategies is defined as

M𝐴 = {Q ⊆ P | |Q ∩ P(𝑑) | = 1 ∀𝑑 ∈ T }
The set of the defender’s strategies is defined as

M𝐷 = {(C,𝑇 ) | C prefix cut of P, 𝑇 : C → T}
Given Q ∈ M𝐴 and (C,𝑇 ) ∈ M𝐷 , we define, for every 𝛾 ∈ Q,

𝑐𝛾 = 𝛾 (𝑘) ∈ C to be the only prefix of 𝛾 in C. We then put

𝑞
(C,𝑇 )
𝛾 =

{
𝑞(𝑊 (𝛾 (𝑘+) )) if 𝐸 (𝛾) = 𝑇 (𝑐𝛾 )
0 otherwise

(1)

𝑞
(C,𝑇 )
𝛾 represents the defender’s reward when it uses the deterministic
strategy (C,𝑇 ) and the attacker chooses the motion trajectory 𝛾 . Av-
eraging over the set Q, we obtain the defender’s reward when it plays
(C,𝑇 ) and the attacker plays Q. Formally, we define:

𝜙 (Q, (C,𝑇 )) =
∑︁
𝛾 ∈Q

𝜆(𝐸 (𝛾))𝑞 (C,𝑇 )𝛾 (2)

We can interpret the setup as a zero-sum, two-player game in strategic
form. The two players have, respectively, action sets M𝐴 and M𝐷 .
Given a pair of actions (Q, (C,𝑇 )), the utility of the first player, the
attacker, is −𝜙 (Q, (C,𝑇 )), whereas the utility of the second player,
the defender, is 𝜙 (Q, (C,𝑇 )).
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To solve the TSGR problem, we let the two players play and

determine a Nash equilibrium offline by applying the algorithm

presented below. Both players know the game rules and can run

the algorithm independently. Once the players have computed their

strategies, theymerely play them in any online game run and cannot

modify their actions as time passes. Hence, our approach differs

from setups where the two players react online to the adversary’s

choice and modify their actions over time. An online version of the

TSGR problem, where the two players learn the optimal policy by

reacting to the adversary’s current choice, is left for future research.

4.2 Mixed Strategies and Nash Equilibria
Nash equilibria for zero-sum games only exist as mixed strategies.
We define S𝐴 and S𝐷 as the set of probability distributions over,

respectively, the setsM𝐴
andM𝐷

. Respectively, elements will be

denoted with symbols 𝜎𝐴 and 𝜎𝐷 . The mixed strategy extension of

the 2-player game in Def. 3 is obtained by averaging the reward

function defined in Eq. (2) over the probabilistic strategies of the

two players. Formally, the mixed strategy defender’s reward is a

function Φ : S𝐴 × S𝐷 → R given by the expression

Φ(𝜎𝐴, 𝜎𝐷 ) :=
∑︁

Q∈M𝐴

∑︁
(C,𝑇 ) ∈M𝐷

𝜎𝐴 (Q)𝜎𝐷 (C,𝑇 )𝜙 (Q, (C,𝑇 )) (3)

Deterministic strategies can be thought as particular mixed strate-

gies: if Q ∈ M𝐴
and (C,𝑇 ) ∈ M𝐷

, we indicate with the sym-

bol 𝛿Q and 𝛿 (C,𝑇 ) the corresponding mixed strategies defined as

delta distributions on, respectively, the strategy Q and the strategy

(C,𝑇 ). Following this interpretation, wewill consider the inclusions
M𝐴 ⊆ S𝐴 andM𝐷 ⊆ S𝐷 .

Best response sets gather the best actions that one of the players
can take in response to a specific action of the other player. Formally,

for every attacker’s strategy 𝜎𝐴 ∈ S𝐴 and defender’s strategy 𝜎𝐷 ∈
S𝐷 , we put

B𝐷 (𝜎𝐴) = argmax

𝜎𝐷 ∈S𝐷
Φ(𝜎𝐴, 𝜎𝐷 )

B𝐴 (𝜎𝐷 ) = argmin

𝜎𝐴∈S𝐴
Φ(𝜎𝐴, 𝜎𝐷 )

(4)

We also define deterministic best response sets:

B𝑑𝑒𝑡
𝐷 (𝜎𝐴) = B𝐷 (𝜎𝐴) ∩M𝐷 , B𝑑𝑒𝑡

𝐴 (𝜎𝐷 ) = B𝐴 (𝜎𝐷 ) ∩M𝐴 (5)

It is well known that B𝐷 (𝜎𝐴) and B𝐴 (𝜎𝐷 ) can be represented as

convex hulls of, respectively, B𝑑𝑒𝑡
𝐷

(𝜎𝐴) and B𝑑𝑒𝑡
𝐴

(𝜎𝐷 ).
A pair (𝜎𝐴, 𝜎𝐷 ) ∈ S𝐴 × S𝐷 is called a Nash equilibrium if, simul-

taneously, 𝜎𝐷 ∈ B𝐷 (𝜎𝐴) and 𝜎𝐴 ∈ B𝐴 (𝜎𝐷 ). In this case, neither

of the two players is incentivized to modify their behavior unilat-

erally. We indicate with N the set of Nash equilibria of our game.

