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ABSTRACT
In addressing the multi-agent adversarial coordination problem,
existing multi-agent reinforcement learning algorithms primarily
rely on team-based rewards to guide agent policy updates, often
neglecting the utilization of inter-agent relationships, which limits
their performance. Drawing inspiration from human tactics, we
introduce the concept of tacit behavior to improve the efficiency of
multi-agent reinforcement learning by refining the learning pro-
cess. This paper presents a novel two-phase framework for learning
Pre-trained Tacit Behavior for efficient multi-agent adversarial Co-
ordination (PTBC), comprising a tacit pre-training phase and a
centralized adversarial training phase. We demonstrate the superi-
ority of our method through comparisons with several algorithms,
each of which possesses distinct strengths.
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1 INTRODUCTION
The multi-agent adversarial coordination problem presents signif-
icant challenges, including complex behaviors, a non-stationary
environment, and imperfect communication[10, 13]. Multi-agent
reinforcement learning (MARL)[1, 6] presents a promising solution
by uncovering latent cooperative abilities among agents. Several
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studies have explored integrating real-world problem-solving in-
sights into the MARL framework to improve policy optimization[14,
16, 17]. However, the expansive policy space in multi-agent settings
leads to inefficient training when relying solely on team-based re-
wards for policy updates[7, 12]. MARL requires the incorporation
of additional information to enhance performance[4, 15].

To address the above challenges, we introduce the spatial rela-
tionships among agents and their variant trend, as these serve as
intuitive and essential embodiment of strategy in most multi-agent
adversarial coordination problems. Based on this insight, we expect
our agents collectively grasp cognition during the adversarial coor-
dination tasks, which we define as "tacit". In this paper, cognition
is represented by guiding formulas that integrate the spatial rela-
tionships among our agents and their variant trends. Moreover, we
propose that agents rely on the tacit to guide each agent in generat-
ing individual actions, enabling joint actions to form advantageous
spatial relationships that contribute to team task. We define each
agent’s corresponding behavior as "tacit behavior" and an agent’s
spatial position relative to the global state as its "pattern". In or-
der to enable multi-agent tacit behavior and refine coordination
learning, we propose a novel framework called Pre-trained Tacit
Behavior for efficient multi-agent Coordination (PTBC).

2 METHODS
The PTBC framework emphasizes the formation of advantageous
spatial relationships to assist agents defeat their enemies[3, 9, 11].
The PTBC enables the multi-agent system to learn these behaviors,
facilitating the local aggregation of more agents than the opponents.
As shown in Figure 1, the framework utilizes a two-phase training
process: tacit pre-training based on decentralized learning[18], fol-
lowed by adversarial training using the centralized training and
decentralized execution (CTDE) paradigm[2, 5, 8]. The tacit pre-
training phase includes two mechanisms: the pattern mechanism
and the tacit mechanism.

2.1 Pattern Mechanism
Pattern mechanism is divided into two parts: pattern classification
and pattern membership calculation. Pattern classification part
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Figure 1: The overview of the PTBC framework.

takes the global state 𝑠𝑡 and local observation 𝑜𝑡
𝑖
as inputs to classify

the agent’s "pattern", which is defined as the relative position
of the agent with respect to allied agents at a given time. Each
pattern corresponds to a specific tacit behavior, but agents within
the same pattern require different levels of guidance to learn the
corresponding tacit behavior. To capture these variations, we define
"pattern membership", which is calculated based on 𝑠𝑡 and 𝑜𝑡

𝑖
.

At each timestep, we classify the pattern towhich agent 𝑖 belongs,
denoted as 𝑝𝑖 . These patterns are classified along two dimensions:
the spatial relationships among all agents in the global state and
the spatial relationship between agent 𝑖 and other agents within its
local observation. The pattern membership of agent 𝑖 , denoted as
𝜆𝑖 , is calculated based on this classification and quantifies its spatial
relationship with other agents.

