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1 INTRODUCTION
Deep Reinforcement Learning (RL) has achieved notable success
across a diverse range of fields [1, 2, 16]. However, applying RL
to complex domains faces a significant challenge due to sample
inefficiency [11]. This issue is further aggravated in domains with
sparse rewards. Another challenge is poor generalization: minor
variations in object properties within a similar target domain can
cause the trained policy to fail. [19, 22].

Symbolic models have long been used to aid RL generalization.
Prior work includes Relational RL [6–8]. More recent work has in-
tegrated symbolic models with Deep RL, including Inductive Logic
Programming [12], high-level programs [4, 18, 21, 23], and symbolic
planning [9, 13, 20]. The drawback of most prior work integrating
planning and RL is that they combine high-level meta-controllers
and symbolic planners to select appropriate subgoals, adding com-
plexity to the high-level process and increasing the training time.
Additionally, the mapping between a symbolic state and a low-level
state must be manually defined, requiring additional human effort.
Moreover, prior work [13, 20] focuses on sample efficiency without
accounting for knowledge transfer between different tasks, which
we consider a critical capability.

To mitigate these gaps in literature, we introduce Plan-guided
Exploration and generAlization for Reinforcement Learning (PEARL).
PEARL is a two-level structure incorporating a symbolic planner as
the meta-controller to guide the low-level Deep RL agent to learn
long-horizon tasks. Since the subgoals are directly derived from
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the symbolic plan, they are ordered and there is no need to use
a separate meta-controller to choose the subgoals (in contrast to
prior work). The low-level RL agent learns to achieve the subgoals
sequentially, as proposed by the planner, using a single network.
As a result, our proposed method is more efficient than prior work.
Furthermore, we automatically learn the mapping between the state
and action representations in the two levels using an autoencoder,
reducing human effort. The symbolic representation also allows
us to do zero-shot transfer and knowledge reuse in different tasks
with small task variations. Our evaluation of PEARL on well known
sparse reward Montezuma’s Revenge domain outperforms both
hierarchical and symbolic-planning-based baselines in terms of
sample efficiency and generalization. Overall, our proposed frame-
work is general and can be used with any off-the-shelf RL algorithm
and symbolic planner for improved training and generalization in
complex sparse reward environments.

2 PEARL
We define PEARL with a tuple containing the elements required to
represent 1) symbolic states and actions (as defined in a STRIPS [9]
planning problem), 2) an RL agent as defined using an MDP, 3) an
intrinsic reward to guide the RL agent achieve a subtask, and 4) a
set of subgoals as identified by the planner. The final goal of the RL
agent is to learn a policy that maximizes the expected discounted
accumulated reward. Prior work uses human experts to define the
state-action space mapping between the symbolic planner and low-
level controller [5, 13, 20]. We propose a technique to automatically
learn the state-action mapping between the planner and RL agents
by using an autoencoder (i.e., an encoder and a decoder). The two
steps for training PEARL are:
Pre-training. In pre-training, the encoder takes a low-level state 𝑠
as input and outputs a low-dimensional representation of the corre-
sponding symbolic state (𝑠). The decoder takes this representation
as input and outputs a reconstructed low-level state which is used
to train the low-level RL policy. To pre-train the autoencoder, we
generate a dataset (500𝐾 images) from the environment and use a
proposition set, which is a collection of necessary propositions in
symbolic states to ensure that the learned embedding accurately
represents the symbolic state. Beyond the standard reconstruction
loss—measured as the distance between the input state 𝑠 and the
reconstructed state 𝑠 , we introduce a supervision signal derived
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(a) Average return
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(b) Object color change
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(c) Object location change (shift left)

Figure 1: Results on Montezuma’s Revenge: (a) average return trained on Room 2 and Room 1 (left); (b) average test success rate
of achieving four subgoals in Room 2; (c) average test success rate of achieving four subgoals in Room 2.

from the proposition set. The autoencoder is then trained by jointly
minimizing both the reconstruction loss and the distance between
the learnt embedding and the supervision signal.
Online Learning.After the pre-training stage, PEARLmoves to the
online training stage. The initial low-level state 𝑠 of the environment
is fed into the encoder to produce a latent representation of the
symbolic state. The planner generates a plan using the symbolic
state representation. The effects of the first symbolic action in the
plan (representing a symbolic state) is mapped to the corresponding
low-level subgoal by passing it to the decoder. Lastly, the low-level
agent learns the policy to reach the subgoal from the current low-
level state and the encoded representation of the symbolic goal state.
The agent receives an intrinsic reward if it achieves the subgoal.
The autoencoder is also fine-tuned for stable training. The new
initial state for the agent, defined by the state in which the current
subgoal condition is met, is transformed into the symbolic state
space and used by the symbolic planner to generate a new plan (if
necessary) for the final goal.

3 EXPERIMENTAL EVALUATIONS
We present our results on the first two rooms in Montezuma’s
Revenge [3] to test the effectiveness of our method, compared
with 2 baselines: (1) HDQN, a hierarchical deep RL method using
human-designed subgoals [14]; and (2) SORL, a state-of-the-art
algorithm that uses a three-level hierarchy consisting of planner,
meta-controller, and controller [13]. We hand-coded Montezuma’s
revenge in PDDL, encoding each room as a different problemwithin
the same domain and making sure to use general predicates when-
ever possible to facilitate generalization. We used the Fast Down-
ward planning system [10] to generate the subgoals.

Figure 1 (a) shows the training performance of PEARL compared
with two baselines on the first two rooms (Room 2, Room 1 (left), and
Room 3 (right). We can see that PEARL receives an average reward
of 800 in roughly 2 × 104 episodes, outperforming the baseline
approaches. This validates our hypothesis that removing the meta-
controller improves the training efficiency, as PEARL takes into
account the ordered subgoals output by the planner. In summary,
PEARL effectively learns faster across multiple tasks.

Figure 1 (b) shows the test results (green line) compared to the
training results (orange line), demonstrating PEARL’s policies suc-
ceed in the new environments. We observe that with small changes
between the test environment and the training environment, PEARL
immediately generalizes to the new environment without extra

training. Even when the differences become larger, PEARL can still
quickly achieve a success rate of 1(100%) with a few-shot adjust-
ment. In summary, PEARL can effectively generalize to new tasks
with the same logic, requiring only zero- or few-shot learning.

Finally, we test PEARL’s knowledge reusability by fine-tuning its
pre-trained policy, learned in the training environment, to adapt to
new environments with semantic modifications, such as shifting an
object’s location to the left. When the object’s location changes, the
low-level policy for reaching the object might no longer work for
the new task, but other knowledge from the original policy could
still be reused. Figure 1 (c) shows that the fine-tuned policy (green
line) achieves an average success rate of 1(100%) for each subgoal
faster than PEARL learning from scratch (orange line). In summary,
PEARL can effectively reuse knowledge from pre-trained tasks to
accelerate training on new tasks with different low-level subgoals.

4 CONCLUSION AND FUTUREWORK
This paper presents a first step to show the advantages of com-
bining symbolic planning with deep RL to improve learning and
generalization. The experiments illustrate how PEARL requires less
training than prior work, and how PEARL is also effective in gen-
eralization in domains that contain the same domain definitions as
the training environment with slight variations in the environment.
Additionally, as the Deep RL agent interacts with the environment
to transition between pre-conditions and post-conditions of actions,
PEARL could help identify incorrectly defined symbolic actions,
complementing work that uses large language models to generate
PDDL domains [15, 17].
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