Von Neumann’s Minimax theorem [42] guarantees the existence of

Nash equilibria and their characterization as min-max optimizers.

Precisely, if we define

S𝐷∗ = argmax

𝜌∈S𝐷
min

𝜇∈S𝐴
Φ(𝜇, 𝜌) S𝐴∗ = argmin

𝜇∈S𝐴
max

𝜌∈S𝐷
Φ(𝜇, 𝜌) (6)

the set of all Nash equilibria isN = S𝐴∗ ×S𝐷∗
and Φ is constant on

N . We denote with Φ∗
this value of Φ on the setN . By construction,

playing a Nash equilibrium gives a player a guaranteed reward,

regardless of what the other player does. In particular,

Φ(𝜎𝐴, 𝜎∗𝐷 ) ≥ Φ(𝜎∗𝐴, 𝜎
∗
𝐷 ), ∀(𝜎∗𝐴, 𝜎

∗
𝐷 ) ∈ N , ∀𝜎𝐴 ∈ S𝐴

We aim to obtain a computationally efficient algorithm to com-

pute a Nash equilibrium for the above adversarial game. While

such quadratic Minimax problems are classic and many algorithms

are in principle available, including a well-known reduction to a

linear programming problem [30], the challenge is dealing with

the size of the defender’s strategy space. Even for target sets with

bounded sizes, the set of walks P and the set of prefixes will grow

exponentially in the number of nodes 𝑛. In some cases, the set of

prefix cuts might have a hyper-exponential size, and it is challeng-

ing to operationalize it. Our approach is to use a classical learning

technique, the fictitious play algorithm [33], based on an alternate,

iterative computation of best response strategies by the two players.

We will show that computing the best responses for the attacker is

relatively simple while, for the defender, it is equivalent to solving

an optimal stopping time problem [7]. This can be done by applying

a backward induction method that leads to an optimal prefix cut

without requiring a general characterization of all prefix cuts.

4.3 The Analysis of an Example
We now analyze a simple example for which Nash equilibria can

be computed analytically.

First, we restrict the defender’s strategies; in particular, we say

that a prefix cut C1 is minimal if we cannot find another prefix

cut C2 and a bijection 𝜃 : C1 → C2 such that 𝜃 (𝑐) is a prefix of

𝑐 for every 𝑐 ∈ C1. In adddition, given a prefix cut C ⊆ LP , a
T -estimator 𝑇 : C → T is called natural if, for any 𝛼 ∈ C such

that T (𝛼) = { ¯𝑑}, it holds that 𝑇 (𝛼) = ¯𝑑 . The defender has no

advantage in using strategies (C,𝑇 ) such that C is not minimal and

𝑇 is not natural. In game theory, such strategies are called weakly
dominated, which means that we can always find another strategy

(C′,𝑇 ′) such that Φ(𝜎𝐴, 𝛿 (C,𝑇 ) ) ≤ Φ(𝜎𝐴, 𝛿 (C
′,𝑇 ′) ) for every 𝜎𝐴 ∈

S𝐴 , with sharp inequality for at least one𝜎𝐴 . While, in general, Nash

equilibria containing weakly dominated strategies might exist, it is

always possible to find Nash equilibria that do not contain weakly

dominated strategies. In the analysis of the example, we focus on

the defender’s strategies (C,𝑇 ) with C minimal and𝑇 natural. They

are denoted byM𝐷
𝑢𝑛𝑑

.
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Figure 1: In Fig. (a), a graph G is depicted, with the origin 𝑜 in green
and the targets 𝑑1 and 𝑑2 in red. In Fig. (b) and (c), the subgraphs
colored in purple represent the prefix cuts C1 and C2, respectively.
Fig. (d) visualizes prefix-cut C1 against the strategy chosen by the
attacker. In solid purple, we show the nodes where the defender will
make a decision if it decides to employ prefix cut C1.
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Consider the graph G = (V, E) depicted in Figure 1(a), where

the values of the weight matrix 𝑊 are the numbers indicated

close to the edges, and the origin is in green color. The set of

targets is T = {𝑑1, 𝑑2} (in red color in Figure 1). We assume

that 𝜆(𝑑1) = 𝜆(𝑑2) = 1/2. We consider the family of walks P =

{𝑜𝑆1𝑑1, 𝑜𝑃𝑅1𝑑1, 𝑜𝑆2𝑑2, 𝑜𝑃𝑅2𝑑2}. We consider two different success-

ful protection probabilities 𝑞(𝑥) = 𝑥/4 and 𝑞(𝑥) = min{𝑥/3, 1}. In
the first case, the probability decreases linearly, and its maximum

value of 1 is reached when the attacker is at a distance of 4 from

the targets. The second function has a saturation effect: when the

attacker is at a distance ≥ 3, the protection probability is 1.