Pattern membership quantifies spatial relationships and serves
as a parameter to regulate reward magnitude, introducing the tacit
mechanism for dynamic adjustment of tacit guidance, thereby en-
abling more targeted coordination.

2.2 Tacit Mechanism
The tacit mechanism takes each agent’s assigned pattern, corre-
sponding membership, and local action-observation history as in-
puts to construct rewards that guide the agent in learning appropri-
ate tacit behavior. Given the significant differences in observation
spaces among agents in distinct patterns, applying uniform tacit
behavior guidance leads to inefficient learning and a lack of speci-
ficity. To address this, the tacit mechanism designs targeted reward
functions tailored to each pattern, offering more effective learning
guidance based on agents’ varying perceptual and surrounding
situations. Tacit guidance is designed from two perspectives: the
agent’s ability to perceive allied agents and the relationships among
agents within the global state. The tacit mechanism enables agent to
efficiently master tacit behaviors associated with distinct patterns.

2.3 Overall Training Framework
In the PTBC framework, the effectiveness of tacit pre-training di-
rectly influences the achievement of spatial positioning advantages

in adversarial learning, resulting in enhanced learning performance.
The pre-training phase utilizes both the pattern and tacit mecha-
nisms to generate tacit rewards that guide agents in learning tacit
behavior strategies. Meanwhile, the tacit mechanism evaluates the
level of tacit mastery to determine when the pre-training objective
is achieved, facilitating the transition to centralized adversarial
training. Once the tacit pre-trained network is established, global
rewards are applied for cooperative adversarial training, building
upon the pre-trained network.

3 EXPERIMENTS
We apply our method and five well-established algorithms as base-
lines to the StarCraft Multi Agent Challenge (SMAC) benchmark.
Additionally, we modify the maps by randomizing the initial posi-
tions of both teams and introducing scenarios where agents cannot
initially perceive each other.

Table 1 and Table 2 present SMAC results on three challeng-
ing SMAC maps, featuring both homogeneous and heterogeneous
teams in asymmetric battles. Table 1 shows the mean and standard
deviation (std) of win rate differences among algorithms at the same
training step. Table 2 presents the mean and standard deviation
of timesteps required for each algorithm to achieve the target win
rate.

Table 1: Mean and std of the winning rates in SMAC
Maps Steps PTBC GoMARL HAVEN RODE QPLEX QMIX

3s_vs_5z 5M 96(1) 89(2) 94(1) 65(9) 60(9) 77(6)
6h_vs_8z 10M 76(2) 63(4) 38(5) 72(3) 66(2) 58(4)
MMM2 10M 72(3) 70(4) 61(3) 67(6) 67(4) 62(4)

Table 2: Mean and std of the timesteps required to achieve
the target win rate in SMAC
Maps (win rate) PTBC GoMARL HAVEN RODE QPLEX QMIX
3s_vs_5z (1.0) 7.43±0.05 8.47±0.05 7.85±0.11 8.64±0.05 8.38±0.05 7.96±0.06
6h_vs_8z (0.65) 7.50±0.05 8.19±0.11 No step reach 8.18±0.05 8.28±0.07 9.09±0.06
MMM2 (0.7) 8.15±0.09 9.24±0.10 8.39±0.03 8.36±0.18 8.46±0.03 8.90±0.13

The results demonstrate that PTBC outperforms other methods,
achieving a balance between final win rates (Table 1) and learn-
ing efficiency across multiple maps (Table 2). In contrast, baseline
methods achieve satisfactory results only on tasks where they excel.

4 CONCLUSION
This study introduces the PTBC framework, which integrates advan-
tageous spatial positioning through tacit coordination. By leverag-
ing pre-trained tacit behaviors, the PTBC enables agents to develop
efficient strategies in multi-agent adversarial coordination tasks.
We compare PTBC with several algorithms, including group-based,
role-based, and hierarchical approaches, and the results demon-
strate that PTBC achieves superior performances.
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