The set of the attacker’s deterministic strategies is

M𝐴 = { Q1 = {𝑜𝑆1𝑑1, 𝑜𝑆2𝑑2},Q2 = {𝑜𝑃𝑅1𝑑1, 𝑜𝑆2𝑑2},
Q3 = {𝑜𝑆1𝑑1, 𝑜𝑃𝑅2𝑑2},Q4 = {𝑜𝑃𝑅1𝑑1, 𝑜𝑃𝑅2𝑑2}}

(7)

The set of prefixes is LP = {𝑜, 𝑜𝑆1, 𝑜𝑆1𝑑1, 𝑜𝑆2, 𝑜𝑆2𝑑2, 𝑜𝑃, 𝑜𝑃𝑅1,

𝑜𝑃𝑅1𝑑1, 𝑜𝑃𝑅2, 𝑜𝑃𝑅2𝑑2}. The minimal prefix cuts and corresponding

defender’s deterministic strategies are given by

C𝑜 = {𝑜}, C1 = {𝑜𝑆1, 𝑜𝑆2, 𝑜𝑃}, C2 = {𝑜𝑆1, 𝑜𝑆2, 𝑜𝑃𝑅1, 𝑜𝑃𝑅2}
M𝐷

𝑢𝑛𝑑
= {(C𝑜 ,𝑇 1

𝑜 ), (C𝑜 ,𝑇 2

𝑜 ), (C1,𝑇
1

1
), (C1,𝑇

2

1
), (C2,𝑇2)}

(8)

with𝑇
𝑗
𝑜 (𝑜) = 𝑑 𝑗 ,𝑇

𝑗

1
(𝑜𝑆𝑘 ) = 𝑑𝑘 ,𝑇

𝑗

1
(𝑜𝑃) = 𝑑 𝑗 ,𝑇2 (𝑜𝑆𝑘 ) = 𝑇2 (𝑜𝑃𝑅𝑘 ) =

𝑑𝑘 for 𝑗, 𝑘 = 1, 2. Prefix cuts C1 and C2 are depicted in purple in

Figure 1(b) and (c), respectively.

Finally, we introduce two mixed strategies for the defender,

which correspond to choosing prefix cut, respectively C0 and C1,

with a uniformly random T -estimator. They will be useful in rep-

resenting the Nash equilibria.

𝜎
C0

𝐷
= 1/2

(
𝛿 (C0,𝑇

1

0
) + 𝛿 (C0,𝑇

2

0
)
)
, 𝜎

C1

𝐷
= 1/2

(
𝛿 (C1,𝑇

1

1
) + 𝛿 (C1,𝑇

2

1
)
)
(9)

The following result describes the Nash equilibria of this game

for the two 𝑞 functions introduced above.

Proposition 4. The following results hold:
(i) Assume that 𝑞(𝑥) = 𝑥/4. Then (𝜎𝐷 , 𝜎𝐴) is a Nash equilibrium

if and only if

𝜎𝐷 = (2/3)𝜎C0

𝐷
+ 𝑝1𝜎

C1

𝐷
+ 𝑝2𝛿

(C2,𝑇2) 𝑝1 + 𝑝2 = 1/3

𝜎𝐴 = (2/3)𝛿Q1 + (1/3)𝛿Q4

(ii) Assume that 𝑞(𝑥) = min{𝑥/3, 1}. Then, (𝜎𝐷 , 𝜎𝐴) is a Nash
equilibrium if and only if

𝜎𝐷 = 𝑝1

0
𝛿 (C0,𝑇

1

0
) + 𝑝2

0
𝛿 (C0,𝑇

2

0
) 𝑝1

0
+ 𝑝2

0
= 1

𝜎𝐴 = 𝑞1𝛿
Q1 + 𝑞4𝛿

Q4
0 < 𝑞1 < 1/2 𝑞1 + 𝑞4 = 1

Proposition 4’s proof is in the appendix at GithubLink.

At a Nash equilibrium, the attacker employs a combination of

two strategies: Q1, which favors shorter but less ambiguous walks,

and Q4, which favors longer and more ambiguous walks. In the first

scenario (𝑞(𝑥) = 𝑥/4), the attacker chooses Q1 two-thirds of the

time, and the defender makes a decision when the attacker is at the

origin two-thirds of the time and for the rest uses a combination of

prefix cuts C1 and C2. In contrast, in the second scenario (𝑞(𝑥) =
min{𝑥/3, 1}), the attacker adopts the Q4 strategy at least half the

time, and the defender always makes a decision when the attacker is

at the origin. The saturation effect in the second scenario diminishes

the advantage that the shorter walks in Q1 offer to the attacker in

the first scenario, making them no more favorable than the longer

ones in Q4. Given this, the defender’s best response is to make an

immediate decision when the attacker is still at the origin rather

than applying the prefix cuts C1 and C2 as in the first case.

5 BEST RESPONSES AND NASH EQUILIBRIA
This section offers insights into the characterization and compu-

tation of the deterministic best response sets given in Eqs. (5). We

need to introduce a few preliminary concepts before doing that.

First, we notice that the pair composed of the probability distri-

bution 𝜆 on T and an attacker’s strategy 𝜎𝐴 ∈ S𝐴 gives rise to a

probability distribution 𝜇𝜎𝐴 on P as follows

𝜇𝜎𝐴 (𝛾) = 𝜆(𝐸 (𝛾))
∑︁

Q : Q∋𝛾
𝜎𝐴 (Q), 𝛾 ∈ P (10)

In other words, the probability that the attackerwill choosewalk𝛾 is

given by the probability of selecting target 𝐸 (𝛾) and the probability
of selecting a strategy Q containing 𝛾 .

Any probability distribution 𝜇 on P can be extended to all

prefixes via saturation: given a prefix 𝛼 ∈ LP , we put 𝜇 (𝛼) =∑
𝛾 ∈P𝛼

𝜇 (𝛾). Below, we will need to consider various conditioned

versions of such distributions, and hence, we introduce the follow-

ing notation. Assume 𝜇 is a probability distribution on P, then

• Given a target 𝑑 , 𝛾 ∈ P(𝑑) and 𝛼 ∈ LP(𝑑) , we put

𝜇 |𝑑 (𝛾) = 𝜇 (𝛾)/𝜇 (P(𝑑)), 𝜇 |𝑑 (𝛼) = 𝜇 (𝛼)/𝜇 (P(𝑑))

• Given a prefix 𝛼 ∈ LP , 𝛾 ∈ P+
𝛼 and a target 𝑑 , we define the

conditional probabilities on P+
𝛼 as

𝜇 |𝛼 (𝛾) = 𝜇 (𝛼⊥𝛾)/𝜇 (𝛼), 𝜇 |𝑑,𝛼 (𝛾) = 𝜇 |𝑑 (𝛼⊥𝛾)/𝜇 |𝑑 (𝛼)

• Given a prefix 𝛼 ∈ LP , we define the a-posteriori probability
on targets by setting 𝜆

|𝛼
𝜇 (𝑑) = ∑

𝛾 ∈P𝛼 (𝑑) 𝜇
|𝛼 (𝛾).

We also associate a function 𝜌𝜎𝐷 on LP ×T to every defender’s

strategy 𝜎𝐷 ∈ S𝐷 defined as follows

𝜌𝜎𝐷 (𝛼,𝑑) =
∑︁

C ∋ 𝛼

𝑇 (𝛼) = 𝑑

𝜎𝐷 (C,𝑇 ) (11)

Given a walk 𝛾 ∈ P, for every 𝛼 that is a prefix of 𝛾 and for every

target 𝑑 ∈ T , the term 𝜌𝜎𝐷 (𝛼,𝑑) represents the probability that, if

the attacker uses 𝛾 , the defender equipped with strategy 𝜎𝐷 will

make a decision when the attacker has reached 𝛼 and will choose

to defend target 𝑑 .

5.1 Deterministic Best Responses
Finding deterministic best response strategies for the attacker is

relatively straightforward from a computational point of view be-

cause the attacker’s minimization problem decouples along the set

of trajectories to the targets. Formally, we have the following result.

Proposition 5. Given a defender’s strategy 𝜎𝐷 ∈ S𝐷 , a deter-
ministic strategy Q = {𝛾𝑑 ∈ P(𝑑) | 𝑑 ∈ T } is in B𝑑𝑒𝑡

𝐴
(𝜎𝐷 ) if and

only if, for every 𝑑 ∈ T , it holds that

𝛾𝑑 ∈ argmin

𝛾 ∈P(𝑑)

𝑙 (𝛾 )∑︁
𝑘=0

𝜌𝜎𝐷 (𝛾 (𝑘) , 𝑑)𝑞(𝑤 (𝛾 (𝑘+) )) (12)
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Proof From Eqs. (2), (3) and (11), the reward can be rewritten as

follows:

Φ(𝛿Q , 𝜎𝐷 ) =
∑︁
𝑑∈T

𝜆(𝑑)
∑︁

(C,𝑇 ) ∈M𝐷

𝜎𝐷 (C,𝑇 )𝑞 (C,𝑇 )𝛾𝑑

=
∑︁
𝑑∈T

𝜆(𝑑)
𝑙 (𝛾𝑑 )∑︁
𝑘=0

∑︁
C ∋ 𝛾 (𝑘 )

𝑇 (𝛼) = 𝑑

𝜎𝐷 (C,𝑇 )𝑞(𝑤 (𝛾 (𝑘+) ))

=
∑︁
𝑑∈T

𝜆(𝑑)
𝑙 (𝛾𝑑 )∑︁
𝑘=0

𝜌𝜎𝐷 (𝛾 (𝑘) , 𝑑)𝑞(𝑤 (𝛾 (𝑘+) ))

(13)

This yields the thesis.

We now focus on the computation of the deterministic best

responses for the defender. This is a more complex problem because

of various reasons. First, the family of prefix cuts suffers from an

exponential blow-up in the length of walks in P even when we

limit the cardinality of P. Second, the prefix cuts are composed

of words that can simultaneously be prefixes of more than one

walk used by the attacker, and thus, it is not straightforward to

show how the optimization problem in Eqs. (5) can be geometrically

decoupled. Our main result shows that the optimization problem

in the pair (C,𝑇 ) can indeed be decoupled into a Maximum-a-
Posteriori (MAP) problem to determine 𝑇 and an optimal stopping
problem to determine C.

Our first goal is to rewrite the performance function in Eq. (3)

in an equivalent fashion but adapted to the defender’s decision

mechanism. This is the content of the next result.

Proposition 6. Given an attacker’s strategy 𝜎𝐴 ∈ S𝐴 and a
defender’s deterministic strategy (C,𝑇 ) ∈ M𝐷 , we have that

Φ(𝜎𝐴, 𝛿 (C,𝑇 ) ) =
∑︁

𝛼 ∈LP

𝜇𝜎𝐴 (𝛼)1{𝛼 ∈C}
∑︁
𝑑∈T

1{𝑑=𝑇 (𝛼) }𝑞(𝛼,𝑑) (14)

where,

𝑞(𝛼,𝑑) = 𝜆
|𝛼
𝜎𝐴 (𝑑)

∑︁
𝛾 ∈P+

𝛼 (𝑑)
𝜇
|𝑑,𝛼
𝜎𝐴 (𝛾)𝑞 (𝑤 (𝛾)) , 𝜆

|𝛼
𝜎𝐴 = 𝜆

|𝛼
𝜇𝜎𝐴

(15)

Proof We first rewrite Eq. (3) using Eq. (2) and the definition of

𝜇𝜎𝐴 in Eq. (10) as

Φ(𝜎𝐴, 𝛿 (C,𝑇 ) ) =
∑︁
𝛾 ∈P

𝜇𝜎𝐴 (𝛾)𝑞
(C,𝑇 )
𝛾 (16)

We now parameterize walks in P by first fixing a prefix, then

a target, and finally a suffix compatible with that target. First

note that, if 𝛼 ∈ LP and 𝛾 ∈ P+
𝛼 (𝑑), it holds that 𝜇𝜎𝐴 (𝛼⊥𝛾) =

𝜇𝜎𝐴 (𝛼)𝜆
|𝛼
𝜎𝐴 (𝑑)𝜇

|𝑑,𝛼
𝜎𝐴 (𝛾). Using this and Eq. (1), we then compute as

follows

Φ(𝜎𝐴, 𝛿 (C,𝑇 ) ) =
∑

𝛼 ∈LP

∑
𝑑∈T

∑
𝛾 ∈P+

𝛼 (𝑑)
(

𝜇𝜎𝐴 (𝛼)𝜆
|𝛼
𝜎𝐴 (𝑑)𝜇

|𝑑,𝛼
𝜎𝐴 (𝛾)1{𝛼 ∈C}1{𝑑=𝑇 (𝛼) } 𝑞(𝑤 (𝛾)))

(17)

Reassembling the terms, we get the thesis.

The term 𝑞(𝛼,𝑑), defined in Eq. (15), represents the expected

reward conditioned to the fact that prefix 𝛼 has been observed

and that the defender has picked target 𝑑 . It follows from Eq. (14)

that when the defender follows a best response strategy, it will

necessarily select targets that maximize the quantity 𝑞(𝛼,𝑑). Hence,
we have the following result.

Corollary 7. Given an attacker’s strategy 𝜎𝐴 ∈ S𝐴 , a defender’s
deterministic strategy (C∗,𝑇 ∗) is in B𝑑𝑒𝑡

𝐷
(𝜎𝐴) if and only if

(i) 𝑇 ∗ is a Maximum-a-Posteriori (MAP) estimator, namely,

𝑇 ∗ (𝛼) ∈ argmax

𝑑′∈T
𝑞(𝛼,𝑑 ′) ∀𝛼 ∈ LP (18)

(ii) Let us put 𝑞(𝛼) = max𝑑′∈T 𝑞(𝛼,𝑑 ′), then we have

C∗ ∈ argmax

C 𝑐𝑢𝑡

∑︁
𝛼 ∈C

𝜇𝜎𝐴 (𝛼)𝑞(𝛼) (19)

While the maximum problem in Eq. (18) is relatively easy to solve

as the target set T has small cardinality, the maximum problem in

Eq. (19) is calculated over the set of prefix cuts, which, based on the

graph, can grow exponentially big in the number of graph nodes.

The maximum problem in Ex. (19) can be interpreted as an op-
timal stopping time problem [7], for which the solution can be de-

scribed through a backward induction scheme as walks in P have

finite length. We first embed our problem into a family of related

maximization problems, replacing the origin 𝑜 with any possible

prefix 𝑠 ∈ LP and assuming that the attacker’s motion starts from

that point. Specifically, given 𝑠 ∈ LP such that 𝜇𝜎𝐴 (𝑠) > 0, we

consider the set of walks P+
𝑠 that are the possible continuations

of prefix 𝑠 in P equipped with the probability measure 𝜇
|𝑠
𝜎𝐴 on P+

𝑠

and define

Φ∗ (𝑠) = max

C

∑︁
𝛼 ∈C

𝜇
|𝑠
𝜎𝐴 (𝛼)𝑞(𝛼)

where C is assumed to vary among all possible prefix cuts relative to

P+
𝑠 . In other words, Φ∗ (𝑠) is the maximum reward the defender can

obtain when it starts observing the attacker’s motion after the prefix

𝑠 and assumes the attacker chooses trajectories according to 𝜇
|𝑠
𝜎𝐴 ,

which is the original distribution 𝜇 conditioned to having followed

prefix 𝑠 . In particular, Φ∗ (𝑜) coincides with the maximum reward

when the motion is observed from the origin. The values Φ∗ (𝑠) can
be computed through a recursive algorithm on a Direct Acyclic

Graph (DAG) whose nodes are prefixes in LP . More precisely, we

consider the graph H = (S, F ), where S = {𝑠 ∈ LP | 𝜇𝜎𝐴 (𝑠) > 0}
and where F = {(𝑠, 𝑠 ′) ∈ S × S | ∃𝑣 ∈ V with 𝑠 ′ = 𝑠⊥(𝑣)}. The
graphH is a DAG rooted in (𝑜) and having the maximal prefixes,

i.e. the original walks in P, as leaves. We now consider a transition

matrix Λ adapted to H . If 𝑠, 𝑠 ′ ∈ S, we put

Λ𝑠𝑠′ =

{
𝜇𝜎𝐴 (𝑠′)
𝜇𝜎𝐴 (𝑠) if (𝑠, 𝑠 ′) ∈ F

0 otherwise

(20)

We have the following result.

Theorem 8. Facts (1), (2), and (3) below hold.
(1) The values Φ∗ (𝑠), as 𝑠 varies in S, satisfy the following back-

ward induction relation:
Φ∗ (𝑠) = max

{
𝑞(𝑠), ∑

𝑠′∈LP
Λ𝑠𝑠′Φ

∗ (𝑠 ′)
}

∀𝑠 ∈ S \ P

Φ∗ (𝑠) = 𝑞(𝑠) = 𝑞(0) ∀𝑠 ∈ PS
(21)

(2) The set C∗ of minimal prefixes 𝑠 for which Φ∗ (𝑠) = 𝑞(𝑠) is a
prefix cut of P.
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(3) Let 𝑇 ∗
: C∗ → T be any deterministic MAP estimator (i.e., it

satisfies condition (18)). We have that (C∗,𝑇 ∗) ∈ B𝑑𝑒𝑡
𝐷

(𝜇𝜎𝐴 ).

Proof Statement (1). For simplicity, we put 𝜇 = 𝜇𝜎𝐴 . We denote

with K(𝑠) the set of prefix cuts relative to the set of walks P+
𝑠 that

are continuations of prefix 𝑠 . We notice that {𝑠} ∈ K(𝑠) and put

K> (𝑠) = K(𝑠) \ {{𝑠}}. For every 𝑠 ∈ S and C ∈ K(𝑠), we define
𝐹 (𝑠, C) = ∑

𝛼 ∈C
𝜇 |𝑠𝛼)𝑞(𝑠⊥𝛼). If C ∈ K> (𝑠), we can represent

C =
⋃

𝑠′:Λ𝑠𝑠′>0

C (𝑠′)

for some C (𝑠′) ∈ K(𝑠 ′) so that

𝐹 (𝑠, C) =
∑

𝑠′∈S
Λ𝑠𝑠′

∑
𝛼 ∈LP+

𝑠′

𝜇 |𝑠
′ (𝛼)𝑞(𝑠 ′⊥𝛼)1{𝛼 ∈C (𝑠′) }

=
∑

𝑠′∈S
Λ𝑠𝑠′𝐹 (𝑠, C (𝑠′) )

(22)

where we use the fact that, by definition,

LP+
𝑠
= {𝑠}

⋃
𝑠′:Λ𝑠𝑠′>0

𝑠 ′⊥LP+
𝑠′

and, if 𝑠 ′ ∈ S is such that 𝑠 ′ = 𝑠⊥𝑣 and 𝛼 ∈ LP+
𝑠′
,

𝜇 |𝑠 (𝑣⊥𝛼) = 𝜇 (𝑠⊥𝑣⊥𝛼)
𝜇 (𝑠) =

𝜇 (𝑠 ′⊥𝛼)
𝜇 (𝑠 ′)

𝜇 (𝑠 ′)
𝜇 (𝑠) = 𝜇 |𝑠

′
(𝛼)Λ𝑠𝑠′

Eq. (22) and the fact that 𝐹 (𝑠, {𝑠}) = 𝑞(𝑠) yield

Φ∗ (𝑠) = max

C∈K(𝑠)
= max{𝑞(𝑠),

∑︁
𝑠′

Λ𝑠𝑠′ max

C∈K(𝑠′)
𝐹 (𝑠, C (𝑠′) )

which in turn yields the top relation in Eq. (21). Notice that if 𝑠 ∈ P,

P+
𝑠 = {𝜖} and the only prefix cut in K(𝑠) is C = {𝑠}. This yields

Φ∗ (𝑠) = 𝑞(𝑠) = 𝑞(0). This completes the proof of statement (1).

Statement (2). Consider the set C∗
as defined in statement (2).

Given any 𝛾 ∈ P, there can be at most one prefix of 𝛾 in C∗
by the

minimality assumption. Since the set of prefixes 𝑠 of 𝛾 for which

Φ∗ (𝑠) = 𝑞(𝑠) is non-empty, as by construction 𝑠 = 𝛾 is one of them,

there must exist a minimal one. This proves the statement.

Statement (3). Given Corollary (7), we only need to prove that

the constructed C∗
is optimal, meaning that Φ∗ (𝑜) = 𝐹 (𝑜, C∗). We

first notice that, if C is any prefix cut and 𝑠 ∈ C, if we pick any

¯C𝑠 ∈ argmax

C∈K(𝑠)
𝐹 (𝑠, C)

and denote C (𝑠) = (C \ {𝑠}) ∪ ¯C𝑠 , we have that

𝐹 (𝑜, C (𝑠) ) − 𝐹 (𝑜, C) = 𝜇 (𝑠) [Φ∗ (𝑠) − 𝑞(𝑠)] ≥ 0 (23)

This implies that if C is optimal, i.e. Φ∗ (𝑜) = 𝐹 (𝑜, C), necessarily it

must be that Φ∗ (𝑠) = 𝑞(𝑠). Suppose now that C∗
is not optimal and

let
¯C be an optimal prefix cut for which |C∗ \ ¯C| > 0 is as small

as possible. Let 𝑠 ∈ C∗ \ ¯C and notice that, given the way C∗
is

defined, no proper prefix of 𝑠 can be in
¯C, hence the only possibility

is that
¯C contains a subset of prefixes

¯C (𝑠)
that is in K>𝑠 . Since

Φ∗ (𝑠) = 𝑞(𝑠), the computation in Eq. (23) implies that, if we replace

¯C (𝑠)
with {𝑠} inside ¯C, we obtain another optimal prefix cut. This

contradicts how
¯C is chosen and completes the proof.

Theorem 8 allows efficient computation of the defender’s best

responses based on a backward induction algorithm on the set of

prefixes LP without the need for an a priori explicit characteriza-

tion of prefix cuts. As discussed in the next subsection, the theorem

lays the foundation for employing the fictitious play algorithm.

5.2 Fictitious Play Learning Scheme
Fictitious play [33] is a well-known recursive learning scheme used

to obtain, asymptotically, a Nash equilibrium of a 2-player 0-sum

game. It offers the flexibility to stop at any time with bounded ap-

proximations. For large problems (e.g., 50×50 grids), fictitious play
is often faster and simpler than alternatives like the simplex method,

providing sufficiently accurate solutions in less time. We employ

this algorithm because it does not need an explicit description of

the strategy space of the two players; it only relies on computing

the best responses.

Every player remembers the distribution of actions played by the

opponent in the past and, at every time step, selects a best response

against it. More formally, first, initial conditions are set:

(1) Choose arbitrarily Q1 ∈ M𝐴
and (C1,𝑇1) ∈ M𝐷

.

(2) Put 𝜎𝐴 (1) = 𝛿Q1
and 𝜎𝐷 (1) = 𝛿 (C1,𝑇1)

.

Then, the following recursive scheme is implemented for 𝑡 ≥ 2:

(3) Pick (C𝑡 ,𝑇𝑡 ) ∈ B𝑑𝑒𝑡
𝐷

(𝜎𝐴 (𝑡 − 1)) and Q𝑡 ∈ B𝑑𝑒𝑡
𝐴

(𝜎𝐷 (𝑡 − 1))
as outlined in Proposition 5 and Theorem 8.

(4) Put

𝜎𝐴 (𝑡) =
(
1 − 1

𝑡

)
𝜎𝐴 (𝑡 − 1) + 1

𝑡 𝛿
Q𝑡

𝜎𝐷 (𝑡) =
(
1 − 1

𝑡

)
𝜎𝐷 (𝑡 − 1) + 1

𝑡 𝛿
(C𝑡 ,𝑇𝑡 )

We have the following classical result, proven in [33].

Theorem 9. For 𝑡 → +∞, the sequence (𝜎𝐴 (𝑡), 𝜎𝐷 (𝑡)) converges
to a Nash equilibrium of the game.

Theorem 9 ensures that the fictitious play algorithm outlined

above always converges to a Nash equilibrium of the game. We

notice that the algorithm’s iterative step consists of the computation

of a deterministic best response action for both players. As this can

be accomplished through the algorithms developed in the previous

subsection, we have reached a computational scheme for our min-

max problems. In the next section, we will analyze, through a set

of simulations, the performance of this method for our game.

6 EXPERIMENTS
We conducted experiments on two graphs. The first is a 30x30 grid

graph, with connectivity degree 4 excluding boundary nodes. The

second is the Shanghai city map, with degree 8, obtained from the

Moving-AI 2D pathfinding benchmarks [39], representing a city

fragment as a 256x256 grid with obstacles. All edges have unit cost.

These are standard benchmarks used in AI and robotics and are

considerably larger than those used in related work (e.g., [2]).

We consider an increasing number of targets, |T | = 2, 3, 4, 5.

Origins and targets are selected randomly and uniformly for each

problem. In each scenario, we generate a set of walks P containing

up to a thousand walks per target using the Yen algorithm [43].

We use a protection success probability 𝑞(𝑥) = min(1.0, 𝑥𝑡/𝑀),
where𝑀 = max𝛾 ∈P𝑊 (𝛾) is the cost of the longest walk considered
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(a) 30x30 Orthogonal Grid

(b) 256x256 Shanghai Map

Figure 2: Average reward Φ(𝜎𝐴, 𝜎𝐷 ) against number of targets ( |T | =
2, 3, 4, 5) for four values of the saturation parameter (𝑡 = 1, 2, 3, 4).

(a) 30x30 Orthogonal Grid (b) 256x256 Shanghai Map

Figure 3: Computational cost for the FP algorithm.

and 𝑡 is a parameter that takes integer values from 1 to 4. When

𝑡 = 1, 𝑞(𝑥) is proportional to the attacker’s distance from the

target. As 𝑡 increases, the ambiguity of the walks chosen by the

attacker influences the defender’s strategy more than their length,

as illustrated in the example in Section 4.3.

We ran two hundred experiments for each of the two graphs and

each number of targets |T | = 2, 3, 4, 5. We performed ten thousand

iterations per problem for the first graph and a thousand iterations

for the second one. We used a server equipped with Intel E5-2583

cores at 2.10 GHz, with a memory cap of 4 GB per process and no

time limit. See GithubLink for code and supplementary data .

We compare the reward obtained by the defender via the Fic-

titious Play algorithm (denoted FP) against the reward it would

get when using one of the following two suboptimal strategies, ex-

plained below: (1) a baseline strategy (BL), and (2) a perimeter-based

strategy (PB). StrategyBL prescribes that the defendermakes a deci-

sion when the target is at the origin by choosing the furthest target

possible. This corresponds to the strategy illustrated in Remark 2:

(C𝑜 ,𝑇
¯𝑑
𝑜 ) where ¯𝑑 = argmax𝑑 𝐷 (𝑜, 𝑑). Strategy PB instead is defined

as follows. For each target 𝑑 , we consider the neighborhood consist-

ing of all vertices 𝑣 whose distance from 𝑑 is not larger than half the

distance from 𝑜 to 𝑑 , namely N𝑑 = {𝑣 ∈ V |𝐷 (𝑣, 𝑑) ≤ 𝐷 (𝑜, 𝑑)/2}.
The defender’s strategy is to make a decision the first time the

attacker enters one of such neighborhoods by choosing the corre-

sponding target. If such neighborhoods intersect and the attacker

simultaneously enters multiple of them, the selection among them

is made uniformly at random. We cannot directly compare our

technique against traditional GR methods, including PPGR ones,

because the two frameworks are fundamentally different.

Figure 2 displays plots of the average defender’s rewardΦ against

the number of targets for the two graphs and the four values of

the saturation parameter 𝑡 . Our algorithm FP is compared with the

other two, BL and PB. Note that the BL plot does not indicate 𝑡 as, by

construction, it does not depend on this parameter. The comparison

shows the significant suboptimality of the two strategies, BL and

PB, with respect to our solution, particularly when the number of

targets increases. As expected, the reward grows monotonically

with 𝑡 because, as we increase 𝑡 , the protection success probability

does not decrease. Typically, the reward decreases as the number

of targets increases. Interestingly, for the Shanghai map, increasing

the number of targets from 4 to 5 leads to a slight increase in the

defender’s reward for both the FP and PB strategies. This is related

to the topology of the Shanghai map and the obstacle positions.

Finally, Figure 3 shows the average runtime of our technique

per problem. Even when keeping the number of walks per target

constant, larger grids are computationally more demanding. This is

due to the need to calculate more and longer prefixes. In addition,

the overall runtime generally increases linearly with the number

of targets for the obstacle-free 30x30 grids and, to a lesser extent,

for the Shanghai map.

7 CONCLUSION AND FUTUREWORK
We consider security scenarios in which a malicious attacker enters

an environment to attack one of a set of vulnerable targets that a

defender wishes to protect. We model the decision-making of the

two players as a zero-sum strategic game. The computation of Nash

equilibria is complex in this setting because of the size of the agents’

action sets. We offer a combinatorial formulation of the players’

best response sets and use the classical fictitious play learning

scheme to achieve a Nash equilibrium asymptotically. We validate

our methodology through a series of experiments, confirming that

our approach outperforms other less dynamic strategies in terms

of effectiveness.

We aim to analyze several directions for extending our model

in the future. Although, in our approach, all targets are equally

important to the defender, we could easily expand our techniques

to accommodate heterogeneity. A more challenging extension is to

allow the defender to simultaneously defend two or more targets,

making the protection success probability depend on the set of

chosen targets. Finally, it would be interesting to consider scenarios

where the defender only has partial information on the attacker’s

movements.
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